cmembrane.mws

Circular Membrane

This worksheet allow one to plot modes of vibration for a circular  membrane with fixed homogeneous boundary conditions and to visualize the vibrations in time. The radius is a and the wave speed is given by c.
 

>    restart: a:=1: c:=1:  with(plots):

Warning, the name changecoords has been redefined

The frequency of oscillation of the nm-th mode  is given by

>    nu:=(m,n)->c*evalf(BesselJZeros(m,n));

nu := proc (m, n) options operator, arrow; c*evalf(BesselJZeros(m,n)) end proc

The product solutions take the following form for a zero initial velocity, though one can easily add a phase shift in time to simulate other motions.

>    u:=(m,n,r,theta,t)->cos(c*nu(m,n)*t)*BesselJ(m,nu(m,n)/c*r)*cos(m*theta);

u := proc (m, n, r, theta, t) options operator, arrow; cos(c*nu(m,n)*t)*BesselJ(m,nu(m,n)/c*r)*cos(m*theta) end proc

The initial profile of the membrane:

>    m0:=1: n0:=1: plot3d([r*cos(theta),r*sin(theta),u(m0,n0,r,theta,0)],r=0..a,theta=0..2*Pi,grid=[40,40]);

[Maple Plot]

The evolution of this profile

>    animate3d([r*cos(theta),r*sin(theta),u(m0,n0,r,theta,t)],r=0..a,theta=0..2*Pi,t=0..6/nu(m0,n0),frames=20);

[Maple Plot]

The following code shows how to save animations as animated gifs. The first line sets up the plot to be gif and the third line reverts the plotting back oto the screen.

>    plotsetup(gif,plotoutput=`cmesh23.gif`,plotoptions=`height=200,width=200`):

>    m0:=2: n0:=3: animate3d([r*cos(theta),r*sin(theta),u(m0,n0,r,theta,t)],r=0..a,theta=0..2*Pi,t=0..6/nu(m0,n0),frames=20);

>    plotsetup(inline);

>