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Abstract

In 1801, Gauss published Disquisitiones Arithmeticae, which, among many other
things, develops genus theory, describing the divisibility by 2 of class numbers
of quadratic fields. In the centuries since this work, the divisibility properties of
class numbers by integers g > 3 have largely remained mysterious. In particular,
the problem of bounding the g-part hy(D) of class numbers of quadratic fields
Q(V/D) for g > 3 has remained unsolved. This thesis provides three nontrivial
bounds for hs(D), giving the first improvement on the previously known trivial
bound hz(D) < |D|Y/?*e.

This thesis approaches the problem via analytic number theory, phrasing
the problem of bounding hs(D) in terms of counting the number of integer
points in a bounded region on the cubic surface 4x® = y? + dz2, for a positive
square-free integer d. We obtain our first two nontrivial bounds for hz(D) by
regarding this as the congruence 423 = 32 modulo d. Using exponential sum
techniques, we prove two nontrivial bounds for the number of solutions to a
congruence of the more general form % = y® (mod ), for a positive square-free
integer ¢ and nonzero integers a,b. As results of these bounds, we show that
h3(D) < |D[?/*2*€ if D has a divisor of size |D|?/, and hs(D) < |D|?>/112+¢
in general.

We obtain a third nontrivial bound of h3(D) < |D|?>"/56+¢ by counting the
number of integer points on the cubic surface directly. Specifically, we estimate
the number of squares of the form 4x3 — dz?, using the square sieve and the
g-analogue of Van der Corput’s method.

Each of our three bounds for h3(D) also gives a corresponding improvement
on the previously known bound for the number of elliptic curves over Q with

fixed conductor.
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Chapter 1

Introduction

1.1 The class number

Let K be an algebraic number field and let Jx be the corresponding group of
fractional ideals, with Px the subgroup of fractional principal ideals. The class

group is defined to be the quotient
CLk = Jk/Pk.
The class group admits the exact sequence
1— 0y — K" — Jx — CLg — 1,

where O} denotes the group of units in K. Thus the class group C'Lg can be
seen as measuring the expansion that takes place when passing from numbers

to ideals. The class number h is the order of the class group,
hg = #CLk.

It can be seen by Minkowski theory that hg is always finite. In particular, if
hg =1 then O is a principal ideal domain. In general, however, hx > 1.

In this thesis we are concerned with class numbers of quadratic fields Q(v/D).
Class numbers are remarkably unpredictable, both in terms of their size and
their divisibility properties. In certain cases, computation of large sets of class
numbers has led to heuristic predictions for the behaviour of class numbers,
but it remains very difficult to prove properties of class numbers, even for as
restricted a family as imaginary or real quadratic fields.

Moreover, the properties of class numbers associated with one type of field
appear to be quite distinct from the properties of class numbers associated with
another type of field. In the case of imaginary versus real quadratic fields,

these differences are marked. For example, it is known that the only square-free
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integers D < 0 for which the corresponding imaginary quadratic field Q(\/ﬁ)
has class number 1 are the nine values

D=-1,-2,-3,-7,—11,-19, —43, —67, —163.

Yet in the case of real quadratic fields, class number 1 occurs much more fre-
quently; for example, for square-free integers 2 < D < 100, Q(v/ D) has class
number 1 for

D = 2,3,56,7,11,13,14,17,19,21,22,23, 29, 31, 33, 37, 38, 41,
43,46,47,53,57,59, 61,62, 67,69, 71,73, 77, 83, 86, 89, 93, 94, 97...

It is conjectured that infinitely many real quadratic fields have class number 1.
However, it remains unknown whether there are infinitely many fields of any
degree with class number 1. And this is just one example of the variability of
the properties of class numbers between different types of fields. (For the curi-
ous, tables of class numbers of quadratic fields Q(v/D) for square-free integers
—500 < D < 0 and 2 < D < 100 are included in Appendix A.)

Yet class numbers are as useful as they are unpredictable. As a few examples,
the class number of an algebraic number field is closely related to the Dedekind
zeta function, as shown by Dirichlet’s class number formula. The divisibility by
p of the class number of Q(&), where ¢ is a p-th root of unity, is closely related to
Fermat’s last theorem. The structures of class groups, and hence properties of
class numbers, are related to properties of isogenies of elliptic curves. Finally,
as we will study in more detail in Chapter 8, the 3-rank of class numbers of
quadratic fields (or the 2-rank of class numbers of cubic fields), can be used to
bound the number of elliptic curves over Q with fixed conductor.

Thus class numbers have fascinated mathematicians for hundreds of years,
not only because of their mysterious behaviour, but also because of their ten-

dency to appear unexpectedly in other areas of mathematics.

1.2 The 3-part of the class number

For a square-free integer D, consider the quadratic field @(\/5) with class group
CL(D) and class number h(D). The 3-part hg(D) is defined by

h3(D) = #{[a] € CL(D) : [a]* = 1}.
This admits the trivial bound
hs(D) < h(D) < |D|Y/?*, (1.1)

as we will see in Section 3.2. The following bound is conjectured:
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Conjecture.
h3(D) < |D|°

for any € > 0.

In the case of real fields, it is conjectured that for most D > 0, h(D) is itself
very small. In the case of imaginary fields, when D < 0, this conjecture is more
significant, as it indicates that although h(D) itself tends to infinity at least as
fast as |D|1/2_6 for any € > 0, the 3-part is conjectured to be very small.

Before the work of this thesis, the only known unconditional bound in each
case was the trivial bound (1.1). The goal of this thesis is to prove an un-
conditional nontrivial bound for both positive and negative square-free integers
D,

h3(D) < |D|? with § < 1/2.

1.3 The results of the Thesis

The main results of this thesis are three nontrivial upper bounds for the 3-part of
class numbers of quadratic fields, the first improvements on the trivial bound.!
We reduce the problem of bounding hz(D) to counting the number of integer

points within a bounded region on the cubic surface
42 = y? + d2?, (1.2)

where d = |D|, and we assume that D is square-free, D < 0. This is no handicap,
as having proved a bound for the 3-part of class numbers of imaginary quadratic
fields, we immediately obtain an equivalent bound for the 3-part of class numbers
of real quadratic fields, since for any square-free positive integer d, the Scholz
reflection principle [58] states that logs(hs(—d)) and logs(hs(+3d)) differ by at
most one.

The first bounds we prove for hz(D) are derived by working modulo d and us-
ing exponential sum techniques to estimate the number of solutions in a bounded
region to the congruence

42® = y* (mod d). (1.3)

In fact, we derive bounds for the number of solutions to a congruence of the
more general form
2% = ¢ (mod q), (1.4)

where ¢ is a square-free positive integer and a and b are nonzero integers satis-
fying certain conditions. The bounds for hz(D) then follow as corollaries.

Independently and simultaneously with the work of this thesis, Helfgott and Venkatesh
[36] have also proved a nontrivial bound for the 3-part; we discuss their result briefly in
Chapter 8.
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Specifically, let N,(X,Y") denote the number of solutions to the congruence
(1.4) with (z,q) = 1, (y,q) = 1 such that + < X and y < Y. We prove in
Theorem 5.1 that if a and b are nonzero integers with (a,b) = 1 and a # b, and
if X <gandY < q/2, then

Ny(X,Y) < ¢*?d(q)"(log q)* + ¢~ ' XYd(q)" + ¢ */*Xd(q)",

where 7 and the implied constant depend upon a,b. We further prove in Theo-
rem 5.2 that if @ and b are nonzero integers with (b,q) = 1 and a/b ¢ Z*, then
for any integer k > 1,

N,(X,Y) < XT3 d(g) % (log q) %,

as long as X < q% and Y < ¢/2. Here 7 and the implied constant depend
upon a, b, k.

If both a,b > 0, we may define N;(X,Y’) to be the number of solutions to
(1.4) with z < X and y <Y, without assuming the relative primality conditions
(z,9) = 1, (y,q) = 1. Then equivalent results hold for N, (X,Y") as for Ny(X,Y),
which we present in Theorems 5.3 and 5.4.

Applying these results to the congruence (1.3), we obtain Theorem 6.1, which
states that if D has a divisor of size |D|%/6, then

hs(D) < | D[P/t
and Theorem 6.2, which states that
ha(D) < |DP/H2 e,

for all square-free integers D.

We prove a third nontrivial bound for hs(D) by counting the number of
integer points on the cubic surface (1.2) directly. Specifically, we use the square
sieve and the g-analogue of van der Corput’s method to estimate the number of
squares of the form

473 — dz?,

within a bounded region. The result is Theorem 7.1:

hg(D) < |D|27/56+E.

1.4 Immediate consequences of a nontrivial bound

for the 3-part

A nontrivial bound for the 3-part hz(D) is important in its own right, but such

a bound also has immediate results for several closely related problems.
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1.4.1 Cubic extensions of discriminant D

By Hasse’s result [26], the class number of Q(v/D) is divisible by 3 if and only
if there is a cubic extension of Q of discriminant D. Thus our results for hz(D)
show that there are at most O(|D|?7/6%¢) cubic extensions of Q with discrim-
inant D. In the case that D has a divisor of size |D|?/®, there are at most
O(|D|/12+€) cubic extensions of Q with discriminant D.

1.4.2 Elliptic curves with fixed conductor

As we will study in more detail in Chapter 8, hg(D) plays a critical role in
bounding the number of elliptic curves over Q with conductor N. A result
of Brumer and Silverman [5] shows that there are at most O(N'/?%€) such
curves. Furthermore, any nontrivial bound h3(D) < |D|? immediately refines
this bound to O(N%*€). Thus the conjectured bound h3(D) < |D|¢ would imply
that there are O(N€) such curves, for any € > 0.

Our results for h3(D) show that the number of elliptic curves over Q with
conductor N is at most O(N?7/56+¢) in general, and at most O(N°/12+€) if N
has a divisor of size N°/6. The work of Helfgott and Venkatesh [36] refines these
bounds further and allows us to show that if the conductor N has a divisor of size
N5/6_then the number of elliptic curves over Q with conductor N is O(N o),
where A = 0.21105.... These results are stated as Theorems 8.1 and 8.2.

1.4.3 Bounds for N;(X)

A nontrivial bound for the 3-part also gives an estimate for the number of square-
free integers D of bounded size such that 3|2(D). Let N, (X) denote the number
of square-free integers —X < D < 0 such that the class group CL(D) contains
an element of order g, and let N; (X)) denote the corresponding quantity for
0 < D < X. It is conjectured (as we will see in more detail in Section 2.3.2)

that for each integer g > 2,

Ny (X)~C;X and NS (X)~CfX,

g

for constants C" in the imaginary case and C; in the real case. This is known
to be true for g = 2, but remains unproven for g > 3. In fact, it remains to be

proven in both the imaginary and real cases even that
NEX) > x' (1.5)
A bound of h3(D) < |D|? gives the corresponding bound
NE(X) > X0,

in particular, the conjectured bound hz(D) < |D|¢ would give the desired bound
(1.5). This follows from a striking result of Davenport and Heilbronn [11] on the
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asymptotic density of discriminants of cubic fields, which gives as a corollary the
mean value of the 3-part of class numbers of quadratic fields.? In the imaginary

case, this states that
SIRTIIEED o
—-X<D<0 —X<D<0
as X — oo, where both sums consider only square-free values D. Thus
6
> (hs(D) 1) ~ =X (1.6)

—X<D<O0

Define N3 (X) to be the set of square-free integers —X < D < 0 such that
CL(D) contains an element of order 3, so that N; (X) = #Nj3 (X). Then
(hs3(D)—1) is nonzero only for D € N3 (X)), so we may restrict the sum in (1.6)
to D € N3 (X). Then assuming that h3(D) < |D|?,

Yo (s(D)-1< > mD)< > DI < XNy (X).

DeN; (X) DeNj (X) DeNj (X)
Comparison with (1.6) then shows immediately that
Ny (X) > x+0.

In the real case, the result of Davenport and Heilbronn states that

4
> md)~g Y1
0<D<LX 0<D<X

as X — oo. Reasoning as above, it is clear that a bound hz(D) < |D|? also
yields the corresponding bound

N (X) > X1,

Thus any nontrivial bound for hz(D) gives a bound for N5 (X). In par-
ticular, our work shows that ./\/‘;[(X) > X?29/56—¢ However, as we will see
in Sections 2.3.3 and 2.3.4, a number of methods have succeeded in attacking
N. gJE (X) directly, producing quite good lower bounds. Substantial improvements
will have to be made to the bound for h3(D) in order for the resulting bound for
N (X) to overtake known bounds for A (X) resulting from direct methods.

1.4.4 A note on hy(D) for g > 5

We note that although the methods presented in this thesis do not appear at
first sight to depend crucially upon the fact that we consider the 3-part of the

2We note that analogous results for the asymptotic density of discriminants of quartic fields
and the mean value of the 2-class group of cubic fields have recently been given in the thesis
of Bhargava [4].
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class number, rather than the 5-part, or the g-part for any g > 5, these methods
do not extend to higher values g. For g > 5, one must consider increased ranges
for integer points on a variety analogous to (1.2); these increased ranges are too
large to be handled by the methods presented in this thesis. We discuss this in
more detail in Chapter 6.

1.5 Outline of the Thesis

We begin in Chapter 2 with a brief history of research on class numbers of
quadratic fields. Not only is the history of class numbers fascinating, it also
serves to put the work of this thesis in context. In Chapter 3 we present some
preliminary material, specifying notational conventions and stating a number
of results for exponential sums and congruences that will be critical to the
remainder of the thesis.

In Chapter 4 we begin the work of this thesis, proving two upper bounds
for the least s-power-free positive integer in an arithmetic progression, for any
integer s > 2. While these results do not in themselves pertain directly to
class numbers, we present this work as an introduction to the methods we then
develop in Chapter 5 to estimate the number of solutions in a bounded region
to a congruence of the general form (1.4). In Chapter 6 we then use the results
of Chapter 5 to prove our first two nontrivial bounds for h3(D).

In Chapter 7 we use the square sieve and the g-analogue of van der Corput’s
method to prove our third nontrivial bound for h3(D). Finally, in Chapter 8, we
use our bounds for h3(D) to refine the known bound for the number of elliptic

curves over Q with conductor N.



Chapter 2

A brief history

2.1 Class numbers of quadratic fields

Research on class numbers of quadratic fields has a long history, beginning
with Gauss’s study of class numbers of quadratic forms. To put the results of
this thesis in the context of what is known or conjectured about class numbers
of quadratic fields, we give in this chapter a description of some of the most
important developments of this history, stating several of the nicest results that
have been proven so far, as well as the most tantalising conjectures that remain
unproven.

In Section 2.2 we discuss the problem of bounding the class numbers them-
selves; in the case of imaginary quadratic fields, this was famously solved in
the 1980’s, while in the case of real quadratic fields, little is known, although
much is conjectured. In Section 2.3 we study the divisibility properties of class
numbers, reviewing the work of Gauss on genus theory and the divisibility of
class numbers by 2, and summarising the conjectures of Cohen and Lenstra for
divisibility by any odd prime p. We also outline recent results on the divisibility
of class numbers by any integer g > 3. This fascinating work illustrates the
many beautiful properties we expect class numbers to possess, as well as how
little we still know. In Section 2.4 we mention current research on the 3-part

specifically.

2.2 Bounding the class number

Let D be a square-free integer and consider the quadratic field Q(v/D) with
class number h(D). In both the real and imaginary cases, the class number

admits the trivial upper bound

h(D) < |D|'/?*,
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as we prove in Section 3.2.

In the case of imaginary fields, the so-called class number conjecture of Gauss
states that only finitely many imaginary quadratic fields have any specified
class number h. The companion problem to this conjecture, the class number
problem, asks for an effective method of computing all the imaginary quadratic
fields with class number h; thus the problem is to find an effective lower bound
for h(D) when D < 0. The class number conjecture was proved to be true in
1934, and an effective method of computation was proved in 1983. We give a
brief summary of this work in Section 2.2.1.

The situation for real fields is conjectured to be much different: it is con-
jectured that for D > 0, h(D) is usually very small, and in particular that
h(D) = 1 infinitely often. However, the real case is still not well understood.
We mention several partial results in Section 2.2.2.

2.2.1 The class number problem: imaginary quadratic fields

In 1801, Gauss enunciated the class number conjecture in Disquisitiones Arith-
meticae. In 1918, Landau [45] published a theorem of Hecke showing that the
generalised Riemann hypothesis implies the class number conjecture. (In par-
ticular, Hecke’s theorem showed that the nonexistence of a Siegel zero would
imply that h(D) — oo as |D| — cc.) Then in 1933, Deuring [14] showed that
if the classical Riemann hypothesis is false, h(D) > 2 for |D| sufficiently large.
Mordell [48] improved this in 1934 to the statement that if the classical Riemann
hypothesis is false, then h(D) — oo as |D| — oo. Then Heilbronn [34], also in
1934, finally showed that if the generalised Riemann hypothesis is false, then
h(D) — oo as |D| — oco. Thus the statement

h(D) — oo as |D|— oo

was finally shown to be true unconditionally, proving Gauss’s conjecture.

It still remained to find an effective means of computing the finitely many
imaginary quadratic fields with class number h. In 1936, Siegel [59] proved that
for every € > 0 there exists a constant ¢ > 0 such that

h(D) > ¢|D|*/?7¢. (2.1)

However, this constant is not effectively computable. (Interestingly, Tatuzawa
[64] was able to show that there is a computable constant ¢ such that (2.1) holds
for all except possibly one value D.)

The class number problem was first solved, after a good deal of effort, in the
case of class number 1. In 1934, Heilbronn and Linfoot [35] showed that there
could be at most one more square-free integer D < 0 such that Q(v/D) has class

number 1, aside from the nine known values

D=-1,-2,-3,—7,—11,-19, —43, —67, —163.
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In particular, the existence of a tenth such value would imply the falsity of
the generalised Riemann hypothesis. In 1952, Heegner [33] published the first
proof that no such tenth value existed. His paper contained some flaws and, at
the time, was disregarded. In 1966, Baker [2] showed that no such tenth value
existed, using the independence of three logarithms, and in 1967, Stark [62] used
a method similar to Heegner’s to prove that no tenth field existed. The problem
continued to arouse interest for several years, as Deuring and others continued
to study Heegner’s original proof (see the summary of Goldfeld [20] for more
details).

The next obvious problem was to find all imaginary quadratic fields with
class number 2, and indeed, in 1971 both Baker [3] and Stark [63] showed that
there are exactly eighteen imaginary quadratic fields with class number 2, using
the linear independence of logarithms.

Yet the general class number problem remained open. Then in 1975-76,
Goldfeld [19] reduced the problem to showing that the Birch-Swinnerton-Dyer
conjecture holds true in a specific case, namely that there is an elliptic curve
over Q with Mordell-Weil rank 3 such that its L-series has a zero of rank 3 at
s = 1. Finally, in 1983, Gross and Zagier [22] used the theory of Heegner points
to show that such a curve exists. The resulting theorem, due to the combined
work of Goldfeld, Gross and Zagier, is that for every € > 0 there exists an

effectively computable constant ¢ > 0 such that
h(D) > c(log |D|)'~.

Oesterlé [53] showed specifically that

1 2./p
D) = stioeioh T (1- 20,

p||D]
p#|D|

This completely solved the class number problem for imaginary quadratic fields.
In reality, it is still not easy to compute all discriminants with a specific class
number, as a large (but finite) amount of computation is necessary; nevertheless
all fields with class number 3 (of which there are 16) and class number 4 (of

which there are 54) have been computed.

2.2.2 The class number problem: real quadratic fields

The situation for real fields is significantly less well understood; Siegel’s theorem
[59] for real quadratic fields states that

h(D)Rp > DY/?~¢

for any € > 0 and sufficiently large D, where Rp is the regulator of the field
Q(v/D). The key lies in the presence of the regulator, whose behaviour is not
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predictable by current methods. It is conjectured that the regulator is usually
about size D'/2, which would indicate that k(D) is usually very small.
Computational evidence by Wada [65], Mollin and Williams [47], and Ja-
cobson [42] supports the conjecture that h(D) = 1 infinitely often. Cohen and
Lenstra [9] have also presented heuristic arguments for the observed frequency

of class number 1 for real quadratic fields.

2.3 Divisibility properties

Divisibility properties of class numbers of quadratic fields are usually phrased
in terms of the following quantities. Denote by hy(D) the g-part of the class
number,

hg(D) = #{[a] € CL(D) : [a]? = 1}.

Denote by N, g (X) the number of square-free integers —X < D < 0 such that
CL(D) contains a nontrivial element of order g; define N (X) equivalently for
real fields. These quantities are closely related; as we saw in Section 1.4, a
bound for hz(D) gives a bound for N (X). Until recently, most successes in
proving divisibility properties of A(D) by an integer g > 3 have been achieved by
attacking N, gi (X) directly. Although the main results of this thesis are for hy(D)
itself, with g = 3, we digress for the moment to discuss important background
material concerning N;=(X).
It is conjectured that for each integer g > 2,
Ny (X)~CyX and NJ(X)~CFX

g9

for constants C

, In the imaginary case and C’;‘ in the real case.

2.3.1 Gauss’s genus theory

Genus theory, developed by Gauss, shows that this is true for ¢ = 2, with
C’2jE = 6/m2. Gauss was motivated by the problem of determining those primes
represented by a given quadratic form with fundamental discriminant. Let
h*(D) indicate the number of proper equivalence classes of quadratic forms
with discriminant D. The goal of genus theory is to distinguish, in the case that
h*(D) > 1, which class contains forms that represent a given prime p, by col-
lecting proper equivalence classes into larger sets, the genera. Most importantly
in the context of this thesis, Gauss showed that there are 2"~! genera, where
r is the number of distinct prime divisors of the fundamental discriminant D.
The genera partition the set of proper equivalence classes, hence the number of
classes in each genus is h*(D)/2"~!. Thus 2"~! divides h*(D).
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Thus genus theory shows that CL(D) contains Z/27Z as a subgroup if the
square-free integer D has more than three distinct prime factors.! In particular,
this holds for almost all square-free |D| < X, so that

(For a summary from the historical perspective, see the memoir of Ribenboim

[56]. For more modern references, see [52] or Hasse’s text [27].)

2.3.2 Cohen and Lenstra heuristics

For g > 3, hy(D) and J\/gi(X) are not well understood. Cohen and Lenstra [9]

have presented heuristics suggesting that for odd primes p, in the imaginary

s 06-)
C;=7r62<1—k10j2(1—plk>>.

(Although we will not discuss this in detail, they also obtain conjectures for the

case

and in the real case

probability that the p-rank of the class group is equal to an integer n > 1, and
in the imaginary case they further obtain heuristic probabilities that the class
group is a product of various cyclic groups.)

These conjectures are based on experimental observations of three phenom-
ena, as summarised in [9]: firstly, that the odd part of the class group of imag-
inary quadratic fields appears rarely to be non-cyclic; secondly, that for odd
primes p, the proportion of imaginary quadratic fields with class number divisi-
ble by p appears to be significantly greater than 1/p; and thirdly, that a positive
proportion of real quadratic fields with prime discriminant appear to have class
number 1. Reasoning that the lack of cyclic groups may be due to the fact that
such groups have many automorphisms, Cohen and Lenstra weighted isomor-
phism classes G of abelian groups by 1/#Aut(G). This, along with several other
heuristic assumptions, allowed them to make accurate predictions about proper-
ties of class numbers. For example, they predict that approximately 43.987% of

n the case of imaginary quadratic fields, h*(D) = h(D), so if D < 0 is a fundamental
discriminant, then 2|h(D) if D has at least 2 distinct prime divisors. In the case of real
quadratic fields, h* (D) = h(D) or 2h(D), depending if there is a unit of norm —1 in the field
or not. Furthermore, the fundamental discriminant D associated to the square-free radicand
d of a quadratic field Q(v/d) can have at most one more prime divisor (namely the prime 2)
than d. Thus in all cases, if D is a square-free integer it is sufficient that D has more than
three distinct prime divisors for k(D) to be divisible by 2.
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imaginary quadratic fields should have class number divisible by 3, and approx-
imately 75.446% of real quadratic fields with prime discriminant should have
class number 1, both of which predictions are in agreement with experimental

evidence.?

2.3.3 Recent work: imaginary quadratic fields

So far the conjectures of Cohen and Lenstra remain out of reach; for g > 3 it
remains to show even that N, g X > X 1=¢ for any € > 0. A number of partial
results have been obtained. Gut [23] generalised Gauss’s result to show that
infinitely many imaginary quadratic fields have class number divisible by 3. In
general, Ankeny and Chowla [1] showed (as did Nagell [51]) that for any g > 2
there are infinitely many imaginary quadratic fields with class group containing
a nontrivial element of order g, so that N, (X) — oo as X — oo. In fact, as
Soundararajan points out in [61], their method shows that N (X) > X1/2,
Murty [50] then showed that N (X) > X'/2¥1/9  which was improved in
the cases g = 4,8 by Morton [49] to NV (X) > X', using class field theory.

More recently, Soundararajan [61] has shown that

(X)) > X1/242/g9=¢ if g =0 (mod 4)
! X1/243/(g+2)=¢ if g =2 (mod 4),

for sufficiently large X. Since N (X) > Ny, (X), this also provides a bound
when g is odd.

The complementary question of when the class number is not divisible by a
prime p has also been studied. Recently, Kohnen and Ono [44] have shown that
for any prime p > 3, the number of square-free integers —X < D < 0 such that
pth(D)is > VX /log X for sufficiently large X.

In the specific case of p = 3, Hartung [25] has shown that there are infinitely
many D < 0 with 3 1 h(D). A result of Davenport and Heilbronn [11] further
shows that at least half of the square-free integers —X < D < 0 have 3 { h(D).

2.3.4 Recent work: real quadratic fields

Honda [38] first showed that there are infinitely many real quadratic fields with
class numbers divisible by 3. (In [37] he also gives a criterion for the class number
of a quadratic field, real or imaginary, to be divisible by 3, using isogenies of
elliptic curves.) More generally, Yamamoto [70] and Weinberger [68] have shown
that there are infinitely many real quadratic fields with class number divisible

2In [10], Cohen and Martinet provide analogous heuristics for number fields of higher
degree, recently verified in the case of the mean size of the 2-class group of cubic fields in the
thesis of Bhargava [4].
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by g for any positive integer g. Ankeny and Chowla [1] have shown that if D
is a square-free positive integer of the form D = n?9 + 1 with n > 4, then the
class group of Q(v/D) contains a nontrivial element of order g. However, as it
is unknown whether there are infinitely many square-free integers of the form
n?9 + 1, this does not give a result for N, ;r (X) parallel to their result in the
imaginary case.

Murty [50] has shown that N (X) > X1/29=¢ for any positive integer g.
Recently, Yu [71] sharpened this result to N;‘(X) > X1/97¢ ysing a result of
Yamamoto [70]. In the specific case g = 3, Chakraborty and Murty [8] have also
used the result of Yamamoto [70] to obtain the bound N3 (X) > X*/6. Byeon
and Koh [7] have further improved this to NV (X) > X7/8 using the result of
Soundararajan [61] for imaginary quadratic fields.

Concerning indivisibility properties for class numbers of real quadratic fields,
a result of Davenport and Heilbronn [11] shows that 3 t A(D) for at least 5/6 of
the square-free integers 0 < D < X.

2.4 Bounding the 3-part

Thus we arrive at the problem of bounding the 3-part hs(D). Several conditional
results are known, as we will discuss in more detail in Section 8.3. Soundarara-
jan has shown (as communicated in [36]) that if xp is the quadratic Dirichlet
character associated with Q(v/D), the Riemann hypothesis for only the spe-
cific L-function L(xp,s) implies hz(D) < |D|*/3+¢. Wong [69] has shown that
the Birch—-Swinnerton-Dyer conjecture, together with the Riemann hypothesis,
gives the result hz(D) < |D|Y/4+e,

In this thesis, we give three nontrivial bounds for h3(D). Independently and
simultaneously with the work of this thesis, Helfgott and Venkatesh [36] have
also improved on the trivial bound for h3(D), using a new method for counting
integer points on elliptic curves. Their result is that hz(D) < |D|0-44178+¢
for both real and imaginary quadratic fields. While this work occurred at the
same time as the work leading to this thesis, it was entirely independent; indeed
the methods used in this thesis are quite different from those of Helfgott and
Venkatesh. In particular, the work of Chapter 5 covers a much broader problem
than simply bounding hs(D). We discuss the work of Helfgott and Venkatesh

in more detail in Chapter 8.



Chapter 3

Preliminaries

3.1 Notation

Throughout the thesis, the notation A < B indicates that A < ¢B for some
positive constant ¢ that depends only on certain variables as stated. We denote
by [z] the greatest integer part of z and by ||z| the distance from z to the
nearest integer, i.e. ||z|| = min{z — [z], [x] + 1 — z}. By (4, B] we mean the set
of integers {A < n < B}.

We will also use a number of arithmetic functions. The functions ¢(n) and
w(n) represent the Euler totient function and the M6bius function, respectively.
Also, v(n) represents the number of distinct prime divisors of n, d(n) represents
the divisor function, and dg(n) represents the k-th generalised divisor function,
i.e. the number of ways of expressing n as the product of k£ factors, including
ordering.

The exponential function e(x) represents e2™* and e, (z) represents e2™*/4,
Also, we denote by 7 the unique solution to mn = 1 (mod ¢) with 1 <7 < q.
If a is a negative integer, then n® denotes nl*l. By convention, whenever @
appears, it is implicit that only values of n with (n,¢) = 1 are considered in the

expression. The letter p always denotes a prime.

3.2 The trivial bound for the class number

We briefly sketch the trivial bound for the class number hy of an algebraic

number field K. We use the following elementary lemma (Lemma 4.2 of [52]).

Lemma 3.1. Let R(n) be the number of distinct ideals with norm n in a given
algebraic number field K of degree N. Then

R(n) < dn(n) = O(n),
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for any € > 0.

Proof. The function R is multiplicative, since every ideal of norm mn with
(m,n) =1 is a unique product of ideals with norm m and n respectively. Thus
we need only consider the case when n is a prime power. Let n = p® be a prime
power, with

POx =pi' -+ ps°
where p; are prime ideals in Og. If T is an ideal of norm 91(I) = p® and p|I,
then N(p)|9(I), so that N(p) must be a power of p. Hence p € p and so p

coincides with one of the ideals p;. Thus

r=ppt

)

with suitable 0 < b; < e;. Thus every such I induces a factorisation of p* into
s factors:
p* = N(I) = N(p3") -+ N(p%).

If J is another ideal of norm p® inducing the same factorisation, then
J:pil ...pgs’

and ‘ﬁ(pf) = N(p;") for all i = 1,...,s, whence b; = ¢; and thus I = J. Thus
R(p*) cannot exceed ds(p®). There are at most [K : Q] prime ideals in the
integral closure of O, so that s < N, and hence R(p*) < dn(p?). O

As a result of this lemma, we have the following trivial bound for the class
number hg of an algebraic number field K of degree N. (This proof is originally
due to Landau; see Theorem 4.4 of [52].)

Theorem 3.1. If K is an algebraic number field of degree N > 1, then
hi = O(|Dic|"?1log" =" | Dk|),
where Dy is the discriminant of the field.

Proof. By the Minkowski bound, in every ideal class there is an integral ideal

m(b) < CNV |-DK )

of norm

for a constant cp. Thus
he< Y, Rm)< ) dn(n)
n<cn|Dg|1/? n<cn|Dg|1/?

One can prove by induction on N that

S dw(n) = O(zlogV " ),

n<x

and the result follows. O
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In the specific case of quadratic fields, we have:

Lemma 3.2. For h(D) the class number of a quadratic field Q(v/D),
h(D) < |D|}/?+e
for any € > 0.

We will refer to this as the trivial bound for the class number.

3.3 Congruences

We will frequently bound the number of solutions to simple congruences of the

following form.

Lemma 3.3. Forl > 0 an integer and a number a modulo g, if (b,q) =1, then
#{n (mod q) : an' = b (mod q)} < 21D,

Proof. If (a,q) # 1 then there are no solutions since (b,q) = 1. Thus we may
reduce to the case of a congruence n! = ¢ (mod ¢) where (c,q) = 1. Let
f(z) = 2 —¢c. For ¢ = p|*---p'™, then by the Chinese remainder theorem,
the number of solutions of f(z) = 0 modulo g is the product of the number of
solutions of f(z) = 0 modulo p;’ for each i = 1,...,m. Let N(p") denote the
number of solutions n of f(z) = 0 modulo p".

First suppose that p > 2. Then there is a primitive root g modulo p", so we
may write ¢ = g* and n = g modulo p” for some u,v. Finding a solution n of

f(z) =0 (mod p") is then equivalent to finding a solution v of

lv = u (mod ¢(p")),
and hence
N(p") < (L, o(p"))-
For our purposes, it is sufficient that N(p") < I.
If p = 2, then the fact that (Z/2"Z)* = C3 x Cyr—2 enables us to write
c=(=1)¢57 and n = (—1)*5” where e,u = 0 or 1, and 0 < f,v < 2”2, Then
the problem is to find solutions w, v such that

(—1)“5Y = (=1)°57 (mod 27),
or equivalently such that

ul = e (mod 2)
vl = f (mod2"?).

There are (,2"~2) solutions modulo 2”2 to the second congruence, and at most
2 solutions modulo 2 to the first congruence. Thus N(p") < 2(1,2772) <2l. O
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3.4 Bounds for exponential sums

We will use a number of bounds for exponential sums. As these are either clas-
sical results to be found in any number theory text or are quite deep results
resulting from Weil’s proof of the Riemann hypothesis for curves over finite
fields, we state these results without proof, giving references and brief explana-

tions where appropriate.

3.4.1 Incomplete sums

The first result is an elementary bound for incomplete exponential sums (see,
for example, Chapter 7 of [41]).

Lemma 3.4. For an integer a and positive integers M, N, q, let
Alg; M, a) = Z eq(na).
N<n<N+M

Then
|A(g; M, a)| < min(M, [la/q|~").

3.4.2 Gauss sums

The classical bounds for Gauss sums and for exponential sums of higher degree
monomials will be used frequently (see Chapter 7 of [41]).
Lemma 3.5. For an integer a and a prime p > 2 with pt a,

P

Z ep (az?)

x=1

<p'2.

Lemma 3.6. For an integer a, a positive integer k, and a prime p > k with
p*a andd: (k7p_1)7

p

Zep(axk)

=1

< (d—1)p'/2.

3.4.3 Weil’s bound for exponential sums

It is a well-known result of Weil’s proof of the Riemann hypothesis [66] for curves
over finite fields that exponential sums of certain polynomials with respect to a

prime modulus may be bounded by the square-root of the modulus.

Lemma 3.7. For a prime p and a polynomial f(x) = c,a™ + -+ + ¢o with
integer coefficients having 0 <n < p and pt cy,

p

> el f())

r=1

< (n—1)p'/2%.
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Lemma 3.8. Let x be a nontrivial multiplicative character of order | modulo a
prime p and ¢ a nontrivial additive character of Fp. Let f(x) be a polynomial
over F), of degree d with (d,l) = 1 and with all distinct roots in the algebraic
closure F,. Let g(x) be a polynomial over F,, of degree e with (e,p) = 1. Then

<(d+e—1)p'/2

These are quite deep results. We briefly outline the general idea behind
the proof, but we refer the reader to Weil’s note [67] or Schmidt’s treatment in
Chapter IT of [57] for a complete discussion.

For a prime power ¢ = p", consider the finite field k& of ¢ elements and
k(t) the field of rational functions in a transcendental element ¢, which may be
regarded as the function field over k of a projective line. Given a character ¥
of the additive group k£ and a character y of the multiplicative group k*, it is
possible to define an abelian character ¢ over k(t) whose L-series is a polynomial
of degree M with roots «; such that a sum of the form 3 ¢y may be expressed
as a sum of the roots of ¢, i.e. as (—1)" > «a; for some positive integer r.

Since by class field theory the character ¢ belongs to an abelian extension
of k(t) and its L-series divides the zeta function of that extension, the truth of
the Riemann hypothesis implies that all the roots a; have modulus ,/g. Thus
it follows that the sum ¢ is bounded in modulus by M,/q. Specific choices
of the characters ¥ and x yield bounds for exponential sums of different types,
such as the bounds for exponential sums of polynomials given above, or bounds

for Kloosterman sums, as considered in the following section.

3.4.4 Kloosterman sums

In [12], Deligne proves the so-called Weil bound for exponential sums of rational
functions of one variable. We state a specific case of Deligne’s general result
below, along with the resulting lemma we will require later.

Let p be a prime and let Xy be an absolutely irreducible smooth projective
curve of genus g over F,. Let f be a rational function, f : Xo — P!, not
identically equal to infinity. Let v, (f) represent the order of the pole of f at x

if f(x) = o0, and set v, (f) = 0 otherwise. Let S represent the sum

S= ) e(f@).

zeXo

Deligne’s result shows that

S|<(29-2+ D (1+w(f) | (3.1)
Vr(f)?éo
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As in the case of the Weil bound for exponential sums of polynomials de-
scribed in the previous section, this is proved by expressing the character sum
under consideration as a sum of roots of a function governed by the Riemann
hypothesis for curves over finite fields (see Section 3 of [12]). We will use the
following instance of this result.

Lemma 3.9. For integers a,b with a < 0, b > 0, integers h,l and a prime p
with pt h,l and p > |a|,b,

p

Z ep(ha® + 12?)

r=1

< (lal + b)p*’*.

Proof. We simply take f(x) = hz® + l2°, which has a pole of order |a| at zero
and a pole of order b at infinity. Here we recall that if a < 0, then 2% denotes
Z!*l modulo p. Summing over P!, with genus zero, (3.1) immediately gives the
result. O

3.5 Multiplicative properties

We will frequently find it convenient to use multiplicative properties of expo-
nential sums. We prove two such properties here. The first is quite general,
following Lemma 3 of [40].

Lemma 3.10. Let ¥(q;a,b) be a condition on a positive integer q and integers
a and b such that

(i) ¥(q; a1, b1) is equivalent to 1 (q; as, ba) if a1 = as (mod q) and by = bs (mod q);
(i) if (q1,q2) =1 then ¥ (q1q2; a,b) is equivalent to the conjunction of the con-
ditions ¥(q1; a,b) and ¥(gq; a,b).

For integers x,y and a positive integer q, define the exponential sum

S(gz,y) = Y eqlaz+by).
a,b (mod q)
¥ (q;a,b)

Then if (q1,q2) = 1, the following multiplicative property holds:
S(q1g25w,y) = S(a1; 2@, y32) S (q2; 2T, Y1)
where q1 and Gz are defined modulo gz and q1 respectively by

g = 1 (modqa)
G2z = 1 (modq).
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Proof. First note that given pairs 1,y (mod ¢1) and x2,y2 (mod g2), there is

a unique pair x,y modulo ¢q1q2 such that

x = x1 (modq)
x = x5 (mod qo)
and
y = w1 (modgq)
y = yo (mod g),
namely
r = @@+ qaqare (mod qig)
Yy = @@y +qaqiye (mod qiqz).

Thus if the conditions 1(q1;x1,y1) and ¥ (g2; 2, y2) both hold, then ¥ (q1;z,y)
and ¥(go; z,y) both hold and hence ¥(q1g2; z,y) holds, and conversely. There-
fore, simply multiplying the exponential sums S(q1; g2, ygz) and S(qge; 271, yq1)
and expressing the resulting product as a double sum modulo ¢;gs proves the

lemma. ]

In our work with the square sieve in Chapter 7 we will also need the follow-
ing more specific multiplicative property for exponential sums involving Jacobi
symbols (%)

Lemma 3.11. For integers k,z, an odd positive integer r, and a square-free

positive integer d with r t d, let

r 3_ 1,2
S(d,r;k,z) = Z <4adz> er(ka).
a=1

r
Then if (ro,m1) = 1, the following multiplicative property holds:

S(d,ror1; k, z) = S(d,ro; k71, 2)S(d, r1; k79, 2),
where rofg = 1 (mod 1) and ri71 =1 (mod rp).

Proof. We may verify this directly. Write a = 179 + a9r1 modulo rgr;. Then

A(aqro + agr)® — dz?
S(d,?‘o?’l;k,z) = Z ( ( = (’:“1> erorl(k(aﬂ’o—l—aorl))
ag Emogm; Tor1
aj (mod rq

S <4(a0r1)3 - d22> (4(a1r0)3 - d22> or. (kaa)e (kax).

To T1

ag (mod rq)
@y (mod rp)
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Making the transformations

ag +— aort (mod rg),

a1 +— a1y (mod 1),

and separating the double sum over agp (mod rg) and «; (mod 71) into two

sums, we then obtain the desired factorisation

S(dv T0, krla Z)S(dv 13 k%u Z)



Chapter 4

The least s-power-free
number in an arithmetic

progression

4.1 Introduction

In this chapter we present upper bounds for the least s-power-free positive
integer n4(a, ¢) occurring in an arithmetic progression a (mod ¢), for any integer
s > 2. These results are an extension of a result of Heath-Brown [30] giving
the best known upper bound for the least square-free positive integer in an
arithmetic progression. While the results of this chapter do not relate directly
to class numbers of quadratic fields, the methods presented here are the basis
for our approach to counting the number of solutions in a bounded region to a
congruence of the form z® = y® (mod ¢), as presented in Chapter 5.

In studying the least s-power-free positive integer in an arithmetic progres-
sion a (mod ¢), one must first assume that (a, q) is itself s-power-free, otherwise
no such number exists. In the case s = 2, Prachar [55] was the first to provide

an upper bound for ns(a, ¢), namely

3 log ¢
na(a, q) < q2 exp (Cloglogq> )

for (a,q) = 1, with a specified constant c¢. Erdés [15] subsequently refined this
to
3 _
na(a,q) < g2 (logq) ™"

in the case (a,q) =1 and

na(a, q) < ¢ (loglog g)(log ) ~*
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in general. In [39], Hooley used exponential sum techniques, employing the Weil
bound, to prove the further result that for any € > 0, the numbers ¢ for which
max na(a,q) < g3+
(a,q)=1
have positive lower density. In [30], Heath-Brown extended the methods of
Hooley, obtaining the upper bound

na(a,q) < (d(g)log 9)%(gay”* + ¢®a;’") (4.1)

for any divisor qo|g. This result is most efficient for a divisor of size gy ~ ¢/3,
in which case one obtains an exponent of 4/3 + € for na(a,q). Heath-Brown
furthermore extended ideas of Burgess [6] for character sums to prove the general

result
na(a,q) < (d(q)log q)°¢**?, (4.2)

where both bounds hold uniformly in a.

4.2 Statement of the Theorems

Following Heath-Brown, we prove two analogous bounds for ng(a,q) for any
integer s > 2.

Theorem 4.1. For any integer s > 2, if (a,q) is s-power-free, then

1

i s —= _s=2
ns(a,q) < (995 +q7qy ' )(a,¢) "0 ¢°
for any € > 0, for any divisor qo|lqg with go > ql/s.

The implied constant depends only on s and €, and the factor ¢¢ may be
expressed explicitly in terms of powers of d(q) and log g. This theorem reduces
to (4.1) in the case s = 2, and as is to be expected, the bound for n(a,q)
becomes weaker as s increases. Note that the theorem is least efficient when ¢
is a prime, or when ¢ is the product of two factors each of size ~ ¢'/2. The best

case occurs when the divisor gg ~ ¢5+1; for example, if ¢ = k5! or ¢ = k.

Theorem 4.2. For any integer s > 2, if q is square-free, then
1(__2s2
ns(a,q) < q1+s (zs2+s_1)+e

for any € > 0.

Again, the implied constant depends only on s and €, and the factor ¢¢
may be expressed explicitly in terms of powers of d(q) and logg. This theorem
reduces to (4.2) in the case s = 2. Some of the power of this theorem is lost

by assuming ¢ is square-free. In the main part of the discussion that follows
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we make only the necessary assumption that (a,q) is s-power-free; it is only
in the last stage of the proof of Theorem 4.2 that we must make the further
assumption that ¢ is square-free. However, this is the case of most interest to
us, as we will only be concerned with square-free moduli ¢ when we extend these
methods in Chapter 5.

Both Theorems 4.1 and 4.2 are improvements over the trivial bound
ns(a,q) < g+t (4.3)

which we derive in Section 4.4.1. Both theorems are straightforward extensions
of the methods of Heath-Brown in [30]. We prove Theorem 4.1 using exponential
sums, employing Weil’s bound for exponential sums with prime moduli, and
elementary methods for exponential sums with composite moduli. We prove
Theorem 4.2 using mean value properties of exponential sums.

In Section 4.3 we reduce both theorems to bounding a certain sum over a
finite interval. In Section 4.4 we prove Theorem 4.1, except for the bound of
an exponential sum V(g;m,b), which we derive in Section 4.5. In Section 4.6
we describe the mean value methods for Theorem 4.2. We derive several key

estimates in Section 4.7, and then finally prove Theorem 4.2 in Section 4.8.

4.3 Reduction of the problem

We begin by expressing the problem of bounding ns(a, ¢) in terms of the number

of solutions to a congruence modulo q.

Definition 4.1. For an integer s > 2, let

1 if for all primes p, p*tn
ns(n) = .
0 otherwise.

Note that ny(n) = p?(n). Set t = (logq)'/* and let

P:Hp.

p<t
orplq

Then n((n, P*)) = ns(n) if n <t. If n > t then ns(n) = ns((n, P?)) = 1 if no
p®|n. But if there is a prime p such that p*|n but neither p < ¢ nor p|g, then
ns((n, P?)) =1, yet ns(n) = 0. As a result,

ns((naps)) - 773(”) < Z 1.

pdn
pta, p>t

Thus it follows that

Yo om)= Y al(P)- > YL (4.4)

n<x n<z n<z pS|n
n=a (mod q) n=a (mod q) n=a (mod q) ptq, p>t
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Definition 4.2. Let
S(d,q,a,x,8) =#{m <xd™®:md® =a (mod q)}.
It is easy to prove by multiplicativity that

ns((n, P*)) = u(d).

ds|n

d|P
Then
S o Py= S S ud) = S uld)Sd g a,5).
n<w n<az ds|n d|P
n=a (mod q) n=a (mod q) d|P
Also,
Y Y i< ¥ Yo 1= > Spagauzs).
nzan(%r:)d a) P)(Z:Is.;llf;t t<p§le/s nzan(s?:;d q) t<p5§1/3
pS|n

Thus we may write (4.4) as:

Proposition 4.1.

Z Us(”) > Zu(d)S(d,q,a,x,s) - Z S(pv%avmvs)'

n<w d|P t<p<al/s
n=a (mod q) ptq

In order to find an upper bound for ns(a,q) it is thus sufficient to find a

lower bound for = such that the left hand side in Proposition 4.1 is strictly

positive. While bounding the first term on the right in Proposition 4.1 from

below is relatively simple, bounding the second term on the right from above is

the main goal of this chapter.

We begin by finding a lower bound for the first term on the right hand side

in Proposition 4.1.

Lemma 4.1.
xd=*q~'(d%,q) + O(1) if (d°,q)|a
0 if (d°,q) 1 a.

Proof. First, if (d®, ¢) { a then there are no solutions m to the congruence

S(d,q,a,z,s) =

md® = a (mod q).

Next let h = (d®,q) and suppose hla. Then for any m < xzd~*® such that

md® = a (mod q),
md*h~! = ah™! (mod gh™1).

Any such solution m may be written as
m=N-qgh '+ L

for some 0 < N < zd~%¢~'h and 0 < L < ¢gh™!, and the result follows.

O
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A lower bound for the sum under consideration then follows easily:
Proposition 4.2. Assume q1+i <z <q? Then
> u(d)S(d, q,a,2,5) > z¢(q)g 2.
d|P
Proof. By Lemma 4.1,
€ —S8 S
Yo ud)S(d g az,5) == Y pld)d=*(d*q) + O3 1)

d|P P d|P
(d%,q)|a

First note that the number of divisors of P is at most the number of possible
products composed of primes p < t, times the number of prime divisors of q.
Thus P has at most 2¢d(q) divisors. For each d|P,

(@,q) = [T a),

pld

so by multiplicativity, we have the product formula

S ouldd @)= J[ 0-p0%q).

a|p p|P
(d®,q)|a (p®,q)|a
Therefore
xr _
Z/J(d)S(d,(La,JJ,S) = - H (1 —-Dp s(ps,q)) +O(2td(Q))
d|P P(Siur')flq

Denote the product on the right hand side by C(a,q,s). Our goal is to
bound C(a, g, s) from below. First assume that (a,q) = 1 so that C(a, g, s) only
includes p|P such that (p*,q) = 1. Then

O(a7q75) = H (1 7p78)
p<tor plq
(p®,q9)=1

[Ta-»

p

L
¢(s)’

which is a strictly positive number for any integer s > 2.

v

More generally, for (a,q) an s-power-free integer > 1, we have

Cla,q,8) > [Ja-p70% ) [] O-p0"q).

rtq rlq
p<t (p*,9)|a

In the first product, (p®,q) = 1 since p { ¢. In the second product, since (p*, q)|a
and (a, q) is s-power-free then (p®, q) < p®. But also (p®, q) is a strictly positive
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power of p, since p|g. Thus the least value a factor (1 — p~*(p°, q)) can achieve
is (1 — p~1). Therefore,

Cla,q,5) > J[a-p]J0-p"

plg plg
> [[a-p]Ja-»"
P plg
1 1
= C(S)E(l_p )
_ 1 ¢
C(s) «

Thus in general if (a, q) is s-power-free,

Cla,q.s) > ¢(q)q".

Recall that

> u(d)S(d,,0,2,5) = ~C(a,q, ) + O(2'd(0))
d|p

Assuming, as we will for the remainder of the discussion, that

N‘,__

¢t <z <P (4.5)
this is then certainly sufficient to give

> ud)S(d, q,a,2,5) > 2d(q)q .
d|p

O

This completes our lower bound for the first term on the right hand side
in Proposition 4.1. In order to find an upper bound for the second term on
the right hand side in Proposition 4.1 we will break the sum of S(p,q,a,x, s)
over primes p { ¢ in the interval t < p < z'/% into three parts, summing over
the intervals t < p < y, y < p < z, and z < p < z'/*, for appropriately
chosen values of z,y, z. We will accomplish bounds for the sums over the first
and third intervals relatively easily. The sum over the second interval requires
a more detailed analysis; it is the bound for this term that distinguishes the
results of Theorems 4.1 and 4.2.

We bound the sum over the first interval ¢ < p < y as follows. All implied

constants depend only upon s unless otherwise noted.

Proposition 4.3. Ify = z¢~ ", then

> Sp,g,a,2,5) < xq " (logg)/*.

t<p<y
ptq
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Proof. By Lemma 4.1,

X _
Y S axs) <= > p i+ Y, 1
t<p<y q t<p<y t<p<y

ptq rtq prtq
(p%,q)|a (P®,q)|a

Noting that (p®,q) = 1 since p{ g, we then have:

Y Spg,ams) < g o+ >

t<p<y t<p<y t<p<y
prta rta prta
f —s 1 —1
< p~ " +y(logy) ™,
t<p<y

by the prime number theorem. Note that

Z p~ < Zp_s <t L

t<p<y p>t

Thus
> S(p.g.a,2,5) < xg ' (logq)™* +y(logy) .

t<p<y
ptq

In order to bound this expression by z¢~!(log q)_l/s7 it is sufficient to choose

y=xq L. (4.6)
This completes the proof. O
We next bound the sum over the third interval z < p < /5.

Definition 4.3. Let
T(m,q,a,z,x,8) =#{z<p< xl/s,p)[q :mp® = a (mod q)}.

Then immediately

Z S(p,q,a,x,s) = Z #{m <2xp™° :mp® = a (mod q)}
z<p<zl/s 2<p<zl/s
prtq ptq
< Z T(m,q,a,zx,8). (4.7)
mlxz—*S

Note that any solution m of
mp® = a (mod q)

must have (a,q)|mp®, but p { ¢, hence (a,q)|m. Thus T(m,q,a,z x,s) = 0
unless (a, q)|m. In particular, if z > x'/%(a, q)~'/*, the sum (4.7) is zero, since

then m < (a, q) for each m < xz7%.
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Let d = (a,q) and write ¢ = dq1, a = day, and m = dm;. Then
T(m,q,a,z,x,8) < (1+ xl/sql_l)#{u (mod ¢1) : mu® = a; (mod ¢1)}.

Using Lemma 3.3 to count the number of solutions to this congruence, it follows
immediately that

T(m,q,a,z,x,8) < s”(q)(l + xl/sqfl).

We now use this to choose a value of z and obtain an upper bound for the sum
of S(p,q,a,x,s) over the interval z < p < z!/.

Proposition 4.4. Let

v(q)
s

2 =min(2z% (a,q) ", s (logq)(x* +¢* (a,q)7%)). (4.8)

Then
> Spg.a,7,5) < wq ' (logg) .

z<p<al/s
ptq

Proof. Abbreviate (4.8) as z = min(A, B). If A is the minimal expression, so
that z > 2'/%(a, q) /%, then the sum (4.7) is zero. Thus we need only consider

the case when z = B. In this case we have:

Z S(p7q7a7x78) < Z T(m7q,a,z7x,s)

z<p<azl/s m<xzz—*3
ptq

< SOl 3

m<wz—S
(a,q)|m

< s”(q)(l + J;l/sqfl)(xzfs(a, Q)" +1).

Using the explicit expression z = B we then obtain:

v(q) —1 14 1/s,—1
g S(p,q,a,x,8) < s"z(a, q) 1( ﬂf a )1 i
sersatls 5@/ (log q)(x37 + q?(a,q)‘?ﬂ

pta
z(a,q) (1 +2/*¢"(a,q))
(log q)*(2'/* 4+ q(a,q)~1)
< xq '(logg)~".

O

We have now chosen y and z such that the sum of S(p,q,a,z,s) over the

interval ¢ < p < y is bounded above by zq~'(logq)~'/* and the sum over the

1/s

interval z < p < 21/ is bounded above by xq~!(log q) =%, for some appropriate

value of x not yet explicitly chosen. Suppose we have a lower bound for x such
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that the sum of S(p, ¢, a, x, s) over the middle interval y < p < z is also bounded

S

above by zq~!(logq)*.

Z ns(n) > ZS(d,q,a,x,s)— Z S(p,q,a,x,s)

n<a d|P t<p<all/s
n=a (mod q) T;(q

> 9c¢(q)q_2 — xq_l(log q)_l/s
> 2h(q)q

Then we would have a lower bound for x for which

S

—zq '(logq)~

The last line follows since ¢(n)/n'=¢ > 1 for every € > 0 and sufficiently large
n (see Theorem 327 of [24], for example). In other words, we would have the
desired upper bound for ng(a,q).

It remains to bound the middle sum,

Z S(p,q,a,x,s). (4.9)

y<p<z
rtq

We could obviate the need to bound (4.9) by choosing y > z, but this would

only allow us to choose

1

. _s 1 8% 1 B
> min(q7 7 (a,)" 77, ¢ + ¢ (a,9) g

Note that this does improve as (a, ¢) increases; however, our goal is to save a

power of ¢ over the trivial bound (4.3).

4.4 Theorem 4.1: the Weil bound

We will prove a nontrivial bound for the remaining sum (4.9) using exponential

sums. It will be easier to manipulate the following closely related function:

Definition 4.4. For y < w < z, let

U(w,M,q,a,s) = Z #{m < M :mn® =a (mod q)}
w<n<2w

(n,q)=1

where (a,q) =1 and M < ¢/2.
It follows that:

Lemma 4.2.

> Spog.a,z,s) <Uw,zw*(a,q) " qa, )" ala, q) 7, 5).
w<p<2w

rtq

Proof. Tt is easily verified that

_s _ q _
Tw (a’7q) ! S 5(@,(]) 17
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for w > y, recalling from (4.5) and (4.6) that we have chosen gt <z < g?

and y = z¢~ L.

Letting d = (a, q),

Z S, q,a,x,8) = Z #{m <zp~™° :mp® =a (mod q)}
w<p<2w w<p<2w
rtq ptq

g #{m <zn™°:mn’ =a (mod ¢)}
w<n<2w
(n,q)=1

IN

IN

Z #{md™' <azwd' :md'n® = ad”! (mod qgd™ ')}

w<n<2w
(n,qd—1)=1

= U(w,zw *(a,q)"", qla,q)~"

saa,q) 7" 5).

4.4.1 The trivial bound for n,(a, q)

It is at this point that it is easy to see that the trivial bound for ns(a,q) is
O(g**+1/5+€). Suppose for convenience that (a,q) = 1, so that

Z S(p,q,a,x,s) S U(w,xw_s,q,a,s)

w<p<L2w
pta

S

#{n,m:w<n< 2w, m<zw™®, mn® =a (mod q)}.

Fixing m and counting the possible values of n for each m, we obtain
Uw,aw™, q,a,5) < 5*@ (wg~ w'~* + zw~). (4.10)

Alternatively, fixing n and counting the possible values of m for each n we obtain

Uw,zw™*,q,a,8) < zq 'w' ™ 4+ w. (4.11)

If w > 257, then to bound (4.9) by zg *(logq)~*, we see by (4.10) that we

must have zw™* < 2¢~'(logq)~*, which is true as long as z > ¢'*/ste. If
w < 77, then we see by (4.11) that we must have w < z¢~!(log ¢)~%, which

is true as long as = > ¢'T1/5+¢. Thus
ns(a,q) < gt
which we refer to as the trivial bound. A similar analysis shows that the same

trivial bound applies when (a,q) > 1.

4.4.2 Expressing U(w, M, q,a,s) as an exponential sum

We improve on this trivial bound using exponential sum techniques. Define
d(n) = 1 if there exists an m with 1 < m < M such that m = a”® (mod ¢), and
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let 6(n) = 0 otherwise. Then

U(w,M,q,a,s) = Z d(n

w<n<2w
Define
1 if ||lz|| < Mgt
iy = 1 Tl
0 otherwise.
Furthermore, let
sin( H;L‘ A ’
T
h=1 |h\<H

with H = [(q/2)M~']. We obtain the following relation between the functions

6,01 and ds.
3(n) < & (‘m ) < b (‘m )
q q

Proof. For the first inequality, it is sufficient to show that if d(n) = 1 then
01(am®/q) = 1. If 6(n) = 1, then for some integer k,

Lemma 4.3.

1<m=an’+k¢<M

and hence
S

so that d1(am®/q) = 1.

For the second inequality, it is sufficient to show that if §;(x) = 1 then
d2(x) > ¢ > 0 for a constant ¢ independent of x. The function d2(z) is an
even function with period 1, hence da(x) = d2(||x]|). Also, d2(x) can be defined
at x = 0 so that it is continuous for all x. Now suppose d1(x) = 1 so that
l|z|| < Mqg=! and thus ||z|| < 1/(2H). On the interval 0 < t < 7/2, we have
2t/m <sint < t. Therefore if ||z|| < 1/(2H),

sin(mH ||z|)
H sin(7||z|)

2H||z| 2
> = —.
T wH|z|| o«

O

We may now express the function U(w, M, g, a, s) in terms of the following

exponential sum.

Proposition 4.5.

H-1

Uw, M,q,a,8) < H' > | Y eq(han’)|.

h=0 |[w<n<l2w
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Proof. Using Lemma 4.3 and the Fourier transform for do we see immediately
that

U(w7 M’ q? a/’ S)

> dn)

w<n<2w

< (%)

w<n<2w

= Y |H Y (H - ey (har)

w<n<2w |h|<H

H-1
< Hilz Z eq(ham®)|.

h=0 |[w<n<2w

O
4.4.3 Bounding the inner sum N(w, g, ha, s)
Let
N@wag.ha,s) = S eq(han?)
w<n<2w
so that
H-1
U(w,M,q,a,5) < H' > |N(w,q,ha,s)|. (4.12)
h=0

Let m = ha. Then we may extend N(w,q,m,s) to a sum over a complete set
of residues modulo g as follows:

q q
—s 1
N(w,q7m,s) = Zeq<mk ) 7Zeq(b(k - n))
k=1 w<n<2w q b=1
1 z“: z": s
= - eq(—=bn) Y eq(mk + bk)
q b=1 w<n<2w k=1

As in Lemma 3.4, let

so that
|A(g; w, —b)| < min(w, [[b/q] ).

Definition 4.5. Let

a
V(g;m,b) = Z eq(mk” + bk).
k=1
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Then .
1
=1
Assume the following bound for V(q; m,b):

Lemma 4.4. If (m,q) =1 then
|V (g;m,b)| < d(g)7q"?,
where o is a positive integer dependent only on s.

We prove this lemma in the following section, but for now we proceed with

the proof of Theorem 4.1.

Proposition 4.6.
|N(w, g, ha, s)| < d(q)°* q_l/z(h,q)l/zw +¢'?logql,
where o1 = o + 1.

Proof. First suppose that (h,q) = 1. Recall that the function U only considers
values of a such that (a,q) = 1. Thus defining m = ha, we have (m,q) = 1 and
so by Lemma 4.4,

IN(w, g, ha,s)| < q ' (d(g)7¢"/*) > min(w, [|b/q] ")

< d(g)7qg VP w+2g > b7t

1<b<q/2

< d(g)° [q*”zw +q'/?log q} : (4.13)

In the general case where (h,q) = §, write ¢ = d¢q; and ha = dm so that
(m,q1) = 1. Let D be the product of primes p such that p|d and p{¢;. Then

ommn’®
N(w,q,ha,s) = e
(w,q ) > ( dan )

w<n<2w
(mns>

= 2 e

w<n<2w a1

(n,D)=1

. mn®

- S ¥ (%)

j|lD w<n<2w A

jln

= > ul) >, 6<méll>~

j|D w<jl<2w
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Note that since j|D then (j,¢1) = 1 and so (mj’,¢q1) = 1. Thus we may apply
the bound (4.13) of the previous case, obtaining

[N (w,q,ha,s)] < dD)d(@)" [a *w + a1 log .
Since d(D) < d(q), we define 01 = 0 + 1 and we have the final bound

IN(w,q, ha,s)| < d(q)* [q_l/Q(h,q)l/gw +¢"?log q} .

This immediately gives a bound for U(w, M, ¢, a, s):

Proposition 4.7.
U(w, M, q,a,s) < d(q)” [qm log g +wqg™ "M + wq_”Qd(Q)} :

Proof. Applying the bound of the previous proposition to (4.12),

U(wa Ma q, a, S)
H-1

< H™UY IN(w g ha,s)
h=0

H-1

< H7U) d(g)™ [q‘m(hq)”zw +q'/? logq]
h=0

< d(q)a'l [ 1/21qu+wq 1/2H 1 Z I’L q 1/2]

< d(g)™ [ql/Z logg+wH ™' +wqg '/?H~! Z (h,q 1/21
h=1

We may estimate the sum in the last term by:

H-1
H! Z(h’q>1/2 1Zd1/2 Z 1< H™ 1 Zdl/Z H/d Zd—l/Q < d(q)
h=1

dlq ey dlq dlg

Recalling that H = [(q/2)M 1], this gives

U(w, M, q,a,s) < d(q)”* [ql/z log g + wq ' M + wq’l/Qd(q)] :

4.4.4 The assumption of a divisor ¢

Proposition 4.7 is not sufficient to prove Theorem 4.1 in itself, as it would only
allow us to choose z > ¢'T1/5t¢ giving the trivial bound n (a,q) < gt t/ste,
However, we may refine this to a non-trivial bound for ns(a, q), assuming that
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1

q has a factor ¢o of suitable size. Write ¢1 = ¢(a,q)~* and ¢2 = (q0,¢q1). By

definition,

U(w,M,q1,a,s) = Z #{m < M :mn® =a (mod ¢1)}.
w<n<2w

(n,q1)=1

Any solution m of mn® = a modulo ¢; is also a solution modulo gs, so trivially
U(w, M, q,a,s) <U(w, M, qz,a,s). (4.14)
Thus by Lemma 4.2,

Z S(p7 qJ a7 1.7 S) S U(w7 xw_s(a7 q)_17 q27 a(a7 q)_17 S)'

w<p<2w
piq

Note that the requirement M = zw=*%(a,q) "' < qo/2 is satisfied for y < w < 2z
with y and z chosen as in (4.6) and (4.8), as long as

1

T3> qvig, . (4.15)
Applying Proposition 4.7,
U(w, M, qa,a,s) < d(g2)* [q;/z log g2 + wqy *M + wqgl/zd(qg) .
Thus

> Spgazs) < dg” [qé”logq+ww1‘sq51(a,q)‘1+wq61/2d(q)(a,q)1/2}

w<p<L2w
ptq

< d(q)°* {Qé/z logq 4+ 2w %qy " + wqalmd(q)(a, q)l/z} :

Let J be the least integer such that J > (logz — logy)/log2. Summing over

dyadic intervals,

J—1
Z S(p,q,a,x,S) < Z Z S(p7Q7a"T7S)

y<p<z 7=0 w<p<2w
pla w=27y
ptq
J—1
< Y d@ |4 logq+ 2y gy +2ygy P dla)(a, )2
j=0
Thus

> Sa.a.3,5) < @)™ |0 *(0ga)* + 2y a5 + 205 *d(a)(a,0)"/?] -
y<p<z
pta

It remains to choose z so that this is bounded by zq~!(log¢)~*. With y and
z as chosen in (4.6) and (4.8), is sufficient to choose z such that

d(q)™ [qé/Q(log Q)+ 2 ¢ gyt + :L’l/sqo_l/zd(Q)(&Q)”Z’”S} < zq~ " (logq)~",
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or
s—2 1 s 1
> d(q)”(log 9)*(a, ¢) =D max(qqg,477q ),

where o9 is a positive integer dependent only on s. This satisfies the previously
stated requirements (4.5) and (4.15) for z, so long as the divisor gy satisfies
go > ¢*/*. Thus we have the final bound

1

3 = T _s=2
ns(a,q) < (995 +q77q9 * " )(a,q) 20 ¢

for any divisor go > ¢*/%, and for any € > 0, where the implied constant depends
only upon s and e. Aside from the bound for V(g; m,b) derived in the following

section, this completes the proof of Theorem 4.1.

4.5 Bounding the sum V(g;m,b)

In this section we prove Lemma 4.4. V' (g;m,b) is multiplicative by Lemma 3.10

in the sense that
V(q1q2;m,b) = V(q1; mGz, bq2)V (q2; mar, bqr)

for (q1,92) = 1, where ¢1g7 = 1 (mod ¢2) and g2z = 1 (mod ¢;). Thus it suffices
to bound V' (g;m,b) for prime powers ¢ = p/. Throughout this section we will

assume that (m,q) = 1.

4.5.1 Prime moduli

In the case ¢ = p, V(p; m,b) is a Kloosterman sum,

V(p;m, b) = ie (m” +b")
p;ym,0) = 2 D .
For p > s, since p 1 m, the Weil bound given in Lemma 3.9 shows that
[V (psm, b)| < (s + 1)p'/2.
For p < s, the trivial bound
V(pim,b)] < p < (s +1)p'/?

is sufficient.

4.5.2 Composite moduli

We will bound V (p/;m,b) for f > 2 by elementary methods, following Heath-
Brown in [30] (who in turn follows methods of Hooley used in an unpublished
proof of Theorem 3 in [39)]).
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Let g = [f/2]. Write n = u + pJv with 1 <u < p9, 1 <v < pf=9. Then

S(S - 1)p29’l}2ﬂs+2 (

5 mod pf).

7t = (u+ piv)® =u° — splou® Tt +

For convenience let 3 = @; then

g ,f—g

g (mu + bu) (pg(bv — smoa* Tt + pgﬁmv2u8+2))
e e ,

= p!

P

pmb

u=1l v

so that

o
»’ _ 75+1 g s+2
smu )v+pﬁmvu
v < 3T (G It

In the case f = 2g, the inner sum reduces to

pzqe( —smus+1) > _ if p9|(b — smust1t)
0 ifp9t (b—smutl).

v=1

Therefore
[V (p';m,b)| < pIN,, (4.16)

where we define N, by
N, = #{u (mod p?) : b = smu*** (mod p?)}.

In the case f = 2¢g+1, then 1 < v < p9t! so we may write v = w+ pk where
1<w<pand1<k<p9. Then

p _ _ p? _
<b—smuﬁ1ﬁv+P”%ﬁ"”SQ> e(“*-mmf+”k>|
e >

p9
f.
Vi mb) <33 e P -
u=1 |w=1

The innermost sum vanishes unless p?|(b — smu**?), so we need only consider

w such that b — smu*t! = p96,, for some 6,. Then

p? P _
9u s+2,,,2
LRI Sl oif (L ‘”)|
u=1 w=1

p9|(b—smustl)

Let T, represent the bound for the absolute value of the inner sum. Then in
the case f =2g+1,
[V (p!;m,b)| < pIN,T,. (4.17)

It remains to bound N,, and Tj,.

Lemma 4.5. Assume (m,q) = 1. For any prime divisor plq,

N, = #{u (mod p?) : b = smu** (mod p?)} < (s + 1)2.
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Proof. First assume that p{ s(s+1). Then p{ smu**!, so N, = 0 unless p { b.

Then N, is bounded above by the number of solutions of
f(u) = u*tt — smb = 0 (mod pY)

with (u,q) = 1. The formal derivative of f is f'(u) = (s + 1)u®. By assumption
p1 (s+1) so the only solutions of f/'(u) =0 (mod p) are congruent to 0 modulo
p. Thus f(u) and f’(u) share no solutions modulo p and hence f(u) has exactly
as many solutions modulo pY as modulo p, hence no more than s + 1.

If p|s(s + 1) then p can divide at most one of s,s 4+ 1. Suppose that p|s,
p1(s+1). By assumption (u,q) =1, so we may think of

Ny, = #{u (mod p?), (u,p?) = 1: bu"*' = sm (mod p?)}.

Define 8 so that p® = (b,p?). Then we must have p®|s, or else there are
no solutions. Write b = pPby, s = p®s; and g = g — 3. If gy = 0, then
N, <p9 = p? < s. Thus suppose that g1 > 1. Examine the congruence

biuT = sym (mod p?t), (4.18)

where (b1,p) = 1. For any s1, the solutions u of this congruence are obtained
by lifting solutions of the corresponding congruence modulo p, of which there
are at most s + 1. Thus there are at most s + 1 solutions modulo p9* to (4.18),
giving < p”(s + 1) total solutions modulo p?. Thus N, < (s + 1)2.

If p1 s but p|(s+1) then we may argue as in Lemma 3.3 to obtain the result
that N, < 2(s+ 1) < (s + 1)?. This concludes the proof. O

Lemma 4.6. Assume (m,q) = 1. For any prime divisor plq,

p
= 37 ep(Ouw + )| < /s — Dpt/2,
w=1

Proof. Let p be any prime with p|g, p > 2. First assume that p{ s(s —1). Then

p1 0 and p{m so we may complete the square. Then

P
Z (Bma* T2 (w + 28mu®t26,)%)| < pt/?

by the classical bound for Gauss sums given in Lemma 3.5.
If p|s(s — 1), then trivially T,, < p. But p can divide only one of s and s — 1,
so that p < y/s(s — 1). In the case p = 2, we use the trivial bound

Ty <2< +/s(s— 1)171/2

for any s > 2. O
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It follows from these two lemmas that in the case f = 2g, by (4.16),
[V (p?;m,b)| < (s +1)%p7 /.
In the case f =2¢+ 1, by (4.17),
[V (pf;m,b)| < p?(s +1)2/s(s — 1)p'/? <« s°pf/2.
By the multiplicativity of V(g; m,b) we then have the bound:
[V (g;m, b)| < (@) g3 (@) g1/2

for a constant ¢ depending only on s. For convenience we will express ¢*(9) s3¥(2)
as d(q)? for a positive integer o depending only on s, using the fact that for any
positive integer ¢, n¥(® < d(q)'°8™/1°82 This completes the proof of Lemma
4.4,

4.6 Theorem 4.2: the mean value problem

We next consider the scenario of Theorem 4.2, in which we do not assume that
q has a divisor ¢¢ of appropriate size. In the following discussion, all implied
constants depend only on s and the variable £ > 1 we introduce below.

Recall from Proposition 4.5 that

H-1

U(waM7Q7aa S) < H71 Z Z eq(haﬁs) y

h=0 [w<n<2w

where H = [(q/2)M~']. We would like to average over h, so we need to con-
sider a full set of residues h modulo gq. Therefore we apply Holder’s inequality,
whereby

1
2k\ 2k
q

1
Uw, M,q,a,5) < M% | =31 Y~ e (hm?) (4.19)

h=1 |[w<n<2w

for any integer £k > 1. We will specify k£ in terms of s later, but for now we
proceed to examine the general case. Note that here we have assumed that
(a,q) = 1, which we may do since we will apply the bound we derive, as in

Lemma 4.2, to U(w,zw™*(a,q) ™", q(a,q) ", ala,q) 7", s).

Definition 4.6. For a finite set of integers Z, let

> eq(hi®)

nezl

q 2k

N(I):éz

h=1
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We may then write (4.19) as
Uw, M,q,a,5) < M3 N(D)%, (4.20)

with the set of integers 7 = (w, 2w]. (Recall that we have defined the notation
(A, B] to indicate the set of integers {A < n < B}.) It will be more convenient

to work with N(Z) in the following equivalent form.

Lemma 4.7. For a finite set of integers T,

k k
N(Z) =#{(n1,...,nok), n; €T : Zﬁf = Zﬁf+k (mod q)}.
i=1 i=1

Proof. Let
S(g,h) = eq(hm®).
nezl
Then
14
N@E) = =) IS(g, )"
q h=1
1< —k
= *ZS((Lh)kS((Lh)
q h=1
1 q k k
= fz Z €q <Zhnf) Z €q —Zhﬁ;
q h=1n1,...nx,€L =1 N1,e.ny ny€el j=1
1 q k k
ni,...,n2k €L ~ h=1 i=1 i=1
k k
= #{(n,...,n2p)ni €L Zﬁf = M7y (mod g)}.

4.6.1 The trivial bound for N(Z)

From the expression given for N(Z) in Lemma 4.7 we can immediately obtain
the following trivial bound for N(Z).

Proposition 4.8. For the set of integers T = {1 <n < I},
N(I) < Su(q)(Iqu71 _|_12k‘71).

Proof. There are I?*~! ways of choosing n1, ..., nox—_1. Once nq, ..., nok_1 have
been chosen, ng, must be such that

k k—1

—S j— —S —S

Nog = E n; — E Ntk (mod gq),
i=1 i=1
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so that there are < s¥(9) choices for no; modulo ¢, and hence < (Ig7t + 1)
choices for ng, € Z. Thus

N(ZI) < s" D21 (1g71 +1).

Using this trivial bound in (4.20) we see that
"

U(w,M,q,a,s) < w {SV(Q)M(w_l + q_l)}

Dyadic summation then gives a final bound for the sum of S(p,q,a,z, s):
,5%].

In order to bound this by z¢~!(log q)~* as desired, with z as in (4.8), we would

v(q) s
> S(p.goaw,5) < 5w {Zlfﬁqa—i et

y<p<z
ptq

N
z—"“

have to choose
x> gttt
Thus this gives only the trivial bound for n4(a, q). Hence we must bound N(Z)

more effectively; this is the main goal of the rest of the chapter.

4.6.2 Bounding N(Z) by averaging

We will improve on the trivial bound for N(Z) by taking advantage of averaging
over h, which then allows us to average further over a set of auxiliary primes
ptq. Let Z={1 <n < I}, where I < gq. In the following discussion, suppose
p is a prime in the range @ < p < 2Q with p t ¢. We will choose @ explicitly
later, but for now we only specify @ < I.

Proposition 4.9.

2k

q —s
N(T) < s"@k=19=1 4 5 D e (hn )

h=1|nez q
pin
Proof. Tt is sufficient to show that 2k-tuples (ni,...,nq;) with at least one
n; divisible by p contribute only a term of magnitude s*(91%*~1Q~1 to N(I).
Without loss of generality, consider 2k-tuples (nq, ..., na) with p|n;. There are
at most Ip~! < IQ~! choices of ny such that p|n; and 1 < n; < I. There are
I?k=2 possible choices for ng, ..., nox_1, and hence at most I?*~1Q~! possible
choices for nq,...,n9r_1. These choices for nq,...,ns9x_1 determine < s¥(@)

possible choices for ng, modulo g. Since I < g, these are all the choices for
nog € Z as well. Thus in total the contribution of terms where p divides at least
one entry in the 2k-tuple (nq,...,ng) is < s¥(@12=1Q=1 where the implied
constant depends only on k. O
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Define for each 0 < f < p,

1(.1) = (224, 7211).

p p
Proposition 4.10.

p—1
N(T) < s"OP1Q7 + Q1 Y N (Z(p, ).
f=1
Proof. Examine the inner sum in Proposition 4.9 over n € Z such that p t n.
Since by assumption the auxiliary prime p { ¢, these remaining n fall into the

p — 1 residue classes
n= fqg(modp), 0<f<p.

Thus
2k 2k
p—1
Setm)| =% X )
neT =1 neT
pin n=fq (mod p)
Applying Holder’s inequality,
2k 2k
p—1
Doegn)| < -1 1 Y eg(hm?)
nex F=1 nexT
pin n=fq (mod p)

Write n = fq + pa so that a € Z(p, f) as defined above. Then @ = pa (mod q).
Thus for each f=1,...,p— 1, we have
2k ok
q q
ST emt) =D Y e (hptad)
AN h=1 |acTin)
Since (p®, q) = 1, hp® ranges over a complete set of residues modulo ¢ as h does,

SO we may write this as:
2k

q
> | X elha)
h=1 |a€Z(p,f)
This step is critical: averaging over h has allowed us to remove the specific
auxiliary prime p from the argument of the exponential.

We now have
2k

p—1 q —
1 ha®
N(T) < Su(q)I2k71Q71 +(p— 1)2k71 Z 1 Z Z . ( e} )
=102t aezrn N 1

Recalling that @ < p < 2Q), we may conclude

p—1
N(I) < s OF1Q71 + Q1Y " N(Z(p, 1))
f=1
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4.6.3 Averaging the good set over primes

In order to bound the sum of N(Z(p, f)) over f = 1,...,p — 1 appearing in
Proposition 4.10, we partition all 2k-tuples (nq,...,no) into two disjoint sets
G and B, which we call, after Heath-Brown, the “good” set and the “bad” set.
We will specify these sets later; for now, we define a version of the function
N(Z) restricted to each of these sets. For notational convenience, define for a

positive real number ¢,

I(t) = (—qt,1Q" — qt].
Then Z(p, f) € Z(f/p), since p > Q. Since N(Z) is an increasing function on
the set Z, N(Z(p, f)) < N(Z(f/p))-

Definition 4.7. For two disjoint sets G and B partitioning the set of all 2k-

tuples n = (nq,...,nay), define

k k
No(t) = #{neGmeZ(t): ) m =) ni (modq)},
121 7,;1
Np(t) = #{neBmn €Z(t):Y n=> 75, (modq)}.
1=1 =1

We will average only Ng(t) over primes; the bad set B will be sufficiently
small for Np(t) to admit a trivial bound.

Definition 4.8. Let
K= max Np(t).

Then for any 0 < f < p,

N(Z(p, f)) < N(Z(f/p)) = Na(f/p) + Na(f/p) < K + Na(f/p).

Thus from Proposition 4.10,

p—1
N(T) < Su(q)l2k—1Q—1 + Q2kK+ sz—1 ZNG (]J;) .
=1

We now proceed to average over all p{ ¢ with Q < p < 2Q.
Proposition 4.11. Assume Q > clogq for a constant c. Then

p—1
N(I) < "D + QK + Q*2(logQ) > Y Na (i) :

Q<p=2Q f=1
ptq

Proof. By the prime number theorem, the number of primes p in the range
Q <p<2Qis> Q(logQ)~ . Since

_ log q
Ya) =0 <loglogq>
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(see for example Section 22.10 of [24]), we see that O (logg/loglogq) of the
primes @ < p < 2Q are factors of g. Suppose we impose the condition

Q > cloggq

for some constant ¢. Then under this condition, the number of primes p with
Q<p<2Qandptqis> Q(ogQ)~!. Averaging N(Z) over these primes, we
obtain the result. O

We next focus on bounding the sum of Ng(f/p) over f=1,...,p—1. It is
)-8
p p

7'(t) = (—qt,2IQ™" — qt].

We also define N(;(t) in a manner analogous to N¢(t):

convenient to define

and

Definition 4.9. Let

k k
No(t) =#{neGn eT'(t): > m =Y W,y (mod g)}.
=1 =1

N¢ and N/, are related by the following inequality.
Proposition 4.12.

j+J(£)
q

N <f> <Qr' >y NG

P 0<j<IQ!

Proof. First note that
()T <t+ J)
q

for any integer 0 < j < IQ™!, since
(—at, 1Q™" —qt] C (=gt =5, 1Q" " —qt +(IQ™" = j)] C (—qt —5,2I1Q " — gt — ).
Thus for each f=1,...,p—1,

r) p q) q

Then since N increases as a function of the interval,

o (£) < (1)
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for any integer 0 < j < IQ~!. Averaging over j we obtain the desired result,

j+J (L
Ne <f> <QI' > NG ]7(1”)
p 0<j<IQ-1 a4

O

We next express the sum of Ng averaged over p and f given in Proposition
4.11 in terms of N{,.
Proposition 4.13. Assume that 8IQ < q. Then
f 2¢—1 .

> o (3) s 2m (7).

p,f Jj=0
where the sum on the left hand side is over all primes @ < p < 2Q, p1tq, and
0< f<p.

Proof. This results from the following two facts. First observe that if either
p#p or f# f', or both, then
_’ a

N _ (N Z|fe_ [T a4
‘J<p) J<p’>' ‘p 4 pp’ pp’ — 4Q?

assuming that 81Q < q. Thus if p # p’ or f # f/ then Z'(j + J(f/p)) and
T'(j+ J(f'/p")) are intervals of length 2IQ ! (with open left endpoint) shifted
away from each other by at least 2I(QQ~!, and hence they are disjoint. Secondly,
for any integer 0 < j < IQ~1,

o' —f'p

>

vV

>

21
Q )

0§j+J(f> SIQ’1+@<2q

p p

since 0 < f < p and I < ¢. Thus all possible values of j + J(f/p) are within
the range [0, 2¢), and the result follows. O

For a fixed integer 0 < j < 2¢ — 1, N/, (j/q) is the number of solutions to
the congruence
k k
D T =) 7y (modg),
i=1 i=1
with (ni,...,no,) € G, where n; € Z'(j/q) = (—4,2IQ ™" — j]. Making the
change of variables n; — n; — j, we can equivalently consider N/ (j/q) as the
number of solutions to the congruence

k k

Z(m —J) = Z(n’i+k —J)% (mod g), (4.21)

=1 i=1

with (ny —j,...,nar —7j) € G, where n; € (0,2IQ~!]. Note that the congruence
(4.21) is identical for 0 < j,j' < 2q if j = j’ (mod ¢). Thus it suffices to consider
values 0 < j < q. Therefore we define:
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Definition 4.10. Let L denote the number of solutions to the congruence

k k

> (i =35)* = (niyk —4)° (mod g),

i=1 =1

where 0 < j < qand (ny — j,...,nor — j) € G with 0 < n; <2IQ~%.
It follows immediately that:

Proposition 4.14.
N(I) < Su(q)IQklefl + QQkK + Q2k71]71(10g Q)L

We have now bounded N(Z) in terms of L and K, where these are defined
in terms of the good and bad sets G and B. In the following section we proceed

to estimate L and K individually; in the process of doing so it becomes clear
how the sets G and B should be defined.

4.7 Estimating L and K for ¢ square-free

Decompose L as
L= Lnyq),
neG
where L(n; q) is the number of solutions 0 < j < ¢ of the congruence (4.21) for
a fixed 2k-tuple n. Then L(n;q) is multiplicative with respect to g, so that for
q=TII»"
L(n;q) = [ Lm;p").

The methods for bounding L(n;p’) we present here are only effective if f = 1;
therefore from this point onward we assume that ¢ is square-free.

We first show that if we assume certain restrictions on the elements n;, we

may bound L(n;p) by a constant independent of p.

Lemma 4.8. Suppose 3t < k such that for all h = k + 1,...,2k, we have
n; = np (mod p). Then

L(n;p) <s(2k—1) —1.

Proof. Consider the congruence

k

k
Y (i—j) = Z(nwrk —J)* (mod p). (4.22)

i=1

We may relabel the k-tuple (ng,...,n%) so that ny # np (mod p) for each
h =k+1,...,2k. Furthermore, label any of no,...,n; that are congruent
to n; modulo p so that they are the first elements following n; in the k-tuple
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(n1,...,ng). Suppose there are a total of kg elements congruent to n; modulo

p, including nq. Then we may write the congruence (4.22) as

k k
k(i =3+ . (=) =Y (i —3)° (mod p)

1=ko+1 i=1

where 1 < ky < k. Let [ =ny — j. Then this becomes

k k
kol” + Z (ni—mni +1)° = Z(ni+k —ny +1)° (mod p). (4.23)

i=ko+1 i=1
Define m; = n; — ny for each i = kg + 1,...,2k. Note that in each case
m; % 0 (mod p) since we have ordered ni,...,ng, so that n; £ n; for all

i=ko+1,...,2k. Define
2k
m = H mj,
Jj=ko+1

so that p 4 m. Now multiply the congruence (4.23) by

2k
A | RS
j=ko+1
to obtain
2k k 2
ko I[ my+0° + 0 > mitD) ] (my+0)°
j=ko+1 i=ko+1 j=ko+1
2k 2k
-’ Z (m; +1) H (mj +1)* =0 (mod p).
i=k-+1 j=ko+1

Note that in each of the two sums, for each i the term (m; + l)s cancels with
one of the factors (m; +1)® in the product. In effect, we have rid the congruence
of denominators, so it is now a polynomial in [. Moreover, note that all the
highest order terms (of degree s(2k — kg)) cancel exactly, so the degree of the
polynomial is in fact at most s(2k — ko) — 1. For 1 < ko < k, this means that
we have a polynomial in [ of degree at most s(2k — 1) — 1. The constant term of
the polynomial is kgm®. Since p 1 m, this term can only vanish if p|kg, in which
case we must have p < kg < k.

First suppose that p > k. Then the constant term does not vanish, so the
polynomial is not identically zero, and hence it can have at most s(2k — 1) — 1
roots. Since | = ny; — j, each root [ is in one-to-one correspondence with a

solution j of the original congruence defining L(n;p), hence

L(n;p) <s(2k—1) — 1.
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Next suppose that p < k. Then trivially p < s(2k —1) — 1 for s > 2, k > 2.

Of course a congruence modulo p can have at most p solutions, so again
L(n;p) <s(2k—1) — 1.

This completes the proof of the lemma. O

4.7.1 The good and bad sets

We use the key assumption that enabled us to prove Lemma 4.8 to define the
sets G and B.

Definition 4.11. Define

B = {n:Vi<k3h>kst n;,=na}
G = {n¢ B}.
A bound for K follows immediately.

Proposition 4.15.
K= mtaxNB(t) < (IQ™H*.

Proof. Consider an element n € B. There are IQ~! ways to choose each of the
entries nj, € Z(t) = (—qt,IQ~' — qt] for h = k+ 1,...,2k. Then each of the

entries n; for i = 1,..., k must be chosen from these k possible values. Hence
Np(t) < K*(IQ™H*.

This bound is independent of ¢, so the result follows, with an implicit constant
dependent on k. O

Consider the set G. For each ¢ = 1,... k, define

2k

Aim) = [ (n—na).

h=k+1

If n = (n1,...,n2x) € G then for some i < k we have 4;(n) # 0. Let
Gi = {l’l . Ai(n) 75 0},

so that

Proposition 4.16. Forn € G,

L(n;p) < dgo2r—1)-1(p) - (p, Ai(n)).
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Proof. If pt A;(n) then there exists k < h < 2k such that n; # nj;, (mod p), so
by Lemma 4.8,
L(n;p) <s(2k—1) —1.

If p|A;(n) then trivially
L(n;p) < (p, Ai(n)).

Thus, regardless of whether p divides A;(n) or not,

L(n;p) < ds(2k71)71(p) : (p7 A’L(n))

O
It follows immediately that for square-free g,
L = Y L
neG
k
< > Y Lmg)
i=1 neq;
k
= > > [[tmp
i=1 neG; plq
k
< st(%—l)—l(Q) Z (g, Ai(n)). (4.24)
=1 neqG;

We bound the innermost sum by the following argument, as in Lemma 2 of [28].

Proposition 4.17. For each 1 <i <k,

> (g, Ai(m)) < d(g)*(1Q™1)*

ned,;

Proof. Without loss of generality, let i = 1. Since n € G, then A;(n) # 0. Let
a; = (g,n1 —n;) for each j =k +1,...,2k, so that

(q: A1) = (0. ]] )
> @am) <) Jla 3 1

neG ajlq

Then,

ajlni—nj)

Since Ai(n) # 0 then n; # ny for all j =k +1,...,2k. So for a fixed value of
ni, of which there are 2IQ~! possible choices, the conditions 0 < n; < 2IQ !
and a;|(n1 — ny) give < QIQ_la;1 choices for each nj, since we are assuming
n; # ni. Thus

2k _
Z q7A1 <<ZHQJ 2IQ H <2]Q 1) (QIQ_l)k—l

a
neG, ojlq j=k+1 7
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The last factor of (2IQ~1)¥~1 accounts for all possible combinations of ny,, with
1 < h < k. Therefore

d (g Am) < (IQTH* Y 1

neG, ajlq

< d(@)F(IQ™H*.

Applying this result in (4.24) immediately gives the final bound for L:

Proposition 4.18.
L < d(q)™*(IQ")*",

where Ts ), = (2s + 1)k — (s + 1).

We conclude this section with a proposition combining all these results into
our final bound for N (7).

Proposition 4.19. Assume q is square-free. Let T = {1 < n < I} where
1< q%. Choose Q) = éf%. Then for any k > 2,

M)

2k

N(Z) < d(q)™* (log g) [T,
where the implied constant depends only on s and k.

Proof. By the bounds for K and L given in Propositions 4.15 and 4.18,
N(I) < Su(q)IQk—lQ—l + QZk(IQ—l)k + QQk—lI—l(log Q)d(q)TSk (IQ_l)Zk,
assuming that

clogq Q< I<Luqg,
8IQ < q.

IN

These conditions are satisfied with I and @ as chosen in the hypothesis. Thus

2k2

2k2 2k2
N(I) < 8" DR 4 [WT 4 d(q) ™+ T+ loggq.

Note that for square-free ¢, s*(@) = d(q)% < d(q)™*. We may conclude that

M)

2k

N(Z) < d(q)™*(log g) I *T.



CHAPTER 4. THE LEAST S-POWER-FREE NUMBER 53

4.8 Proof of Theorem 4.2

In order to complete the proof of Theorem 4.2, it remains only to bound the

sum

Z S(p,q,a,x,s).

y<p<z
rta

Recall from Lemma 4.2 that

> Spg.a,x,8) <U(w,zw*(a,q) " q(a,q) " ala,q) ", 9).
zu<p)(§2w
p1a

From (4.20),
U(w, M, q,a) < M N(ZI),

where 7 = {w < n < 2w}. Since N(Z) increases as a function of the interval,
we may instead take Z = {1 < n < 2w} and apply the bound for N(Z) given
in Proposition 4.19, simply including any resulting factors of 2 in the implied

constant. We obtain

U(w,zw*(a,q) ", qla,q) ", ala,q) 7", s)
2

< (aw*(a,0))F [d(g)* (log gt | (4.25)

Let J be the least integer such that J > (log z — logy)/log 2. Then

J—1
> Sgaxs) < Y. > Spgaz,s)
y<p<z j=0 w<p<2w, ptq
ptq w=27y
J—1
< U2y, (27y)*(a,9) ", q(a,q) " ala, ) 5)
§=0
J—1 1
2948 -1\ 5% d(a) =" (1 9i % 2k
< (z(27y)"*(a,q)7")?* |d(q)™*(log q)(27y)
3=0
J-1
1 _1 Tske BN Sk s
< % (a,q)" *d(q)? (logq)2 ) (2/y)F172F (4.26)
§=0
1 k s 1 Ts,k 1
& xR 2% (a,q) " 2R d(q) 2* (logq)?F. (4.27)

Note that in applying the bound (4.25) we must have [ = 2w = 271y < q%
in each case, so in particular we must have 27y ~ z < q%, which is always

satisfied for z as in (4.8).
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To obtain a nontrivial bound it is sufficient! to choose k = s. Then

s— 2
N S(p.g.a,z,5) < 2P 2700 (a,q)” % (log ) F d(g)
y<¢§z
p1q

Recall from (4.8) that

v(q)

“ (log q)(¢7 + ¢* (a,q)~

w |-

)-

z= min(2x% (a, q)_% )8

Then
1 s241 2521 v(@)(s—1) 2=l _s—1
> S(p,q,0,2,5) < % (logq) =T d(q) 7 s 26D [W CHD g0 1>} -
y<p<z
ptq

Recalling z < ¢? and approximating

v(@)(s—1) 1
§ 26T < d(q)i?7

we then obtain

1 241 2534452351 s—1
> S(p,q,a,7,5) < w2 (logq)=EF0d(q)” =70 gD,
y<p<z
ptq

where the implied constant depends only upon s.

S

In order that this sum may be bounded by zq~!(logq)~*, it is sufficient to

choose x such that

253435241 2534452 -3s—1  2s243s—1

> (logq) (25—1><s+1>d(q) =D+ g @s=—D6FD

This then gives the result of Theorem 4.2:

2
2s +3571)+€

2
ns(a,Q) K =D 1+é( 2 >+€.

=q¢ s an (4.28)

In fact, if we expand the exponent of ¢ in (4.28), we obtain a main term of

ql_"%_ 2;2 +4§3 - 854 o
Thus it is clear that the improvement over the trivial bound comes from the
higher order terms in the expansion of the exponent. This completes the dis-

cussion of Theorem 4.2.

'n fact, the optimal choice is approximately k =~ s/2 for sufficiently large s. This can be
seen by noting that in order for (4.27) to be bounded above by zq~! (log ¢) ~*¢, we must choose

1 2k2
> q1+§(2k2+k—1>+6_

The exponent gives the trivial bound for k£ = 1, decreases for several small values of k > 1,
and then increases to 1 with large k. We would thus in general choose the smallest k such

that the exponent of 27y in (4.26) is positive.



Chapter 5

Solutions to a congruence

5.1 Introduction

Consider the congruence

a

2% = 3® (mod q) (5.1)

where ¢ is a square-free positive integer and a and b are nonzero integers.! Let
Ny(X,Y) denote the number of positive integer solutions (z,y) to this congru-
ence with (z,¢) =1, (y,q) = 1, in the bounded region z < X and y <Y, where
X,V >1.

Given y with (y,¢) = 1, there are O(]a|*(?)) solutions = modulo ¢ to (5.1).
Thus there are O(|a|*(9(Xq¢~' 4 1)) solutions = < X. Alternatively, given x
with (z,q) = 1, there are O(|b|*9(Y¢~" + 1)) solutions y < Y. Thus in total

N (X,Y) = 0(¢*(XY ¢! +min(X,Y))).

We will refer to this as the trivial bound. In particular, if X,Y < ¢ then the
trivial bound is
N(J(X7 Y) = O(qe min(X7 Y))

One could hope to improve on this trivial bound when XY < ¢ by showing

either of the following bounds:

Bound 1.
Ny(X,Y) = o(¢° min(X,Y)).

Bound 2.
N,(X,Y)=0(XYq ).

1Recall that if @ < 0, then n® denotes ml®l.



CHAPTER 5. SOLUTIONS TO A CONGRUENCE 56

Note that Bound 2 implies Bound 1. In this chapter we extend the methods
presented in Chapter 4 to prove two bounds for N,(X,Y’), each of which is
better than the trivial bound, for X and Y in certain ranges.

While Ny(X,Y) is interesting in its own right, in the next chapter we demon-
strate that our bounds for N, (X,Y) give nontrivial bounds for the 3-part of
class numbers of quadratic fields. With this application in mind, we restrict our

attention to square-free moduli q.

5.2 Statement of the Theorems

In this chapter we prove the following theorems.

Theorem 5.1. Let q be square-free and let a,b be nonzero integers such that
(a,b) =1 anda#b. If X <qandY < q/2 then

N,(X,Y) < ¢"%d(q)"(log q)* + ¢ ' XYd(q)" + ¢ /*Xd(q)",
where T and the implied constant depend on a,b.

Suppose X = ¢® and Y = ¢, with a,3 < 1. Then Theorem 5.1 achieves
the trivial bound O(¢®min(X,Y")), disregarding comparison of factors of size
q%, as long as 1/2 < o, < 1. Theorem 5.1 achieves Bound 1 whenever both
1/2 < @ < 1 and 1/2 < # < 1. Theorem 5.1 achieves Bound 2 whenever
a+3>3/223

Theorem 5.2. Let q be square-free and let a,b be nonzero integers such that
a/b € Z% and (b,q) = 1. Let k > 1 be any integer. If X < ¢ and Y < q/2,
then

N,(X,Y) < XY 3 d(q) (log g)

where T, and the implied constant depend on a,b, k.

Note that it is advantageous to choose X to be the smaller of the two ranges;
suppose that X = ¢® and Y = ¢” with o < 8 < 1. Theorem 5.2 achieves Bound

1 if and only if
I} 2k

a Skl
for some k& > 1, and Bound 2 if and only if

ak Jé]
ok P —1
rritopsaets

2In fact, a result similar to that of Theorem 5.1 holds whenever a # b, without assuming
relative primality of a and b. The proof is more complicated in this more general case, and
since Theorem 5.1 is more than sufficient for our purposes, we only consider the case (a,b) = 1.
3Note that we must exclude the case a = b = 1. In this case Ng(X,Y) can attain the

trivial bound, Ng¢(X,Y) > ¢ min(X,Y); for example if ¢ is a large prime.
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for some k > 1. However, in applications it is more convenient simply to ap-
ply Theorem 5.2 for specific values o and 8 and then optimise the value of k
accordingly.

If both a and b are positive integers, we may define N;(X,Y) to be the
number of positive integer solutions (x,y) to (5.1) in the bounded region x < X
and y <Y, without assuming the relative primality conditions (z,q) = 1 and
(y,q) = 1. Then the following equivalent results hold for N;(X,Y’), which we

state here for use in the next chapter.

Theorem 5.3. Let q be square-free and let a,b be positive integers such that
(a,b)=1anda#b. If X <qandY < q/2 then

1/2 T 2 -1 T —1/2 T
NJ(X,Y) < ¢"/*d(q)" (logq)* + ¢ ' XYd(q)" + ¢ /*Xd(q)",
where T and the implied constant depend on a,b.

Theorem 5.4. Let q be square-free and let a,b be positive integers such that
a/b & Z" and (b,q) = 1. Let k > 1 be an integer. If X < gz and Y < q/2,
then

Ny(X,Y) < XY % d(q) (log g)

where T, and the implied constant depend on a,b, k.

Theorems 5.3 and 5.4 are proved in the same manner as Theorems 5.1 and
5.2, with only minor modifications. Thus we will only give the proof in the case
when we assume (z,q) = 1, (y,q) = 1.

We prove Theorem 5.1 in Section 5.3, using the Weil bound for certain key
exponential sums, in a straightforward extension of the methods of Theorem 4.1.
In Section 5.4 we describe the mean value methods we use to prove Theorem
5.2. While this approach is based on the methods of Theorem 4.2, which in
turn are based on the methods of Heath-Brown [30], the proof is significantly
more involved. In particular we must choose our averaging set of auxiliary
primes more carefully. Moreover, in Section 5.5 we must handle the vanishing
of two polynomials H,(n, j) and H,(n, ;) over C and modulo primes with some
delicacy. This is the most novel feature of the work in this chapter.

5.3 Theorem 5.1: the Weil bound

Note that we may reduce the problem to considering a to be a nonzero integer
and b a positive integer. We always require that (z,q) = (y,q) = 1. Thus if
both a < 0,b < 0, solutions (z,y) of the congruence (5.1), which may be written
as

7% = 71! (mod ¢),
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are equivalent to solutions of the congruence
219 = ¢’ (mod g).

If @ > 0,b < 0, then solutions of the congruence (5.1), which may be written as
2% = 7" (mod ),

are equivalent to solutions of the congruence
7% = y*l (mod q).

Thus from this point onward we restrict the integer b > 1 while a may be any
nonzero integer with (a,b) = 1.
We begin by breaking the range x < X into dyadic ranges w < n < 2w and

counting solutions within these partial ranges.

Definition 5.1. Let

U(w,M,q) = Z #{m < M :m® =n® (mod q)},
w<n<2w
(n,q)=1
where M < ¢/2.
In order to express U(w, M, q) more conveniently as an exponential sum,
define for each (n,q) =1,

o 3 a(5)

mb=na (mod q)

where
1 if ||zf| < Mgt
iy {1 Tl
0 otherwise.
Then
§(n) = #{m (mod q) : m" = n® (mod q), [|m/q| < M/q},

so that 6(n) counts m with 1 < m < M, as well as m with 0 < (¢ — m) < M.
Thus we have the inequality

U(w, M, q) < Z 5(n).

Define as before,
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with H = [(¢/2)M~1]. By Lemma 4.3,

(3)<a(3)

This immediately gives:
Proposition 5.1.

H-1

U(w,M,q) < H™* Z Z Z eq(hm)].

h=0 | w<n<2w m (mod q)
(n,q)=1 b=na (mod q)

We investigate the inner sum over n. We may extend this to a sum over a

complete set of residues mod ¢ as follows:

Z Z eq(hm)

w<n<2w m (mod q)
(n,@)=1 ;mb=na (mod q)

Z Z Z eq(l Z eq(hm)

k (mod q) w<n<2w m (mod q)
(k,q)=1 mb=ke (mod q)
- E E E eq(hm + k).
l 1 w<n<2w k, m (mod q)
mb=ka (mod q)
(k,q)=1

As in Lemma 3.4, let A(q; w,—1) be the sum

Algw, =) = Y eqg(=In),
w<n<2w
so that
|A(g; w, =1)] < min(w, [|1/q]|7).

Definition 5.2. Let

Vighl)= > eg(hm+1k).

k, m (mod q)
mb=k2 (mod q)
(k,q)=1

Then

H-1 ¢
Uw,M,q) < H 'q~ ZZW q; h, D] A(g; w, —=1)]. (5.2)
h=0 I=1

5.3.1 Bounding the sum V (¢;h, )

By Lemma 3.10, V(g; h,1) is multiplicative in the sense that
V(CI1(I2; h7 l) = V(ql; hq*?? ZE)V(QQ7 th7 qu)

for (q1,q2) = 1, where 131 = 1 (mod ¢2) and ¢2g2 = 1 (mod qy).
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Lemma 5.1. For q square-free and (a,b)=1 with a # b,
Va0 < niq"?(a, b DY,
where 14, = 2(|al + b).

Proof. Since q is square-free we need only consider V (p; h, 1) for each prime p|q:

V(p;h,l) = > ep(hm+1k).

m, k (mod p)
mb=ka (mod p)
(k,p)=1

Suppose first that p 1 hl. Since (a,b) = 1, there exist integers r, s such that
ar +bs = 1.

For k # 0 (mod p) and hence m # 0 (mod p), set & = m"k® (mod p) so that
a® =m, a® = k modulo p. Then

P

V(p;h,1) :Z (ha® +1a®)

where we must subtract off the term a = p. If @ > 0, the Weil bound* (Lemma
3.7) then shows that for p { hl with p > max(a,b),

|V(p) h7 l)| S (max(a, b) — 1)p1/2 + 1.

If a < 0, the Weil bound for such Kloosterman sums (Lemma 3.9) shows that
for p t hl with p > max(|al,b),

V(pih,0)] < (lal +0)p'/? + 1.
Now suppose that p|h but p{i. Then

Vipih,l) = > epllh)

m, k (mod p)
mb=ka (mod p)
(k,p)=1

= Y ek > 1

k (mod p) m (mod p)
(k,p)=1 mb=ka (mod p)

= > Rk -1,

k (mod p)
where again we subtract off the k = p term. Here
1 if n =0 (mod p)
Yp(n) = (b,p—1) if n = b (mod p) for some x

0 otherwise.

41t is to apply the Weil bound that we must assume a # b, so that the polynomial ha® +la®
is indeed a nonzero polynomial.
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Note that since (a,b) = 1, ¥p(k*) = ¢p(k). Trivially, if k& may be written as
a bth power modulo p, so may k%. In the other direction, if £ # 0 (mod p)
and k% = x° (mod p) for some x, then recall that ar + bs = 1 and write
k™ = 2™ (mod p). Then k"@k% = 2°k% and hence k = (2"k*)" (mod p), so
that £ may also be written as a bth power modulo p. Therefore

Vpihl) = > ep(lk)vp(k) —1
k (mod p)
= Y et -1
t (mod p)

The classical bound for such sums given in Lemma 3.6 with p t [, p > b then
gives
V(p; b, 1) < ((b,p—1) = p/? + 1.

Alternatively, if p|l but p t h, then for p > |a| we have
V(psh, D] < ((lal,p—1) = 1)p*/? + 1.
If p|l and p|h then trivially
V(p;h, 1) < p < p2(p, b, )Y
The trivial bound
\V(p; h,1)| < p < max(|al,b)*/?p*/?

is also sufficient for those primes p < max(|al,b).

Thus for any prime plg,
V(93 by )] < 10,00 (0, 1, )2,

where we may take the constant 7,; = 2max(|a| + b). By the multiplicative
property of V(g; h,1), we have the final bound

V(g b, D] < 125 q (g, b, 1)V,

5.3.2 Bounding U(w, M, q)

We may now bound U(w, M, ¢q). Recall from (5.2) that

H—-1 g¢q

Uw, M,q) < H 'q7" > > [Vi(g; b, 1)||Alg; w, —1)-
h=0 I=1
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Applying the bound of Lemma 5.1 to V(g; h, 1), then:

q

Ulw,M,q) < n/PWH g1/ [Z (w, [[1/qll ") (g, )"

H-1
3 minu, 1/l ) 3 (D) /]
=1 h=1

Only when [ = ¢ is w the minimum, so we may write

q—1
Ulw,M,q) < n/\VH g}/ [Z||l/q|1(q,1)1/2+wq1/2
=1
q—1 H-1 H—-1
SRS q,h>,<q,z>>l/2+wz<q,h>1/2].
=1 h=1 h=1

We may bound the three sums as follows.

Lemma 5.2.
q—1

> Nt/al ™ (g, < gd(g) log .
=1

Proof.

q—1
Sl/al M g0V < 2 Z A&
=1

1<l<q/2

2qu1/2 Z %

d 1<i<q/2
lg L

1
= Y a3 L
dlq 1<e<q/(2d)

< qd(q)loggq.

IN

Lemma 5.3.

H-1

an/qn "> (g k), (g,1)"/? < Hqd(q) log q.

h=1
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Proof.
H-1 qul
lel/q\l (@ h) @) <2 Yy 5 (@) (@)
h=1 1<i<q/2 = h=1
<u X EYar S
1<l<q/2 d|(gq,l) d‘(q h)
ST D S >

1<l<q/2 d|(a.) het

< q ) 7 > dM2(H/d)

1<i<q/2  dl(q,l)

He Y Y At

1<i<q/2  dl(g,l)
1
H z
gd(q) Y i
1<I<q/2
< Hqd(q)loggq.

IN

IN

Lemma 5.4.
H-1

(.1)"/? < Hd(q).
h=1
Proof.

T

H-1
(q7h)1/2 S Zd1/2 Z 1

dlq

>
I
—

d|h

< Y d'*(H/d)
dlg

< HZd—l/Q

dlq
< Hd(q).

It follows from these three lemmas that
Uw, M,q) <0 |H™'q"/?d(g)log g + H ™ w + ¢*/2d(q) log ¢ + ¢~ /*wd(q) | .
Recall that H = [(q/2)M~']. For square-free ¢, n*(?9 = d(q )10g2, so let 7 be
the least integer with 7 > log 1,/ log 2 + 1. We have:

Proposition 5.2.

U(w,M,q) < ql/zd(q)T log q + qilMd(q)Tw + qil/zd(q)Tw
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5.3.3 Proof of Theorem 5.1

Dyadic summation quickly yields a bound for Ny (X,Y). Let J be the least
integer such that J > log X/log2. Then if Y < ¢/2,

J—1
Ny(X,Y) < U(27,Y,q)
7=0
J—1
< [q”Qd(Q)T logq+q 'Yd(q)"2’ + Q’l/zd(q)w}
7=0

< ¢"*(log X)d(q)" logqg + ¢ ' XYd(q)" + ¢ /*Xd(q)".
Since X < ¢ we may conclude
Ny(X,Y) < ¢"?d(q)(log q)* + ¢ ' XY d(q)7 + ¢ /> Xd(q)"

This completes the proof of Theorem 5.1.

5.4 Theorem 5.2: the mean value problem

We again examine U(w, M, q), this time using mean value properties of expo-
nential sums. In the remainder of the discussion we will assume that a is any
nonzero integer and that the integer b > 1 satisfies (b,q) =1 and a/b ¢ Z*. (In
particular, if @ > 0, we must assume b > 2.)

Recall from Proposition 5.1 that

H-1
U(w,M,q) < H™* Z Z Z eq(hm)|.
h=0 |w<n<2w  m (mod g)

(n,@)=1 1b=na (mod q)
As in Theorem 4.2, we wish to average over a complete set of residues A modulo
q. Therefore, applying Holder’s inequality,

1
2k\ 2k
q

U(w,M,q)<<Mﬁ éz Z Z eq(hm)

h=1|w<n<2w m (mod q)
(n,@)=1 ;mb=na (mod q)

for any integer £ > 1. We do not specify k, but prove the theorem for any
integer k£ > 1. This allows for the choice of optimal k in applications such as
those of Chapter 6. All implicit constants depend only upon a,b, k. We will

assume unless otherwise noted that we only counsider (n,q) = 1.

Definition 5.3. For any finite set of integers 7 and « € (Z/qZ)*, let

2k

N@D=23Y Y em)

h=1|n€Z  m (mod q)

mbP=an? (mod q)
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We will denote N1(Z) simply by N(Z).
It follows immediately that

Proposition 5.3.
U(w, M,q) < M7 N(I)%,

where T = (w, 2w].

As in Chapter 4, we will bound N (Z) for a more general interval of the form
T = [1,1]. (Recall that we have defined the notation (A, B] to denote the set
of integers {A < n < B}.) In fact, N(Z) increases as a function of the interval
Z; we will see that it is sufficient to use a bound for N(Z) with I = [1,2w] in

Proposition 5.3.

We have the following equivalent representation for N, (Z).

Lemma 5.5.

N,.(Z) = #{(n,m)=(ny,...,nok,my,...,max),n; €L, m; (modq) :
k k
m? = an? (mod q) for 1 <i < 2k and Zmi = ZmH-k (mod q)}.
i=1 i=1
Proof. Let
S(q,h) = Z Z eq(hm).
n€L  m (mod q)
mb=an® (mod q)
Then
14
Na(T) = = IS(a,n)*
15,=
1 < k
= 72‘9((]’ h’)kS(Qa h’) )
q h=1
so that
1 k
IO oL ID SERED SRR Doy
T3 [ nymer mims i=1

ml=an? (mod q)

DD S zhm

ni,... N €L
7n?£an“; (mod q)

k k

i=1

_ ’Z 3 éZeq (h(Zmi—;mm

The result follows.
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5.4.1 The trivial bound for N(7)

We easily obtain the following trivial bound for N(Z) when 7 is a set of consec-

utive positive integers.
Proposition 5.4. Let T ={1 <n < I}. Then

N(T) < (b @)2k=1(|q|"(@)([2k g1 4 [2k-1),

I?kfl

Proof. Fix ny,...,nok_1, for which there are at most choices. Since ¢ is

square-free, these determine < (b”(‘n)%_1 choices for myq, ..., mog_1 modulo gq.

There is then one value of mgy (mod ¢) that satisfies the congruence

k k—1
Mok = Z m; — Z Mt (mod q).
i=1 i=1

For this value of maq;, there are <« |a|"<q> values of nop modulo ¢ such that
mgk = ng, (mod q).

Hence there are < (|a|*(9)(I¢g~" + 1) values for ny, € Z. Thus in total we

obtain
N(T) < (b7 D) (|a| D) 21 (Ig7h +1).

O

We may easily see that this bound for N(Z) gives no more than the trivial
bound for N,(X,Y). Writing the factor (b*(@)?~1(|a|*(®) as ¢¢, it follows from
Proposition 5.3 that

U(w, M, q) < w(g"M(w™" +¢7 1)),
This then gives the result that
Ny(X,Y) < Y3 (X173 + Xq~ 7 )g".

This is never better than O(¢° min(X,Y)), for X, Y < g and k > 1, disregarding
comparison of factors of size ¢°. Thus our goal is to improve on this trivial bound
for N(Z).

5.4.2 Bounding N(Z) by averaging

As in Theorem 4.2, we improve upon the trivial bound for N(Z) by taking
advantage of averaging over h in order to average further over a set of auxiliary
primes satisfying certain criteria. Let Z = {1 < n < I'}. Fix a prime p { ¢ with
Q < p<2Q and Q < I < q, where we will specify the parameters I and @

later.
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Proposition 5.5.

2k

ND) <d@ QT 43S Y eim)

h=1 | neZ m (mod q)
PIn pb=na (mod q)

where wy, s a positive integer depending explicitly on a, b, k.

Proof. Tt suffices to bound the contribution to N (Z) from 4k-tuples (n, m) where
p|n; for some i. Without loss of generality, assume p|n;. There are then < Ip~*

possible values for n; and these determine < b*(@ choices for m1, based on

m} = n¢ (mod q). There are at most I?*~2 choices for na,...,na,_1 and

similarly these determine < (b"(q))%_2 choices for ma,...,maor_1. There is

then one choice for mo, modulo ¢ that satisfies the congruence

k k—1
Mok = Z m; — Z Mt (mod q).
1=1 =1

For this value of msq;, there are < |a|”<q> values of nop modulo ¢ such that
mgk = ng;, (mod q).

Since I < g, these are all the possible values of no, € 7 as well. Thus, in total

the contribution to N(Z) from (n,m) with p|n; is at most
< (B@D)2h=1 (g @) [2h-11,
For square-free ¢, n*(9 = d(q)'® n/log2 Therefore we could write
(v D) (|a] (D) = d(q)*"
where wy, is the least integer such that
wi > (logb/log2)(2k — 1) + log |al/log 2.

However, this is needlessly scrupulous, as any factor of d(g) will contribute only
q° to the final bound. Therefore we will use the trivial bound b”(9) < d(q)® and
simply take

wr =b(2k — 1) + |a].

This completes the proof. O

We next consider the sum over n € Z such that p t n. Since p t g, these

remaining n fall into the p — 1 nonzero residue classes

n = fqg (mod p), 0< f<p.
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Note that for ¢ square-free, the prime p is either expressible as a bth power
modulo ¢ or it belongs to another of the at most v”(? cosets of ['/T?, where
I'=(Z/qZ)*. Let Ry = 1,Ra,..., Ry be a fixed set of representatives for
these cosets. Define

T) = (121201

p p
Proposition 5.6.

p—1
N(T) < d(q)* I**7'Q7 + Q* ' Y " No(Z(p, f)),
=1
where o = R¢ according as p belongs to the coset of T'/T® represented by Ry.

Proof. Applying Holder’s inequality to the two innermost sums in Proposition
5.5 yields

2k 2k
p—1
SO etm) = XY S eylhm)
n€Z  m (mod q) f=1 ner m (mod q)
PN b=na (mod q) n=fq (mod p) 1b=na (mod q)
2k
p—1
2k—1
< (-1 > > > eq(hm)
f= nerl m (mod q)

n=fq (mod p) ,,b=pa (mod q)

Write n = fq + ps so that s € Z(p, f). Then the congruence m? =

n® (mod q)
is equivalent to m® = p®s® (mod ¢). Temporarily let
2%

YIY Y e

h=1 |s€Z(p,f) W (mod q)

mb=pasa (mod q)

S(p, f) =

The prime p belongs to a coset R;I'"’ of the quotient group I'/T'® and so may
be written as p = R;g® where both R; and g are in I = (Z/qZ)*. Set m = g%u
so that the congruence m’ = p®s® (mod gq) is equivalent to the congruence
u® = R?s® (mod q). Thus
2k

Z Z eq(hg®u)

h=1|s€Z(pf) |, wimodo
Wb=REs4 (mod g

Since g € (Z/qZ)*, then
2k

S(p. f) = 22 3 e

1 |seZ(p,f) . u (mod q)

ub=R%5% (mod q)

q
1=
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Setting a = Ry, we thus have

S(p, f) = Na(Z(p, f))-

Summing S(p, f) over all the residue classes corresponding to f =1,...,p— 1,
we finally obtain

p—1

N(T) < d(q)* I**7'Q7" + Q* 1Y No(Z(p, f)).
f=1

O

This result is of critical importance, as it removes any dependence on the
prime p from the argument of the exponential sum, so we may now average

N(Z) over a large number of primes.

5.4.3 Averaging the good set over primes

As in Theorem 4.2, we first separate the quantity N, (Z(p, f)) into two parts,
according to a distinction between “good” and “bad” 2k-tuples (ni,...,na).

Define for any real number ¢,
Z(t) = (—qt, 1Q™" — qt]

and let N, (t) = No(Z(t)). Since Z(p, f) C Z(f/p) and N, (Z) increases with the
set Z, then
No(Z(p, f)) < Na(Z(f/p)) = Na(f/p)-

Definition 5.4. For disjoint sets G and B partitioning the set of 2k-tuples

n=(ny,...,ng), define
Nocj(t) = #{(nvm)an € Gani € I(t)amz (mOd q) : (an) = 1) (m7q) = ]-a

k k
m? = an? (mod ¢) for 1 <i < 2k, and Zmi = Zmi_,_k (mod ¢q)},
i=1 i=1
NB(@#) = #{(n,m),n € B,n; € Z(t),m; (mod q) : (n,q) = 1,(m,q) =1,
k k
m? = an? (mod ¢) for 1 <i < 2k, and Zmi = ZmHk (mod ¢)}.
i=1 i=1
We will average only NS (t) over primes, since the set B of bad 2k-tuples
will be sufficiently small for N2 (¢) to admit a trivial bound.

From these definitions, we immediately obtain:

p—1 p—1
N(I) < d(g) P*' Q™ + Q1 Y NZ <f> + QY NG <f) ,
=1 b =1 p

where o = R{, as in Proposition 5.6.
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Definition 5.5. Let
K, = mtafo(t).

We have the following result:

p—1
N(I) < d(@)* I**7'Q7" + Q%Ko + Q** ' > NS <f) :
= N

We now average over a set of auxiliary primes p. By the prime number
theorem, there are O(Q(log Q)~!) primes p in the range Q < p < 2Q. Of these,
O(log g/ loglog q) are factors of ¢. We would like to average over as large a set
of primes as possible; therefore given g and @, consider the largest of the at
most b*(9) sets

P,={Q<p<2Q,ptq:pe RI"}.

Assuming () > clogq for some constant ¢, we are then averaging over a set of
> Q(b"(@1log Q)~! primes. Therefore

p—1
N(I) < d(q)** I**'Q7! + Q¥ Ko + 1" 0Q* 2 (log Q) Y > NS (]J;) ,

p f=1
where the sum is over primes p in the largest set P;, with a accordingly defined
to be o = RY.

Let Z'(t) = (—qt, 2IQ ' —qt] and define N&'(t) in analogy to NS (t), the only
alteration being that we require n; € Z'(t). It follows exactly as in Propositions
4.11 and 4.13 of Section 4.6.3 that we may rearrange the intervals we consider
so that the sum of NG (t) is only dependent on the set P; of auxiliary primes
over which we average in terms of the value of . We obtain

2q—1 .
N(Z) < d(q)* I* 7' Q™" + Q™ Ko + 0" 9Q* 1 (log Q) > NE' (J> ,
; q
Jj=1

Definition 5.6. Let L, denote the number of solutions (n,m, j) with n € G
and
n; € (0,2IQ™Y] for i=1,...,2k,
m; (mod ¢) for i=1,...,2k,
0<j<gq

such that for each i = 1,...,2k, (n;,q) =1, (m4,q) = 1,
= a(n; — j)* (mod q),

and
k k

Z m; = Z M+, (mod q).

i=1 =1
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We summarise the results of this section with the following proposition:

Proposition 5.7.
N(T) < d(q)* I*P'Q7 + Q% Ko + 0" 9Q* 117 (log Q) Lo,

where oo = R}, with Ry a fized representative for the largest set Py.

5.5 The good and bad sets

It remains to estimate L, and K. The difficulty lies in defining the sets G and
B and estimating L. Let L,(n;q) represent the number of solutions (m, j)
corresponding to a fixed 2k-tuple n € G. Then L, (n;q) is multiplicative with

respect to g, thus for square-free ¢ = [[p we may write

La(m;q) = [[ La(n;p).

We will bound L, (n;p) for each prime p|g by bounding the number of roots of
a certain polynomial. Once we have determined the conditions we must impose
on n for the polynomial to have a small number of roots in a certain sense, it
will be clear how to define the good and bad sets G and B. For technical reasons

we consider the cases when the exponent a > 0 and a < 0 separately.

5.5.1 Positive exponent: defining the polynomial H,(n, j)
First assume that a > 0. Let

b for b even,

2b  for b odd.
Let F(Y) be the polynomial in Z[X}, ..., Xok, Y1, .., Yo, Z] defined by

FOY)=][[Fy(Y)= J] i+&Ya+---+ &Y,
{w} Wa e Wk

where ¢ is a primitive Sth root of unity and the (2k — 1)-tuples of exponents
wa, ... ,wq range over all values in the set {0,...,0 — 1}. Thus the coefficients
&¥2, ..., 9?0 attain all possible sequences of {+1,—1} of length 2k — 1. In
particular, one factor Fy,1(Y) of the polynomial F'(Y) has coefficients of +1
for Y1,...,Yy, and coefficients of —1 for Yy41, ..., Yax. It is this factor in which
we are most interested.

Imagine for the moment that we could take fractional powers modulo a
prime p; fix n and substitute a'/®(n — j)*/° for Y. Then this particular factor
Fiuy(a/®(n — 4)%/%) would vanish whenever

k k
Zal/b(ni _ j)a/b _ Zal/b(ni+k _ j)a/b =0 (mod p).
=1

i=1
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Thus we can think of the number of roots of F(a'/®(n — j)%/®) as giving an
upper bound for the number of values j for which there is a vector m such that
(n,m, j) is a solution satisfying the criteria given in the definition of L.

As we cannot actually take such fractional powers modulo p, we have to
be more careful. However, the polynomial F' as defined does have a special
property that allows us to proceed with this line of argument. For note that
F(Y) is in fact a polynomial in Y® = (Y,...,Y}}). Therefore if we have the
relation

Y =a(X; — 2)*

for each ¢ = 1,..., 2k, then there exist polynomials G and H, such that
F(Y)=G(Y") =G(a(X - 2)") = H,(X, Z).

Specifically, for a fixed vector n, if m is such that

m; = a(n; — j)* (mod p)

for each i = 1,...,2k, and if
F(m) =0 (mod p),

then
H,(n,j) =0 (mod p).

Therefore it is sufficient to bound the number of roots j of H,(n,j) modulo p,
as then
Lo (n;p) < b #{roots j of Hy(n,5) modulo p}, (5.3)

b2k

where the factor of arises from the number of ways of choosing the 2k-tuple

m modulo p.

5.5.2 The vanishing of H,(n,j) over C

Studying those n for which H,(n, j) can vanish identically over C makes it clear
how to define the good set G of those n for which H,(n, j) has few roots, and
the bad set B of those n for which H,(n,j) can have arbitrarily many roots.
In the following section we then study the number of roots H,(n,j) can have
modulo a prime p, for n € G.

Suppose that H,(n, 2) is identically zero for z € C. Then one of the factors
in the product defining H, (n, z) must vanish identically over C, so for some set

of exponents wy, . ..,ws, with w; = 0,

2k
> e (n —2)" =0 (5.4)
=1
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for all z € C. Expand each term in (5.4) as a power series,

(=) = (=2)(1 = nif2)
_ C0(7’2)(1/b +cl(7z)a/b71ni +62(72)a/l772ni2 +e,

where ¢; # 0 for all [ > 0.°> We then see that in order for all the coefficients of
z in (5.4) to be zero, we must have

2k

E(m) = Zf“”n;” =0,

i=1
for all integers m > 0.
Regard E(0) = 0,...,E(2k — 1) = 0 as a system of linear equations in
variables t; = £ for 1 <1 < 2k:

tind +tand + - +toyny, = 0

tﬂ’L?kil + t2n§k71 + e+ tgkn§]’§71 = 0.

Construct the corresponding matrix

0 0 0

ny ng 0 Mgy
1 1 1

n ny o Mg

A_ =
2%k—1 , 2k—1 2k—1
n iy T Mgy
Since the vector (£“1,...,£“2k) of all nonzero values is a solution to the equation

A(ty,...,tar) = (0,...,0), the Vandermonde determinant shows that

H (n; —mnp) =0.

1<i<h<2k

5We observe that since a > 0 we must require b # 1, since otherwise the coefficients ¢;, of

g -1 (- (-1)
I ’
vanish for [ > a. The proof could proceed if the exponent a were sufficiently large, a > 2k —1,

the form

c| =

for the optimal choice of k. However, one would not know this were the case without already
applying the result of the theorem.

In fact, this is an indication of a deeper problem. We may think informally of the require-
ment in the definition of N(Z) given in Lemma 5.5 as

k k
an = anJrk (mod g),
i=1 i=1

where s = a/b is a rational number. In general, this generates sufficiently many conditions to
limit the number of allowable vectors n only if the resulting expansion is infinite, i.e. only if
s is negative, or is a positive non-integer. If s is a positive integer, the resulting expansion
is finite, and it is possible that too few conditions are generated to restrict the choice of n

sufficiently.
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Without loss of generality, suppose that n; —na = 0. Let n12 = n1 = na, so
that in the set of linear equations we may collapse the two variables ¢; and ¢,

into one variable; for example
tln? + thg + -4 tangk =0

becomes
(t1 + ta)nd o + -+ topn, = 0.

(It is possible that more than two of the n; are of equal value; if so one simply
collapses all of the variables t; with equal values n; into one variable and the
reasoning proceeds in a similar fashion.) If €41 4 £“2 # 0, then we obtain the
(2k — 1) x (2k — 1) matrix

0 0 0
n1,2 nyooc Mgy
1 1 1
, 11,2 ng o Mgy
A= )
2k—1  2k—1 2k—1
N2 N3 T Mgy

and again the Vandermonde determinant shows that n; —n, = 0 for some i # h.
If €¥1 4+ 92 = 0, then examine the (2k — 2) x (2k — 2) matrix omitting the first
two columns of A entirely. (Again, if more than two of the n; are of equal
value and the corresponding roots of unity £“¢ sum to zero, simply omit all
the appropriate columns of A.) Proceeding in this fashion, one shows that if
H,(n, z) vanishes identically over C, then for each ¢ = 1,...,2k, there exists
h # i such that n; —nj, = 0.

Therefore we choose the sets B and G as follows.

Definition 5.7. Let

B = {n:Vi, 1<i<2k, Fh#1i,1 <h<2k, st.n;=n}
G {n:n ¢ B}.

For each n and each 1 < i < 2k, define

Ai(n) = l_l(nz —np).

h#i

Then if n € G, there exists some 1 < ¢ < 2k such that A;(n) # 0.

5.5.3 The vanishing of H,(n,j) modulo p

While H,(n,j) cannot vanish identically over C for n € G as defined above, it
is still possible that H,(n,j) could vanish identically modulo p for arbitrarily
large primes p dividing q.
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The highest degree possible for H, (n, j) with respect to j is 6, = (a/b)3**~1.
There are thus at most d; roots 7 modulo p, unless the polynomial vanishes
identically modulo p. Suppose a prime p divides all the coefficients of terms of

a

the form a(n; — j)® in the expanded product H,(n,j). (Note that necessarily
a = R} € (Z/qZ)*, so that p { a.) The coefficients of these terms arise from
multiplying the 32*~! factors of H,(n,j) and are hence dependent only upon b
and k. Thus there exists a constant ¢ such that if p divides all the coefficients
of terms of the form a(n; — j)® in the expanded product, then p < ¢ .

For p > ¢k, it is still possible that H,(n,j) could vanish identically modulo
p because of congruences among the values n; modulo p. We will show that if
H,(n,j) vanishes identically modulo p for a sufficiently large prime p, then n

is “bad” modulo p in the following sense:

Lemma 5.6. Suppose the polynomial H,(n,j) vanishes identically modulo a
prime p > P, for a constant P,y ), explicitly dependent on a,b,k. Then
plAi(n) for all 1 < i < 2k.

Proof. Fix n and regard H,(n, z) as a polynomial in Z[z]. If H,(n, z) vanishes
identically modulo p, then so does H,(n,2%). Set d = a3?*~! and consider the
polynomial J(z) = a BT b A (n, 2%) in Z[z7*]. We may think of J(z) as

a product over all possible sets of exponents {w} = {w1 =0,...,wa},
J(Z) = H J{w}(2)7 (5.5)
{w}

where each factor is of the form
ny a/b noy, a/b
=6 (- 5) e (- 22)”
wy(z) =¢ ) Tt o
Each factor Ji,1(2) may be regarded as a formal power series over Q,

o

J{w}(z) = Z U{w}’m(z_b)m.

m=0

For each factor Jy,1(2) and an integer M > 1 we will choose later, define the

truncation y
J{Mw}(z) = Z v{w}’m(z_b)m7
m=0
and let
T (z2) =TT 7% (2). (5.6)
{w}

Let K be the field £ = Q(v{y},m), Where {w} ranges over all sets of expo-

nents, and 0 < m < M (i.e. we simply adjoin the coefficients of each truncated
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M
factor J ()

written as a sum

). Let p be a fixed prime ideal above p in K. Then JM (2) may be

JM(z) = PM(2) + QY (2),

where PM(2) is a polynomial of degree M defined over Oy, and Q™ (z) is also
a polynomial over Ox, but of terms of degree strictly greater than M.

By assumption, J(z) is identically zero modulo p. Equating coefficients
in equation (5.5), one sees that each coefficient of P (z) is zero modulo p.
Thus there exists a factor Jf‘ﬁ }(z) such that all its coefficients v,y ,, with
0 < m < M/N are zero modulo p, where N = 321 is the number of factors
in the product (5.6) defining J* (z). Each coefficient v,,, (where we understand
the set {w} to be fixed, and drop the subscript) is of the form

w1 (G == 1) K
U = (1) 222 ml; Zf ing".
i=1
Choose M = N(2k — 1). We also require that the prime p satisfies p > b,
p>2k—1land pta(a—>b) - (a—b(2k—2)). So for a sufficiently large constant
P,y defined in terms of a,b,k (which we also choose to be at least cp ), if

D > Py bk, then since v, = 0 modulo p for each 0 < m < 2k — 1, we have

2k
E(m)=) &nl"=0
i=1

modulo p for each 0 < m < 2k — 1.
As when studying the vanishing of H,(n, j) over C, we construct the matrix

0 0 0
ny ng o Mgy
1 1 1
ny ng o Mg
A=
2k—1  2k—1 2%k—1
n N2 T Mgy

Once again, the Vandermonde determinant shows that

H(nl —np) = 0 modulo p,

i<h
so that there exists ¢ # h such that n; — n;, = 0 modulo p. Proceeding in the
same fashion as before, one shows that for each 1 < i < 2k there exists some
h #1i,1 < h <2k, such that n; — n;, = 0 modulo p. In each case, since n; — ny
is a rational integer, in fact p|(n; — np). Thus p|4;(n) for all 1 < i < 2k. This
completes the proof. O

5.5.4 Negative exponent: defining the polynomial H,(n, j)

We next consider the case when a < 0. We proceed with an argument similar

to the case when the exponent a > 0, but slightly more complicated. We first
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define a polynomial H,(n,j) analogous to H,(n,j). Let 3 and F(Y) be as

before, and let
2%k N
Y) = (H Y) F(Y),
i=1

where N = 32*~! is the number of factors in the product over {w} defining
F(Y). If we have the relation

Y = a(X; — 2)~l
for each i = 1,..., 2k, then there exist polynomials G and H, such that
F(Y)=G(Y") =G(a(X - 2)7ld) = (X, Z).

Informally, we may think of the polynomial H, as the product

Ho(n,j) = H(n,j)HP (n,j)

N
< ~1/b(p, j)|a|/b>

(fwl Yo(ny = )71l0 e gkl P gy, —j)_lal/b) ’
{w}

or as

Ha(n,j) _ H é'wla (2k— 1)/bH \a\/b 4 Ewgka (2k—1)/b H |a|/b
{w} 1#1 i£2k
In particular, if n is fixed and m is such that
mt = a(n; — )71 (mod p)
for each 1 = 1,...,2k, and if
F(m) =0 (mod p),

then
Ha(n,5) = 0 (mod p).

Therefore it is once again sufficient to bound the number of roots j of H,(n, j)
modulo p.

5.5.5 The vanishing of H,(n,j) over C

Suppose that H,(n,z) is identically zero for z € C. Then either Ef&l)(n, z) or
a2 (n, z) must vanish identically over C. Visibly the coefficient of (—z)+V(lal/b)
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in the expansion of Ff&l)(n, z) is 1, thus it must be that H&Q)(Il, z) vanishes iden-
tically over C. As in the case a > 0, it follows that for some set of exponents
w1, .- ., Wak, with wy; =0,

2k

D g¥i g — )7l =0 (5.7)

i=1
for all z € C. Using an argument analogous® to that in the case a > 0, it follows
that if Hg)(n7 z) vanishes identically over C, then for each ¢ = 1,...,2k, there
exists h # i such that n; — nj, = 0. Therefore we may choose the sets B and G
as before. We also define A;(n) for each i = 1,...,2k as before.

5.5.6 The vanishing of H,(n,j) modulo p

Thus H,(n, j) cannot vanish identically over C for n € G, but it is still possible
that H,(n,j) could vanish identically modulo p for arbitrarily large primes p
dividing q.

The highest degree possible for H, (n, j) is &, = (|a|/b)(2k — 1)3%*~L. There
are thus at most 0y, roots j modulo p, unless the polynomial vanishes identically
modulo p. Once again, there is a constant ¢, j such that if p divides all the
coefficients of terms of the form a(n;— 7)1l in the expanded product of H,(n, 5),
then p < ¢ 5. We may prove a lemma analogous to Lemma 5.6, showing that
if H,(n,j) vanishes identically modulo p for a sufficiently large prime p, then n

is “bad” modulo p in the following sense:

Lemma 5.7. Suppose the polynomial H,(n,7) vanishes identically modulo a
prime p > Pa7b7k for a constant 13(171,,;C explicitly dependent on a,b, k. Then
plA;(n) for all 1 <i < 2k.

Proof. Fix n and regard H,(n, z) as a polynomial in Z[z]. If H,(n, z) vanishes
identically modulo p, then so does H,(n,2%). Set d = |a|(2k — 1)3%*~! and
consider the polynomial J(z) = aZF=DN/by=df1 (n,2*) in Z[z7?. We may

think of J(z) as a product over all sets of exponents {w} = {w; =0, ..., wa},
J(2) = [[ Ty (2), (5.8)
{w}
where each factor is of the form
Ty (2) = T (T2 2)

(I

1=

. <§w1 (1 — %)—\a\/b+.,,+£w% (1 B nngk)—lal/b> |

SNote that in this case we may have b = 1, since the expansion of the resulting series is

still infinite, since a < 0.
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or alternatively,

lal/b lal/b
T _ R L _
@@= e TI0-5) e T -5F)
#1 i£2k
Each factor J{w}(z) may be regarded as a product of the formal power series
for jfl)}( ) and j{(2)}( ) over Q. As before, we define Mth power truncations of

each power series, which we denote by wa)}’ (z) and jﬁ)]jM(z), and let

=175 =117 @78 @) (5.9)
{w} {w}
Let K represent the field formed by adjoining the coefficients of each truncated
factor to @, and let p be a fixed prime ideal above p in K. Then J*(z) may be
written as a sum
JM(2) = PM(2) + QM (2),
where PM(2) is a polynomial of degree M defined over Ok, and Q™M (2) is also
a polynomial over Ox, but of terms of degree strictly greater than M.

By assumption, .J(2) is identically zero modulo p. Equating coefficients in
equation (5.8), it follows that each coefficient of PM (z) is zero modulo p. Thus
there exists a factor j{Mw}(z) such the coefficients of all terms (in 27%) with
degree 0 < m < M/N are zero modulo p. Furthermore, for this specific factor,
it must be that at least one of Jél)} (z) and J (2), M( ) has the property that the

coefficients of all terms with degree 0 < m < M / 2N are zero modulo p. Visibly,

J&)}M( ) has constant term 1, so it must be that all coefficients of terms in

Jﬁ})}M(z) with degree 0 < m < M/2N are zero modulo p.

Choosing M = 2N (2k — 1) and an appropriately large constant Py p j, we
may argue as in the case a > 0 to conclude that for a prime p|g with p > Pa,b,k,
if p divides the coefficients of terms of degree 0 < m < 2k — 1 in the truncated
expansion jéi)]jM(z), then for each 1 <7 < 2k there exists some h # i such that
n; — np = 0 modulo p. In each case, since n; — ny, is a rational integer, in fact
pl(n; —ny). Thus p|A;(n) for all 1 <¢ < 2k. This completes the proof. O

5.6 Final bounds for L, and K,

We may now estimate L, and K,. We need no longer distinguish between the
exponent a being positive or negative (other than in choosing certain constants),

as we have seen that we may choose the sets G and B identically in each case.

5.6.1 Estimating L,
For each n € G, A;(n) # 0 for at least one value 1 <1 < 2k. Let

G;={neG: A;(n) # 0},
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so that
2k
¢=JaG.
i=1

Proposition 5.8. If n € G; then for any plg,

La(n;p) < dy, (p)b°* (p, Ai(n)),

where Nk = max(Pa,bﬁk, P&,b,ka 6k; Sk)

Proof. First consider the case a > 0. If p{ 4;(n), then by Lemma 5.6, Hy(n, j)
can only vanish identically modulo p if p < P, 4. If the polynomial is not
identically zero modulo p then it has at most 3 roots, where d;, = (a/b)3?*~1
is its highest possible degree. Thus if p { A;(n), then H,(n,j) has at most
i = max(P, p 1, 0 ) roots. It then follows from (5.3) that

Lo(n;p) < d., (p)b**,

using the fact that { = d;(p) for any integer [ > 1. If p|A;(n) then there can be
at most p roots of H,(n,j). Thus, regardless of whether p divides A;(n) or not,

La(n;p) < dy, (p)b°* (p, As(n)).

Alternatively, if a < 0, then using Lemma 5.7, we obtain the analogous result:
La(n;p) < dy, (p)0°" (p, As(m)),
where ), = max(P, p 1, k) O
We may thus bound L, as follows:

2k
Lo < )Y La(nig)

i=1 neG;

2k
< > > [ Lamp)

i=1 neG;

2k
< 33 T dn 0V (o, i)

i=1 neG;
2%

< YAy (g, Ai(m)).
=1 neG;

We bound the inner sum over n € G; by an argument similar to that of
Proposition 4.17 in Chapter 4.

Proposition 5.9. For eachi=1,...,2k,

Z (g, Ai(n)) < d(q)**~1(1Q 1),

neG;
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Proof. Without loss of generality, let ¢ = 1. Let aj, = (¢,n1 — ny) for each

h > 1, so that
(¢, Ai(n (%H(Jth)

SIIFRTIED 35 | (YD SN

-
neGy anlg anl(ng—np)

Since Aj(n) # 0 then nj # ny for all h > 1. So for a fixed value of nq, for
which there are 2IQ~! possible choices, the conditions 0 < nj < 2IQ~! and

apl(ng —ny) give < 2]Qf1a;1 choices for each ny, since necessarily nj, # n;.

Thus 101
> (g Aim) < > [ en-21Q7" H( fh )

neG, anlg h>1

Then

Therefore

Y@ Am) < (@Y1

neG, aplg
h>1

< d(@* T IQThH*

The final bound for L, follows immediately.

Proposition 5.10.

La < d(q)nk+2kb+2k—1 (IQ—1)2/€.

5.6.2 Estimating K,
The bound for K, follows easily from the definition of the set B.

Proposition 5.11.
Ko < d(q)™(1Q1)".

Proof. Consider an element n € B. Since for each i = 1,...,2k there exists
J # % such that n; = n;, then it is possible to choose only %k distinct 7;, and
then the remaining k values must be equal to one of those already chosen. There
are at most (IQ~!)* ways to chose k of the n;, and then there are at most k!
ways to choose the remaining k of the n;. Once the 2k-tuple n has been chosen,
there are < (b¥(@)2* choices for the 2k-tuple m. This gives

N (8) < ROV @O)PHIQH,
independent of ¢. Therefore,

K, = mzafo(t) < d(g)**IQ)* .
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5.6.3 The final bound for N(Z)

We summarise these results in the following proposition, the final bound for
N(I).

Proposition 5.12. Let g be a square-free positive integer. Let T = {1 <n < I}
where I < qkzikl. Choose Q = %I%. Then for any k > 1,

k:2

N(I) < d(q)™ (log ) TF7T,
where T, depends only on a,b, k.
Proof. Recall from Proposition 5.7 that
N(Z) < d(q)** I*7'Q7! + Q* K, + bW Q* 11 (log Q) L.
The bounds for L, and K, given in Propositions 5.10 and 5.11 then show that
N(T) < d(q)** I*71Q~ 1 +d(q)?** TF QF + b9 d(q)m+2kb+2k=1 (160 Q) [2E-1 Q1
independent of the value of a. This was proved under the conditions

clogg < Q <1 < g,
8IQ < gq.

Choosing I and @ as in the hypothesis of the proposition, these conditions are

satisfied. To simplify notation, set
T = max(wg, 2kb, b + i, + 2kb + 2k — 1).

We may conclude

M

2k
1

N(I) < d(q)™ (log ¢) I *+T.

5.6.4 Proof of Theorem 5.2

We may now prove Theorem 5.2. By Proposition 5.3,

r""

U(w, M, q) < M2 N(T)

2k
)

where 7 = (w, 2w]. Since N(Z) increases as a function of the interval, we may
in fact take Z = [1, 2w], so that applying the bound of Proposition 5.12,

U(w, M, q) < M7 d(q)#* (log q) FFwF,

where we must assume [ = 2w < q% and M < ¢q/2.

We may now give the final bound for N,(X,Y’). Assume that X < qkzikl SO
that the first condition given above is satisfied and Y < ¢/2 so that the second
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condition is satisfied. Let J be the least integer such that J > log X/log2.
Then

< D V#d(q)# (logq)® (27)

< XY #d(q) % (log q) 7.

This concludes the proof of Theorem 5.2.



Chapter 6

Two bounds for the 3-part
of class numbers of

quadratic fields

6.1 Statement of the Theorems

In this chapter we present our first two nontrivial bounds for the 3-part of class
numbers of quadratic fields. These bounds follow from the results for N¢(X,Y")
given in Chapter 5. Let D be a square-free integer, positive or negative. Con-
sider hs(D), the 3-part of the class number of the quadratic field Q(v/D).

Theorem 6.1. For any positive divisor dy of |D|,
hs(D) < dé/2+é+dal\D|5/4+6+d51/2|D|1/2+57

where the implied constant depends only upon €. If the divisor dy satisfies
|D|* < doy < |D|? with o > 3/4 and 8 < 1, then

hs(D) < |D|’,
where 0 < 1/2. In particular, if dg = |D|*/®, then
hs(D) < |D[5/12+e,
for any € > 0.
In the general case, we prove:
Theorem 6.2. For any square-free integer D,
hy(D) < |D| Tz e
for any € > 0, where the implied constant depends only upon €.

These theorems are the first improvements on the known trivial bound.
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6.2 Reduction of the problem

We begin by reducing the problem of bounding the 3-part to counting the num-
ber of integer points in a bounded region on a cubic surface, which we then
further reduce to counting the number of solutions of a congruence of the form
studied in Chapter 5. Theorems 6.1 and 6.2 then follow as corollaries to Theo-
rems 5.3 and 5.4, respectively.

We now restrict our attention to imaginary quadratic fields. Let d be a
square-free positive integer and consider the field Q(v/—d) with class group
CL(—d) and class number h(—d). An integral basis for Q(v/—d) is given by
{1,3(1 +V=d)} if —d =1 (mod 4) and {1,v/—d} if —d = 2,3 (mod 4). The
discriminant A of the field is equal to —d if —d = 1 (mod 4) and —4d if
—d = 2,3 (mod 4).

Suppose there is a nontrivial ideal class [a] € C'L(—d) such that [a]? is the
principal ideal class, so that 3|h(—d). By the Minkowski bound, there is an
integral ideal b in the ideal class [a] with

(o) < 2/1a]

Since b? is principal, we may write

2 d 2
n(p?) = LT
4
for some z,y € N, or
4(MN(0))® = y* + dz>. (6.1)
An integer point on the cubic surface
4o = y? + dz? (6.2)

specifies at most O(d¢) ideals b by Lemma 3.1. Thus we may obtain an upper
bound for h3(—d) by bounding the number of integer points on the surface (6.2)
with # < L, where L = (4/7)d"/?, and hence y < M, and z < N, where
M = (16/73/2)d%/*, and N = (16/73/2)d"/*.
Any such integer point (z,y, z) on the surface also provides a solution (z,y)
of the congruence
42°* = y* (mod d) (6.3)

with ¢ < L and y < M. Conversely, any solution (z,y) of this congruence
specifies at most 2 integer points (z,y, z) on the cubic surface. Therefore we may
bound h3(—d) by estimating the number of solutions (z,y) to this congruence
with z and y in the specified ranges. While studying the surface (6.2) in the
form of the congruence (6.3) loses the information that 22 is indeed a square,

for now we will make this reduction.?

n Chapter 7 we avoid this by counting the number of squares of the form 4z3 — dz2.
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As in Chapter 5, let
NY(L,M) =#{x < L,y < M : 2* = 4 (mod d)}.
Let d = d if d is odd and d = d/2 if d is even. Then
hs(—d) < d°N5(L', M),

where L' = 4L, M’ = 4M. Since d is odd and square-free, we may apply Theo-
rems 5.3 and 5.4. (Note that the trivial bound N%(L', M") = O(d min(L’, M"))
gives the trivial bound hsz(—d) < d'/?%¢.)

It is at this point that we observe that it is crucial to our methods that
we consider imaginary, not real, quadratic fields. For suppose that we were to
perform the same analysis for the real quadratic field Q(\/Zl), for d a positive
square-free integer. We would then desire to bound the number of integer points
on the cubic surface

4a® = y* — dz?
with x < L. However, in this case restricting the size of x does not restrict the
sizes of y and z, so we are not able to consider only a bounded region.

Nevertheless, having obtained a bound for 3-part of class numbers of imagi-
nary quadratic fields, an equivalent bound holds for the 3-part of class numbers
of real quadratic fields, since the Scholz reflection principle [58] states that
logs h3(—d) and logg hs(+3d) differ by at most one.

It might appear that one could apply the quite general bounds obtained in
Chapter 5 in a similar manner to give a bound for the g-part hy(—d) for any
g > 3. One would reduce the problem to counting the number of integer points
on the variety

4z9 = y? + d2?,
with the ranges z < d'/2, y < d9/* and z < d9/*~1/2. Thus one would require

an upper bound for the number of solutions to the congruence
29 = y? (mod d)

with 2 < d'/? and y < d9/*. However, neither Theorem 5.3 nor Theorem 5.4
may be applied for g > 5, since then the range of y is greater than the modulus
d.2 Thus the methods presented here are only applicable to bounding the 3-part

of class numbers of quadratic fields.

6.3 Proof of Theorem 6.1

We first prove Theorem 6.1. By Theorem 5.3,
N(;*(L/,M/) < d1/2+6 IOgL + d*lJreLM + d,1/2+€L'

2For g = 4, we would examine the congruence z* = y® (mod d) with a = 4, b = 2. In this
case we can apply neither Theorem 5.3, since (a,b) # 1, nor Theorem 5.4, since a/b € Z7T.
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With L < d'/? and M < d3/*, this gives
hs(—d) < dV/**e,

Thus when applied directly, Theorem 5.3 gives only the trivial bound. However,
if we assume that d has a divisor dy of appropriate size, we may apply Theo-
rem 5.3 to obtain a nontrivial result. The assumption of a divisor is the most
innovative aspect of Theorem 6.1.

For any divisor do|d, let dy = dy if dy is odd and dy = do/2 if dy is even, so
that do|d. Then trivially,

Ni(L',M') < N(;—O(L',M').
If dy > d3/* then L, M < dy so that by Theorem 5.3,
ha(—d) < d°NJ, (L', M') < dg/ > + dg '/ 4%+ dy V2 a2+,
If dy < d3/* then even the trivial bound
hy(—d) < d"/***

is sufficient to obtain the result of Theorem 6.1. By the Scholz reflection princi-
ple, we also obtain an equivalent bound for h3(4+3d). This completes the proof
of Theorem 6.1.

6.4 Proof of Theorem 6.2

Theorem 6.2 is a direct corollary of Theorem 5.4. Note that L and M satisfy the
requirements L < (d )% and M < d/2 for sufficiently large d. Thus Theorem
5.4 states that for any integer k > 1,

T 1

NY(L', M) < M2 L7 d(d) % (log ) 7,

where 7 and the implied constant depend only on k. Thus
NI, M) < d SRt e,
Choosing k = 6 or k = 7 so as to minimise the exponent gives the result
NY(L', M) < difz+e,
for any € > 0, where the implied constant depends only upon €. Thus
hs(—d) < dTE,

for any € > 0. Again by the Scholz reflection principle, an equivalent bound
holds for h3(4+3d). This completes the proof of Theorem 6.2.



Chapter 7

The square sieve: a third
bound for the 3-part of class

numbers

7.1 Introduction

In this chapter we prove a third nontrivial bound for the 3-part of class numbers
of quadratic fields by employing the square sieve and the g-analogue of van der
Corput’s method. Once again we prove a bound for the 3-part hz(—d) of an
imaginary quadratic field Q(v/—d), where d is a square-free positive integer, and
we obtain an equivalent result for real quadratic fields by the Scholz reflection
principle.

In Chapter 6 we reduced the problem of bounding hs(—d) for a square-free
positive integer d to counting the number of integer points within a bounded
region on the cubic surface

42 = y* 4 d22

The methods we developed in Chapter 6 treated this equation as a congruence
modulo d, losing the information that 22 is in fact a square. In this chapter we
count integer points on the cubic surface directly.

As in Chapter 6, let L, M, N describe the ranges of integer solutions (z,y, z)

we consider on the cubic surface, i.e.
L = (4/m)d/?

M = (16/773/2)d3/4
N = (16/7%%)d"/*.
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We could use the square sieve to count multiples of squares, dz2, of the form
4a® — o2, (7.1)
or to count squares, y2, of the form
4o’ — dz? (7.2)

We choose the latter approach, using the g-analogue of van der Corput’s method

to bound exponential sums resulting from the square sieve, as well as several key

estimates resulting from Weil’s proof of the Riemann hypothesis for curves over

finite fields, and Deligne’s results [13] for exponential sums in several variables.
The resulting theorem is as follows:

Theorem 7.1. Let D be a square-free integer. Consider hz(D), the 3-part of
the class number of the quadratic field Q(v/D). Then

hg(D) < |D|27/56+e
for any € > 0, where the implied constant depends only upon €.

Note that this gives a savings over the trivial bound of exactly twice that of

Theorem 6.2; however, this appears to be no more than coincidence.

7.2 The square sieve

The square sieve was introduced by Heath-Brown in [31] as a method for de-
termining the number of squares in a given sequence of integers using only
information about the distribution of those integers with respect to a set of
moduli. Specifically, consider the sequence (w(n)) where w is a non-negative
integer-valued function defined for each integer n, with > w(n) < co. Heath-

Brown proves the following result:

Lemma 7.1 (The Square Sieve). Let P be a set of P primes. Suppose that
w(n) =0 forn =0 and for |n| > ef. Then

Zw(nQ) < P! Zw(n) + P2 Z

n pF#qEP

e ()

where the sums are over all positive integers n and (%) is the Jacobi symbol.

We prove the following variant of the square sieve for a set A of positive

integers that are products of two primes.
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Lemma 7.2 (Square Sieve Variant). Let A = {uv : v € U,v € V} where
U and V are disjoint sets of primes. Let A = #A, U = #U, and V = #V.
Suppose that w(n) =0 for n =0 and for |n| > exp(min(U,V)). Then

Ywm?) < /rlzn:w(n)Jrfr2 > 2w <]:Lg>|

n f#g€eA n
(f,9)=1

2w ()

n

n

+ A2 |EU)]

+VA? Z

uFu' €U

+UAT? Y

v£V' €V

+A2[E(V)].

The error terms E(U) and E(V) are defined by

B = Y Y Yem (),

veVuFu' e 7

vln

20 3em ()

ueU v£V' €Y "

uln

g
=
I

Proof. Let

5= Yt (,ceZA @))2

Each n is summed with non-negative weight. In particular, if n = m? then

56)-56)- 5o e

feA feA
feA fEA (f,m)=1 (f,m)#1

where the last inequality holds as long as

> 1=o0(A). (7.3)
feA
(fym)#1

We may bound the sum in (7.3) by

1

Sl VHuel umy < Vo

P loglogm
(f,m)#1

or alternatively, by U(logm/loglogm). Thus (7.3) holds as long as w(n) = 0
for |n| > exp(min(U, V)).
Then
5> A%) w(n?). (7.4)

n
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But also

- Eo(;)

f.geA n
- ZXen(z)r 2 3 ()
+ ,; 3 wn) (Jf;) (7.5)
(f-,.g)iAl "

For f = wv and g = w/v', if f # g and (f,g) # 1 then either (f,g) = u or
(f,9) = v. Thus the last term in (7.5) may be broken into two sums

SUy+50) =3 3 S w(n) (%)+Z 3 S wm) (%)

veEV uFu' et 7 ueU v#v' ey

vin utn

The sum S(U) may be written as a main term M (U), summing over all positive

integers m, minus a correction term FE(U):

SU) = MU -EU) =V Y Dwm) (-5)-2 3 Pem (=)

utu' €U n veEV uFu' eld "

v|n

Analogously, we may write S(V) = M (V) — E(V). Then in (7.5),

Y < Azﬂ:w(nH > Zw(n)(?a)‘

f#geA n
(f,9)=1

e ()

n

22w ()

n

+V >

uFu' €U

+U Y

v£V' EV

+|EWU)|

+EWV)|.

The result then follows by comparison with (7.4). O

Definition 7.1. Let

w(”):#{LZGN:n:ZLTS—dZQ:ng’ZgN},

and
T(d)={z,y,2 e N:y?> =423 —dz*> : 2 < L,y < M,z < N}.
Then
hs(—d) < d°T(d). (7.6)
Furthermore,
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We proceed to bound 7T'(d) using the variant of the square sieve we derived in
Lemma 7.2.

We first define the set A over which we will sieve. Let Q be a parameter
that we will fix later; for now think of clogd < @ < d for some constant c. Let
a, B be two positive real numbers with o + g = 1.

Definition 7.2. Let U,V, A be sets of sizes U, V, A, respectively, defined by
U = {primes ufd: coQ® < u < 2¢Q}

1% {primes vt d: Q% < v < 2¢:Q°}
A = {w:ueld,veV}

We will choose the constants ¢, c; later so that the sets i and V are disjoint;
we may further assume that &/ and V contain only odd primes. The number of
primes in the range coQ% < u < 2¢oQ% is O(Q*(log @)~1), and of these primes,
O(logd/loglogd) divide d. Assuming that @ > clogd for some constant c,
then U > Q%(logQ)~! and similarly V > Q°(log@Q)~!. Thus the set A is of
cardinality A = UV > Q(log Q) 2.

Definition 7.3. For positive integers a,b with (a,b) =1, let
n
C(d,a,b) = — .
(d.a.h) =3 i) ()

Applying Lemma 7.2 with the sets A,U,V as defined above, we obtain

T(d) < A7 wm)+472 Y |0, f.9)]

f#geA
(f,9)=1

+VAT2 Y |C(dyu )| + AT EU)|
utu €U
+UA™? Y |Cd,v,0))|+ A2 E(V)]. (7.7)
v#V €V
We will refer to the sum over f # g € A with (f,g) = 1 as the main sieve, and
to the sums over u # v € U and v # v/ € V as the prime sieves over the sets
U and V, respectively. The main sieve will dominate the contributions of both
the prime sieves and the error terms.
The first term in (7.7), to which we will refer as the leading term, is bounded
trivially by
AT "w(n) < ATILN < d¥*Q 7 (log Q)°. (7.8)

Thus it is clear that in order to attain a nontrivial bound T'(d) < d?, with
6 < 1/2, we must have at least Q = d'/**% for some § > 0. We will choose the

parameters @ and «,  so as to balance the contributions of the leading term
and the main sieve.
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It is at this point that we may see that an application of the original square
sieve as stated in Lemma 7.1 results in only the trivial bound for hg(—d). In
this case, the square sieve method would only give a savings over the trivial
bound if both the ranges under consideration were greater than the square-root
of the modulus (as the method relies on extending both ranges to a full set of
residues). In the case of Lemma 7.1, the modulus is of size \/pg ~ Q. The
leading term in Lemma 7.1 is the same as in (7.7), therefore we would again
have to choose @ to be at least of size d'/4*% for some § > 0. In our case, only
the range L < d*/? would satisfy L > \/pg; the range N < d'/* is too small.!

Sieving over products of primes, as in the square sieve variant of Lemma 7.2,
is the critical innovation of our methods. We choose the sets & and V so that
each element in A is the product of a “large” prime and a “small” prime. The
g-analogue of van der Corput’s method then allows us to reduce the effective
modulus of certain exponential sums from the full modulus of an element in
A to the comparatively smaller modulus of the larger prime. We choose the
parameters @ and «, 3 so that even the smallest range N < d'/* is larger than

the square-root of this new effective modulus.

7.2.1 The general term C(d,a,b)

Our main goal is to estimate the term C(d, a,b). First note that

423 — dz?
Claan = 3 (254

z<L
2<N

where (%) is the Jacobi symbol. One approach to bounding this sum would be

to extend the ranges of both x and z to complete sets of residues modulo ab.
However, it is only advantageous to extend to a complete set of residues modulo
ab if the initial range of the variable is at least v/ab. If a, b are elements f, g € A,
the range L < d'/? satisfies L > /fg, while N < d/* does not. Therefore, at

this stage we only extend the range of x.

Write
ab
Cldab) = Y 3 (W) > 1
z<N a=1 mzal(égd ab)
ab 3 _ d 2 ab
- Ly (M) s T it
z<N a=1 @ “ =L k=1

1We may also see that it is advantageous to count squares of the form (7.2) rather than
counting multiplies of squares, dz2, of the form (7.1) with 2 < L and y < M. In this case the
leading term in (7.7) would be of size A"1LM =~ d5/*Q~1(log Q)2, which would force Q to
be at least of size d3/4+9 for some § > 0. Then not even the largest range M < d3/% would
satisfy M > /pq.
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For an odd positive integer r 1 d, let

S(d,r;k, z) = Z

a=1

r

T (M) e (ko)

and let
S(d,r;k, N) =Y _ S(d,r;k, 2).

z<N

As before, let
A(ab;La _k) = Z eab(_kx)a

<L
so that
[A(abs L, =k)| < min(L, [k/ab]| =),
Then ,
1 a
< — ik, N)||A(ab; L, —K)|. .
|O<d,a,b>\_ab;|8(d,ab,k, )| A(ab; L, —F)| (7.9)

Thus the main problem is to bound sums of the form S(d,r; k, N). We achieve
a nontrivial bound for the sum S(d, ; k, N) by employing the g-analogue of van
der Corput’s method, which allows us to extend the sum over z to a complete
set of residues modulo rg, for a divisor rg|r. This gives the critical savings in
the bound for C(d, a,b).

In order to bound the term C(d, f, g) occurring in the main sieve, we consider
S(d,r;k, N) in the case where r = fg = uu'vv’ is a product of four primes. To
bound C(d,u,u’) and C(d,v,v’') in the prime sieves, we consider the slightly
easier case when r = uu’, or equivalently r = vv’, is a product of two primes.

In Section 7.3 we introduce the g-analogue of van der Corput’s method. In
Section 7.4 we estimate the contribution of the main sieve, and then in Section
7.5 we are able to estimate the contributions of the prime sieves quite quickly,
using the main results of Section 7.4. The estimates for the main sieve and the
prime sieves use both Weil’s bound for certain exponential sums and Deligne’s
results [13] for exponential sums in several variables. In Section 7.6 we then
choose () and the parameters o and (3 so as to balance the contributions of the
leading term and the main sieve. We are then able to bound the error terms in
Section 7.7 using simpler arguments, involving the Weil bounds for exponential
sums, but not requiring the g-analogue of van der Corput’s method. Finally, in
Section 7.8 we present the final bound for T'(d).

Before proceeding to the main body of the proof, we note that the methods
we present here do not give a nontrivial bound for the g-part hy(—d) for g > 3.

The corresponding problem is to bound

Ty(d) = {z,y,2 € N:y? :4x9—d22:xSLg,ySMg,ngg},
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where L, = (4/7)d'/? as before, but My, < d9/* and Ny < d9/4=1/2  Applying
the variant of the square sieve as above, we obtain a bound for T;(d) equivalent
to (7.7), and we may even carry through the technical analysis of the term
corresponding to C(d,a,b). But the range N, is too large. In order for the
leading term in (7.7), which in the general case is of size Q1 L,N,(log Q)?, to
be less than the trivial bound d'/?1¢, we would need to choose @ to be at least
of size d9/4=1/2+% for some § > 0. As we will see in the following analysis,
the main sieve cannot accommodate such a large value for @) and still give a

nontrivial answer, if g > 3. Thus these methods give a nontrivial bound only
for hg(—d).

7.3 The g-analogue of van der Corput’s method

The simplest version of van der Corput’s method for bounding exponential sums

is based on the idea that in order to bound a sum of the form
S= Y e(f(n)
A<n<B

for some real valued function f(n), one may instead study the quantity

H
HS=Y" 3 e(f(n+h).

h=1 A—h<n<B—h

for an arbitrary positive integer H. Applying Cauchy’s inequality, one then

obtains

HS|P < (B—A+H) Y (H—I[n]) Y e(f(n+h)e(f(n)), (7.10)

|n|<H nely

where I, = {n: A <n,n+ h < B}. In many cases the differenced function

e(f(n+h) = f(n))

is simpler to handle than the original function e(f(n)); for example, if f(n) is a
polynomial, then f(n + h) — f(n) has lower degree than f(n) itself. (For a full
exposition of the method, see [21].)

The g-analogue of van der Corput’s method was introduced by Heath-Brown
in [29], [32] to handle exponential sums involving not e(f(n)) but the periodic
function e, (f(n)). This method uses an inequality similar to (7.10), of the form

HSP < (B—A+H) Y (H—|h)) Y eq(f(n+hqo))eq(f(n)),

|h|<H nely

where ¢ is a divisor of ¢ and I, = {n : A < n,n+ hgy < B}. This serves not

only to average over h but also to reduce the effective period of the function
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in the summand from ¢q to ¢q/qo, thus sharpening the bound. We will see that
this method is sufficient to attain a nontrivial bound for the main sieve and the

prime sieve terms.

7.4 The main sieve

We now apply the g-analogue of van der Corput’s method to the term S(d, r; k, N)
appearing in the main sieve. To fix notation, elements f # g € A with (f,g) =1
will be written as f = uv and g = v/v’, where u # v € U, v #v € V. We
further set » = fg, with the factorisation r = rgry, where ro = uu’ and r1 = vv’,
so that ro ~ Q%* and 1 ~ Q%°.

First note that by Lemma 3.11 the sum S(d, r;k, 2) is multiplicative in the

sense that
S(d,ror1; k, z) = S(d, ro; k71, 2)S(d, r1; kg, 2), (7.11)
for (rg,r1) = 1, where ro7g = 1 (mod r1) and 77 = 1 (mod 7).
Temporarily define
S(d,r;k,z) ifl<z<N
0 otherwise.
Similarly define Ag(z) to be equal to S(d,ro; k71, 2) if 1
otherwise, and A;(z) to be equal to S(d,ri; k7, z) if 1
otherwise.
Then for a positive integer H, which we will choose later,

z < N and zero
z

<z <
< < N and zero

H

HS(d,r;k,N) = ZZA(Z—}-hrl)
h=1 =z

H

= Z ZAo(z+hr1)A1(z+hr1)

1-Hr1<z<N-r1 h=1

= Z d Tl,]{JTo,

1-Hr1<z<N-—-7r

o(z + hry),

uMm

since S(d,r1; k7o, z+hry) = S(d,r1; kTo, 2) for all values of h. Thus by Cauchy’s
inequality,
H?|S(d, 73k, N)[ < 5185,

where

o= S ISk, 2)[,

1-Hri<z<N-—r;

Sy o=y,

z

2

H
ZA()(Z + h’l’l)

h=1
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(Unless otherwise noted, the sum over z is taken to be over all integers; the
characteristic function Ay effectively restricts the sum to the appropriate range.)

We will further separate the sum Y5 into two parts. Observe that

H H
22 = Z Z ZA()(Z+}L1T1)W

hi1=1ho=1 =z

H H _
= Z Z ZA0(2+(h1 — ha)r1)Ao(2)

h1:1 h2:1 z
= Y (H—=1h)Y Aoz + hr1)Ag(2).
|h|<H z
Thus in absolute value,
H-1
So| < 2H Y 1 Ag(z + hry) A (2))|-
h=0| =z
Let
Soa = HY |4(2)f,
H-1
223 = H Z ZAo(Z+hT1)A0(Z) .
h=1 z
Then
H?S(d,r;k, N)|? < 21 (Z24 + Y25). (7.12)

In Section 7.4.1 we bound ¥; and Y54, and in Section 7.4.2 we bound Ysp5.

7.4.1 Bounding the sums Y; and Y,

By definition,

Si= > [SWd,rikTg2)P
1-Hr1<z<N-r;
Consider
o "L (4B — d2? o
S(d,r; k7o, 2) = Zl (ﬁ) er, (kToa).

Since 71 = vv’ with primes v # v/, this further factorises as
S(d,vv'; k7o, 2) = S(d, v; kTov’, 2)S(d, v'; kTov, 2),

where vo = 1 (mod v') and v'v/ = 1 (mod v).
Similarly, for

E2A =H Z |S(d77’0;kﬁ,2)|2,
1<2<N
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where 79 = uu’ with primes u # v/, we have the factorisation
S(d,vu'; k7, 2) = S(d, u; kriu/, 2)S(d, u'; ki, ).

Thus it suffices to bound the sum

p 4o — dz2?
S(d,p;t, z) = Z <ade> ep(ta),
a=1

for any odd prime p { d and positive integers t, z.

Lemma 7.3. Let p be any odd prime ptd. Then
|S(d, ps;t,2)| < 3p"/2.

Proof. First assume that p > 3. In the case that p{ z and p 1 ¢, the Weil bound
for hybrid sums of a multiplicative and an additive character modulo p, given
as Lemma 3.8, shows that

1S(d,p;t,z)| < 3p*/2.

If pt z but p|t then

p 3 2
4a° — d
p+S(d,p;t,z) = E [1+<a » Z)}
a=1

= #{o, B (mod p) : 3% = 40> — dz* (mod p)}
= p+ Qp,

where a,, is the usual quantity associated with counting points on elliptic curves
over finite fields, with |a,| < 2p*/2. (Note that we do not count the point at
infinity.) It follows that

|S(d, p;t, 2)| < 2p'/2.

If p|z but p1t, then

so that

If p|z and plt, then

S(d,p;t,z) = ai:l <4§> = az]: (a) =0.

For p = 3 we simply use the trivial bound

|S(d,p;t, z)| = 3.
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Thus in all cases,
|S(d, p;t, 2)| < 3p'/2.

O
This immediately gives the following lemma:
Lemma 7.4.
21 < (N+H’]"1)T1,
EQA < HNT‘().
7.4.2 Bounding the sum Y
Define
T(d,ro;h, N) = Ag(z + hry) Ao (2),
so that
H-1
Sop =H Y |T(d,ro;h, N)|. (7.13)
h=1
By definition,
T(d,ro;h,N)= Y S(d,ro; k71, 2 + hr1)S(d, ro; k77, 2).
1<2<N—hr;

It is at this point that we extend the range of the sum over z to a complete set
of residues. While extending the range to the full modulus r ~ Q? would be
too great a loss, our hope is that we will be able to choose the parameters )
and « so that extending the range to the modulus rg, where ro ~ Q3, is not.

Therefore we write

T0
T(d,ro;h,N) = Y S(d,ro; k71,1 + hr1)S(d, ro; k71, 1)
=1
1 &
Yo =D en(m(l-2)
To
1<z<N—-hry m=1
Thus
1 &
|T(d, 05 h, N)| < - Z |W(d,r0; hym, kT1)| [A(r0; N, —=m)| (7.14)
0
m=1

where A(rg; N,—m) is as before and

W (d, ro; b, m, k7T) (719
) Z <4a3 —d(l+ hr1)2> (453 — dl2> ery (KT — k773 + ml).

Lo "o "o
(mod rqg)
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A simple computation similar to that of Lemma 3.11 shows that W (d, ro; h, m, k77)

is multiplicative in the sense that for ro = uu’ with (u,u’) =1,
W (d,ro; h,m, k1) = W (d,u; h, mu’, kryu' )W (d, u'; h, mu, kria),

where vt = 1 (mod ) and u'u’ = 1 (mod u). Thus it is sufficient to bound the

sum
4 3 _ 2 4 3 _ ]2
Lo p p
(mod p)

for any odd prime p with p{d and ptry.
The following key estimate, due to Katz [43], uses Deligne’s estimates for

exponential sums in several variables [13].

Lemma 7.5. Let p > 3 be a prime with ptd and pfri. If pth orpts, then
(W (d,p; h, s,1)| < 24p/2.

We make the following simpler estimates in the cases when p divides both h

and s.

Lemma 7.6. Let p > 3 be a prime with ptd and p {ri. If p|h and p|s, but
p1tt, then
(W (d,p; h, s,t)| < 9p.

Proof. In this case

3 _ 72 3 _ 72
Wahen - ¥ (S (M)
lL,a,B

(mod p)

so that
2

0[3— 2
wdphst< Y | Y <4p‘”)6p<m)

I (mod p) | (mod p)

We may bound the inner sum using the Weil bound for hybrid sums of a mul-

tiplicative and an additive character modulo p (Lemma 3.8), obtaining
(W (d, p; h, s,t)| < 9p°.
O

Lemma 7.7. Let p > 3 be a prime with ptd and p{ri. If plh, p|s, and p|t,
then:

(W(d,p;h,s,t)] = 0 ifp=2(mod3)
(W (d,p;h,s,t)] < 4p° if p=1(mod3).
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Proof. In this case

403 — dI?\ [43° — dI?
W(d,p;hﬁyt)—Z(ap )(61) >

lo,B
(mod p)

so that
2

403 — di?
Wdphsn< Y | Y ()
)

! (mod p) |a (mod p p

If p =2 (mod 3), then 4a® — dI? (for fixed [) ranges over a complete set of

residues as a does, so that the inner sum is

403 —di?\ AV
2 )(p>_ 2 )(p)_

a (mod p B (mod p

Thus
W (d, p; h,s,t)] = 0.

If p =1 (mod 3) we may argue, as in Lemma 7.3, that
403 — dI?
e 2 (50
a (mod p)

is the number of points on the elliptic curve 3 = 4o —dI? over F,,, not counting

the point at infinity, and hence is equal to p + a,, where |a,| < 2p'/2. Thus

3 2
Z <40{ —dl ) < 2])1/2’
» >~

«a (mod p)

so that in total
W (d, p; h, s,t)| < 4p°.

For the prime p = 3 we may simply use the trivial bound
(W (d,p; h,s,t)| < 3.
We summarise all these results in the following lemma:
Lemma 7.8. Let p be an odd prime with ptd and p{ri. Then
|W(d,p; h, s, t)| < 24p°/%(p, h, s)/2.

Since the prime u does not divide 77, %/, and similarly «’ does not divide

71, U, it follows immediately that

[W (d, u; h, mu, kriu’)| 24u3/? (u, h, m)'/?
(W (d, v h,ma, kra)| < 24u"3/%(u/, h,m)/?,

IN
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so that
(W (d, ro; by m, ki7)| < 75> (ro, hym) /2.

Thus in (7.14),

70

IT(d, ro; b, N)| < 7> S (o, hym) M2 min(N, [[m/ro]| 1),

m=1
By (7.13) we then have
H—-1 To
Yo < Hr /2 Z Z ro, hym)' /> min(N, [m/ro| )
h=1 m=1
H—-1
= NHr? 3" (hyro)'/? (7.16)
h=1
H-—1 7‘071
+ Hy? 7S i /roll 7 (o, by m) 2. (7.17)
h=1 m=1

Bounds for the sums (7.16) and (7.17) are given in Lemmas 5.4 and 5.3, respec-
tively, of Section 5.3.2. It follows that:

Lemma 7.9.

Yop K HQNTé/zd(ro) + H2r3/2d(r0) log 7.

7.4.3 Bounding the sum S(d,r;k, N)

Assembling the results of Lemmas 7.4 and 7.9 in (7.12), it follows that

H?|S(d,r;k,N)|> < HN(N + Hry)ror
+ (N+ Hry)rm [H2Nr1/2d(r0) + H2rg/2d(7"0) logro} .

Hence
IS(d,r;k, N)|> < H 'N(N+ Hry)ror (7.18)

+ (N + Hry)ry [Nré/2d(7“o) + T‘g/zd(To) log 7’0} .

7.4.4 Choosing H

Suppose that Hry > N. Then the right hand side of (7.18) is of the form
Nror? + HNré/ r2d(ro) + Hro/ r2d(ro) log ro.

This is increasing in H, so we choose H to be as small as possible, namely
H = [N/rq]. Next suppose that Hr; < N. Then the right hand side of (7.18)
is of the form

H 'N?rgr; + NQTé/zrld(ro) + Nrg/erd(ro) log rg.
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This is decreasing in H, so we choose H to be as large as possible, namely
H = [N/rq]. Thus in either case we choose H = [N/r1] and (7.18) becomes

IS(d,r; k, N)|*> < Nror? + N%épmd(m) + Nrg/zrld(ro) log 7.
Thus we finally obtain:
Proposition 7.1.

IS(d, r k, N)| < Nrg/* 11 2(d(ro)) 2+ NV 20t 2 p 4 NV 234022 (G (rg)) V2 (log o) /2.

7.4.5 Bounding C(d, f,g)

We may now achieve a bound for the term C(d, f,¢g) in the main sieve.

Proposition 7.2. For any f # g € A with (f,g) =1
C(d, £.9) < [Q 2L +10g Q) [NQry /" 4 N12Qr; V2 4 N2 Qry/*].
Proof. By (7.9),

fg
C(d, f.9) fiz (d. fg: b, N)|[A(Fgs L, —F)].
k=1

Recalling that r = fg = r¢r1, and noting that the bound given for [S(d, r; k, N)|

in Proposition 7.1 is independent of k,

1

fg—1
L+ Ik/fgll‘ll

k=1

1
< f—ml?x|S(d,r;k,N)| L+fg Y k'
9 1<k<fg/2

< max|S(d,rk, N)| [Q72L +10g Q]

Recalling that 17y ~ @2, the result then follows from Proposition 7.1. O

This completes our estimate for the main sieve.

7.5 The prime sieves

We now consider briefly the term S(d,r;k, N) in the case of the prime sieves,
when 7 is a product of two distinct primes. This merely requires using the
machinery already developed for the main sieve, and is in fact simpler as we
need only factorise the exponential sums under consideration once. The case

where r = wu’ is the product of two distinct primes in the set U is analogous to
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the case where r = vv’ is the product of two distinct primes in the set V, so we

will outline the argument only for the set U.
Recall from (7.11) that S(d,uu’; k, z) is multiplicative in the sense that

S(d,uu's k, z) = S(d,u; ku', 2)S(d, u'; ku, 2),
for primes u # w’ € U. Define

S(d,uu';k,z) f1<z<N
A(z) =
0 otherwise.
N and zero

Similarly define Ag(z) to be equal to S(d,u;ku’,z) if 1 < 2
< N and zero

otherwise, and A;(z) to be equal to S(d,v’;ku,z) if 1 z
otherwise.

Let H,, be a positive integer, which we will specify later. Applying the ¢-
analogue of van der Corput’s method exactly as in Section 7.4, we obtain a

bound equivalent to that of equation (7.12), namely

<
<

H2|S(d,uu; k,N)|? < 21 (S94 + Zop), (7.19)

where
5 = S 1S(dsku )
1—Hyu' <z<N-—u'
Soa = HSAo(2),

Hy—1

Sep = Hy Y, |DAo(z+ h')Ag(2)|.
h=1

z

By Lemma 7.3 it follows immediately that:

Lemma 7.10.
¥ < (N + Hu' ),
EQA < HMNU
Again let
T(d,u;h,N) = Z Ao(z + hu')Ap(2),

so that

Hy—1

Sep =H, Y |T(d,u;h,N)|. (7.20)
h=1

Define W (d, u; h,m, ku’) as in (7.15), so that

l & _
T(d,ush, N)| < = > |W(d,us h,m, k)| | A(u; N, —m)] . (7.21)
u
m=1
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It follows immediately from Lemma 7.8 that

IT(d,u; by N)| < 6t/ > (u, hym) Y2 min(N, [[m/ul| 71),

m=1
so that from (7.20) we have

Hu*l u
Sop < Hyw'? YN (u,hym) 2 min(N, [lm/u] 7).

h=1 m=1

Thus:
Lemma 7.11.
Yo < HZNu?d(u) + H2u®/?d(u) log u.
Assembling the bounds for X1, X904, ¥ap, it then follows from (7.19) that

H2|S(d,uu'; k,N)|* < H,N(N + Hu')u

+ (N + Hyu o' [HENu2d(w) + HEu*?d(u) log u]
Thus
1S(d, uu's k, N)|* < H; ' N(N+H,u yur +(N+Hyu')u' {Nul/Qd(u) + u3/2d(u) log u} :
Choosing H,, = [N/u'] analogously to H, we then finally obtain
1S(d, r; k, N)| < NuM4uY 2 (d(u)) 2+ NV 20 20/ + NV 2034912 (d(w)) /2 (log u) /2.

As in Section 7.4.5, we then obtain a bound for C(d, u, u), which we may write
in terms of @, using the fact that u,u’ ~ Q®. For reference we state the

corresponding result for C'(d, v, v’) as well:
Proposition 7.3. Foranyu# v €l andv #v' €V,
Clduu)| < [Q7*L+10gQ] [NQUE/Hte 4 NV2QE/2 4 N1/2Q@/Hate]

C(dv,v)] < [Q %L +10gQ) [NQ(3/4>5+6 + NVY2QB/28 N1/2Q<5/4w+e} .

This completes our bounds for the prime sieve terms.

7.6 Choosing the parameters @, o, 3

Recall from equation (7.7) that

T(d) < AT'LN+A™2 Y [0 f.g)l

f#geA
(f,9)=1

+VAT2 Y |C(dyu )| + AT EU)|
uFu' €U

+UA™2 ) |C(d,v,0) + A2 EYV)|.
v#EV' €V
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Note that in each case the bounds we have proved for |C(d, f, g)|, |C(d,u,u’)]
and |C(d,v,v")| are independent of the specific elements chosen from the sets
A,U or V. Therefore we need only estimate the number of terms in each sum.
There are < A? terms in the sum over f # g € A with (f,g) = 1, since for each
f = ww, of which there are UV choices, there are (U — 1)(V — 1) choices for
g = u'v' with v/ # u,v' # v. There are < U? terms in the sum over u # v’ € U,
and < V2 terms in the sum over v # v’ € V. Therefore, applying the bounds
of Propositions 7.2 and 7.3, we obtain

T(d) < Q 'LN(logQ)?
+ [Q72L +10g Q] [NQrg /" 4 NV2Q2r P 4 NV2Qr/ ]
Lyl [Q_ML—&—logQ] |:NQ(3/4)0¢+5 + N/2QEB/2)e +N1/2Q(5/4)a+6:|
+ U Q7L +10g Q] {NQ(3/4)6+6 £ NY2QG/8 N1/2Q(5/4)ﬁ+e}
+ATBU) + AT EW)].
We choose ) so as to balance the contributions of the leading term and

the main sieve. For simplicity, consider temporarily the following expression,

disregarding factors of size Q¢:

T'(d) = Q"'LN + [Q—2L+logQ] [NQT(;IM +2\71/26227,(;1/2 -s-Nl/QQré/‘*} _
With L < d'/? and N < d'/*, this gives
T/(d) < d'Q7 4 [d Q7 +log Q] [/ Qry ! 4 a/SQg P 4 MRy

We see from the leading term that in order to obtain a nontrivial bound, we
must have at least Q = d'/4*% with § > 0. Then d'/2Q 2 = d~2° < logQ, so
it is sufficient to consider the expression

T"(d) < d3/4Q—1 +d1/4Qr()—1/4+d1/8Q2r()—1/2 +d1/8QTé/4.
Taking ro = Q*/3 therefore gives
T"(d) < dL/2=8 4 gb/12+(2/3)8 4 g11/24+(4/3)5
It is optimal to choose
4 =1/56.

Then
T/(d) < deT/l(d) < d1/2—1/56+6 ~ d0448214...+e.

With the choices Q = d'/*+1/56 and ry = Q*/3, we then see that o = 2/3 and
B = 1/3. Note that we may now choose the constants cp,c; in the definition
of the sets U and V so that U and V are disjoint; it is sufficient to choose
Co = 2, Cc1 = 1.
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The prime sieve over the set U is bounded by
J3/56+¢ [NQ1/2+5 +NY2Q +N1/2Q5/6+e:| < g25/56+¢ oy J0-44642.. 4
and the prime sieve over the set V is bounded by
L/ T+e [NQ1/4+6 £ NV2QV2 4 N1/2Q5/12+e} < (J103/224+¢  j0.45082... ¢

Thus it is clear that the prime sieves are dominated by the leading term and the
main sieve. Assuming that the error terms are also dominated by the leading

term (as we show in the following section), we have the final bound

T(d) < dY/?>=1/56+e, (7.22)

7.7 The error terms

It remains to estimate the contributions of the error terms E(U) and E(V) in the
square sieve. The choices of () and «, 8 made in the previous section determine
the cardinalities U and V of the sets U and V; while we could have estimated
the error terms without this knowledge, it is convenient to know how sharp an
estimate is required. We will see that it is sufficient to bound E(V) with a trivial
estimate, but E(U) requires that we take advantage of cancellation in certain
exponential sums.
Recall that the error terms E(U) and FE (V) are defined by

By = 3 3 Yem (),

veEV uFtu' el "

vln

22 S ()

ueU v£EV'EV T

uln

g
=
I

7.7.1 The trivial bound

We may estimate E(U) trivially by

Ew < Y Swm

veEV uAu' eld "

vln

1
< Z Zw(n)ilogoigogn

uFu' € n
< U?min(U,V)LN,

where the last step may be seen using Abel summation and noting that w(n) is
zero for |n| > exp(min(U, V')). Thus since A =UV,

A3 E(U)| < V"2 min(U,V)LN. (7.23)
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With U and V as chosen in the previous section, (7.23) is on the order of
VLN <« d37/56+¢ 50 this trivial bound is not sufficient. However, the equiv-
alent bound for E(V) gives

A2|EW)| < U 2min(U,V)LN <« U2V LN,

which is on the order of d?7/°6+¢. Thus the trivial bound is sufficient for the
error term E(V) (although a sharper bound analogous to the one we derive for
E(U) in the following section also applies).

7.7.2 Estimating E(U)

We will estimate F(U) more precisely as follows. We may write

3 _ (22
EU) = Z Z Z Z <4“7W/Z> .
u#u/ EU vEV z<N 4135d22§fm0d v)

For a fixed odd prime v € V and a fixed value z < N, there are 6 = 0,1, or 3
solutions z modulo v to

42® = dz? (mod v).

Thus we may divide the set of x < L with 42® = dz? (mod v) into sets {x < L :

x = xg (mod v)} for 6 values zg. Let
K = Lv—l ~ d1/2_5/56+€-

Writing @ = z¢ + vt where t < K, we then have

Buy= 3 XY TS (4<x°+223 dzz) -

uFuw' €U vEV z<N xo t<K

Define ( )3 5.2
4(xg +vt)° — dz
D . =
(d,uU,U,$O7Z7K) Z ( w! >7
t<K
so that
E(U) < U*V N max |D(d,uv;v, z9, 2, K|, (7.24)

where the maximum is taken over all appropriate pairs u,u’ and v, zg, 2.

7.7.3 Bounding D(d,uu;v,xg, z, K)

We may write D(d,uu';v,zg,2,K) as a sum over a complete set of residues

modulo uu/,

! 4(x0 + va)d — dz?
D(d, uu; K) = :
(d, wu’; v, 20, 2, K) Z < uu/ ;

t=a (mod uu’)

1 wu' uu’ 4 3_ .2
= — Z Z ( (xo Jrva? 2 ) v (h) Alutds K, —h),

a=1
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where |A(uu'; K, —h)| < min(K, ||h/uv’||~!) as usual.
Define

e 4(zo +va)d — dz?
uu

T(d7 uul;v7x0az7h) = Z 7 ) euu’(ha)a

a=1

so that
1 uu
ID(d, w0, 20, K)| < — > |T(d, wu'; v, 20, 2, b)||A(w; K, —h)|.  (7.25)
uY
h=1
A simple computation similar to that of Lemma 3.11 shows that we have the
factorisation
T(d7 U’U/; U, X0, 2, h) = T(da Uu; v, o, 2, hﬁ)T(d7 ul; U, X0, 2, hﬂ)a

for (u,u') =1, with vz = 1 (mod v’) and u'v/ = 1 (mod u). Thus it is sufficient
to bound T'(d, p; v, zg, 2z, h) for an odd prime p with p{d, p1v.

Lemma 7.12. For an odd prime p withptd, ptv,
|T(dapa U, Zo, 2, h)| < 3p1/2'

Proof. First suppose that p > 3. If p{ z, p t h, then applying the Weil bound
for hybrid sums given as Lemma 3.8,

|T(dapa U, Zo, 2, h)| < 3p1/2'

If p 1 2z but p|h, then

4(xo + va)d — d22>
, :

p
T(d,p;v,70,2,h) = » (
a=1

Arguing as in Lemma 7.3, we note that p + T'(d, p; v, xg, 2, h) is the number of
points on the elliptic curve 32 = 4(z¢ 4+ va)® — dz? over the finite field F,, (not
counting the point at infinity), so that

|T(d, p;v, 0, 2, h)| < 2p'/2.

If p|z then

T(d, p; v, 20, 2, h) = az: (W) ep(ht) = az: <x0 +p ”“) ep(hev).

Since p { v we may make the change of variables o — « — Tzg so that

T(d, p; v, 0, 2, h) = <v) ep(—hTg) azz (;) ey(hay).

p
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Then if p 1 h, the classical bound for character sums (or Lemma 3.5) shows that

|T(d,p;’U,$07 2 h)| < p1/2'

;)

|T(d,p;1},x0, Z, h)‘ < 3.

If furthermore p|h, then

P
v
T(d,p;v,xg,2,h) = —
(d,p;v, 20,2, h) (p)§

a=1

For p = 3 we simply use the trivial bound

This completes the proof. O

It follows immediately from Lemma 7.12 that
|T(d, ut';v, 20, 2, h)| < 9ut/?u/Y/2.

Applying this to (7.25),

|D(d,uu';v, 20, 2, K)| < w2y 72 Zmin(K, IR /un ||~ )
h=1

< w V2 V2R /2012 Z Bl
1<h<uu’/2

< uwVPWTYRPRE 4 2 2 log UL
Therefore by (7.24),
|EU)| < UVN(U 'K 4+ UlogU) < ULN + U3V N logU,
since K = LV ~!. Thus
A2 |EU)| < VHAT'LN) + UV ! NlogU.

Both of these terms are smaller than the leading term (7.8), the first by a factor
of V=1 & d=5/56+¢ and the second by a factor of L=1U%log U ~ d~/7*+¢. Thus
this estimate for the error term E(U) is sufficiently sharp.

The analogous bound for E(V) gives

A2 |EW)| < U YA 'LN) + VU 'NlogV,

where the first of these terms is smaller than the leading term by a factor of
d=5/28+¢ and the second by a factor of d—9/28+¢,
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7.8 The final bound

We have thus shown that for ) and «, 3 as chosen in Section 7.6, the prime
sieves and the error terms are dominated by the leading term and the main
sieve. Thus the final bound for T'(d) is given by (7.22):

T(d) < d?7/56%e,

Therefore by (7.6),
hg(—d) < d27/56+6

for any ¢ > 0, where the implied constant depends only on €. By the Scholz
reflection principle, an equivalent bound also holds for hz(+3d). Thus we obtain

the final result that for any square-free integer D,
hg(D) < |D|27/56+E,

for any € > 0. This completes the proof of Theorem 7.1.



Chapter 8

Elliptic curves with fixed

conductor

8.1 Introduction

The 3-part of class numbers of quadratic fields is intimately related to the num-
ber of elliptic curves over Q with fixed conductor. This was first noted by
Brumer and Silverman in [5], in which they show that the number of elliptic
curves over Q with conductor N, which we will denote by C(Q, N), is O(N1/2+¢).
Their proof proceeds by bounding the number of integer points on certain ellip-
tic curves in terms of the 3-part of the class number of an associated quadratic
field. At the time of Brumer and Silverman’s original paper, only the trivial
bound hz(D) < h(D) < |D|'/?*¢ was known, hence the resulting exponent of
1/2 + € in the bound for C(Q, N). Any improvement to the bound for hs(D)
gives a corresponding improvement to the bound for C(Q, N). In particular,
the conjectured bound hz(D) < |D|¢ would show that C(Q, N) is O(N€), for
any € > 0.

In Section 8.2 we review the argument of Brumer and Silverman and prove
two improved bounds for C(Q, N) resulting from our bounds for hz(D):

Theorem 8.1. Let C(Q, N) denote the number of elliptic curves over Q with
conductor N. Then
C(Q.N) < N7T/30%e,

or any € > 0. If the conductor N has a divisor Ng =~ N°/6, then
for any ;
C(Q,N) < N1,

for any € > 0, where each implied constant depends only on e.
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In Section 8.3, we briefly examine a conditional bound for C(Q, N) as well as
a resulting conditional bound for hs(D) of Wong [69] and a conditional bound
for h3(D) of Soundararajan [61].

Work of Helfgott and Venkatesh [36] simultaneous with that of this thesis
gives an improved method for counting integral points on elliptic curves, based
on a result for sphere packings. Their methods refine Brumer and Silverman’s
bound for C(Q, N), showing that C(Q, N) is O(N%22377-). In Section 8.4, we
summarise the methods of Helfgott and Venkatesh. We further show that if N
has a divisor Ny of approximate size Ny ~ N®/, then Theorem 6.1, combined
with the methods of Helfgott and Venkatesh, yields the best known bound for

C(Q,N):
Theorem 8.2. If the conductor N has a divisor Ny ~ N°/, then
C(Q,N) < N M,

where A = 0.21105... and the implied constant depends only on € > 0.

8.2 Improving the bound of Brumer and Silver-

man

More generally, in [5] Brumer and Silverman bound the number of elliptic curves
over Q with good reduction outside a given set of primes S. This immediately
gives the result for elliptic curves with conductor N, as a curve with conductor
N has good reduction outside the primes dividing N. Their method is as follows:
let S be a finite set of rational primes (containing 2 and 3) and let M be the
product of the primes in S. For E/Q an elliptic curve with good reduction

outside of S and with minimal Weierstrass equation

E: y2+a1xy+a3y :x3+a2x2 + aqx + ag,

let
by = af+da
by = 2a4+ ara3
be = a3+ 4ag
bs = ajag+ 4dazas — arasay + azai — aj
and compute
cy = b3—24b,
c6 = b3+ 36baby — 216bg

A = —bibg — 8bj — 27b3 + Ybabybg.
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Then ¢ — ¢2 = 1728A € Z} (where Z} denotes the set of integers composed
of primes in S). Moreover ¢y and cg determine F up to isomorphism over Q.
Writing —1728A = ADS with A being 6-th power free, consider the elliptic
curve
Ex:y? =a3+ A

In particular (cs/D?,cg/D?) is an S-integral point on £4.

Brumer and Silverman proceed to bound the number of elliptic curves over
Q with good reduction outside of S by showing that each elliptic curve E/Q
corresponds to an integer A and an S-integral point on £4 such that: first,
the number of possible values for A is < 608 M/loglog M. socond, the number
of S-integral points on each curve £4 is < M/2%¢; and third, the number of
(c4, cg) pairs associated to each S-integral point P of £4 (and hence the number
of curves E/Q associated to each S-integral point) is < 218 M/loglog M

The first bound is simple: A is positive or negative, 6-th power free, and
composed only of primes in S, so that there are 2 - 6% possibilities for A; it is
an elementary result that
log M

= M —_—.
#9 = v( )<<10glogM

The third bound, for the number of (¢4, ¢g) pairs associated to each S-integral
point P of £4 may be seen as follows. Write P in lowest terms as (a/d2,b/8%),
so that if P = (c4/D? ¢6/D?), then §|D. Writing D = §Dy, then ¢4 = D3a
and cg = Dgb, so that the point P, along with Dy, determines c4,cg. Thus we
need only count the number of possible values Dy. Since (ci, c2) is divisible by
Dy, and it is known that (c},c2) divides 212 - 3% . M (see [5]), it follows that
Dy|2'2 - 3% - M. Since M is square-free by definition, it follows that Dg|12M,
so that there are no more than 2#5+3 « 2log M/loglog M ,nsqible values Dy.

It is in bounding the number of S-integral points on the curve £4 that the
3-part of the class number appears. Let r3(Q(v/—A)) denote the 3-rank of the

class group of Q(+/—A), so that
hy(—A) = 3r3(Q(V—-A))

(Note that here A can be positive or negative.) Brumer and Silverman use
a result of Evertse and Silverman [16] on uniform bounds for the number of

solutions to an equation of the form X™ = F(Y') with n = 3 to show that
#EA(Zg) < 2- 17142#5 | g4#S+rs(QV=-A)) (8.1)

so that
HEA(Zg) < 2172 347 hy (Q(V-A)). (8.2)

Using the trivial bound hg(—A) < h(—A), Brumer and Silverman then find that

#Ea(Ls) < h(—A)| A" < |Disc(Q(V=4)|"/*| 4]
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Since A is 6-th power free and is divisible only by primes in S, then |Disc(Q(v/—A4))|
is at most 4M, and |A| < M®. Hence

#E4(Zs) < MY2e,

A nontrivial bound of the form h3(—A) < |Disc(Q(v/—A4))|? with 6 < 1/2
thus immediately improves this bound for #&£4(Zs), and as a consequence, the
bound for the number of elliptic curves with good reduction outside of .S, to
O(M?*¢). Thus in particular the result of Theorem 7.1, namely

hs(—A) < |Disc(Q(v/—A))[>7/56+,

gives the bound
C(@,N) < N27/56+6.

Theorem 6.1 sharpens this bound in the case that the conductor N has a
divisor Ny ~ N®/¢. To see this, we must examine more closely the values of A
that define the curves £4 in the argument of Brumer and Silverman. Let S be
the set of primes dividing N (and including 2 and 3). Then A, which is divisible

only by primes in S and is 6-th power free, may take any value in the set

A={+]]p":0<a, <5}

peS
Lemma 8.1. If N has a divisor No ~ N°/6 then
hg(—A) < N5/124e

for any A € A.

Proof. For each value A € A, let A be the square-free kernel,

A::I:Hpa”

peS

where a, = a, (mod 2), with a, = 0,1. Set Ay = |A|. First suppose that
a prime p divides N with p ~ N®/6. Then for each value A, if p|Ay then by
Theorem 6.1,

hd(—A) _ hg(—[l) < p1/2+e +p_1Ag/4+€ +p—1/2A(1)/2+e
<« NO/12+e

If pt Ay then Ay < N'/6 so that even applying the trivial bound we obtain

ha(—A) = ha(—A) < A>T < NV/12+e,
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Next suppose that N has a divisor Ny ~ N°/6, not necessarily prime. Let
do = (No, Ap). Then by Theorem 6.1,

ha(—A) = hy(—A) < dy/*T 4 dy AV dg P APt
A5/4+6 A1/2+e
0

N5/ 12+ 0 '
< * (No, Ao) * (No, Ag)1/?

(8.3)

Note that Ag/(No, Ag) divides N/Ny. (It suffices to show that AgNg|N(Ny, Ag).
But N(Ny, Ag) = (NNp, NAp), and since Ag|N then AgNo|N Ny, and since
N0|N, then AON0|NAQ) Thus in (83),

5/4
L < A(l)/4 <N> < KM < N5/12,
(No, Ao) No No

and
A[1)/2 _ N1/2
(N07A0)1/2 - N01/2

< N2,

Thus in conclusion, if No|N with Ny ~ N5/6_ then
ha(—A) = hg(—A) < N°/12Fe¢,
O
Thus we may apply the result of Theorem 6.1 for hz(v/—A) in (8.2) to give
#EA(Ls) < NO/1FHe

and hence
C(@,N) < N5/12+e

when N has a divisor of size Ny ~ N°/6. This completes the discussion of
Theorem 8.1.

8.3 Conditional bounds

Brumer and Silverman also note the following conditional bound for C(Q, N),

which, as we will see, may be used to derive a conditional bound for h3(D).

8.3.1 A conditional bound for C(Q, N)

Let L(£4,s) denote the L-series of the curve £4. Suppose that for all nonzero
integers A, L(E4, s) satisfies the generalised Riemann hypothesis, and that the
order of vanishing of L(£4,s) at s = 1 is greater than or equal to that of the
rank of £4(Q). Then Brumer and Silverman show (Theorem 4 of [5]) that

C(Q,N) < N° (8.4)
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for any € > 0, where the implied constant depends only upon e.

This follows by the same method as the proof of the unconditional bound
given in the previous section, but with a different bound for the number of S-
integral points on each curve £4. A result of Silverman (Theorem A of [60])

states that for each curve &4,
#gA(ZS) S c}+#s+l‘ank£A(Q), (85)

for some constant ¢;. (All constants ¢; used below are absolute.) A bound of
Mestre [46] states that

1
rank £4(Q) < ¢ og(cond £4)

= Ploglog(cond £4)’ (86)

under the assumptions that L(E4, s) satisfies the generalised Riemann hypoth-
esis and that the order of vanishing of L(£4, s) at s = 1 is greater than or equal
to rank £4(Q). The conductor cond €4 is at most 1728 M2, where M is the

product of primes in the set S, as before. Therefore (8.6) gives

log M
k€& <ecg—2—o.
rank £4(Q) < e loglog M

Since #S < log M/ loglog M also, (8.5) becomes
#EA (ZS) < Ciog M/ log log M'

Using this in place of (8.1), and proceeding as in the proof of the unconditional
bound, we obtain (8.4).

8.3.2 Conditional bounds for h3(D)

Wong [69] uses the conditional estimate (8.4) for C'(Q, N) to derive a conditional
bound for the 3-part h3(D) as follows. A result of Hasse [26] states that the
3-part of the class number of a quadratic field with discriminant D is 1/6th the
number of non-Galois cubic fields of discriminant D whose Galois closure con-
tains Q(v/D). Wong notes that a cubic field of discriminant D can be generated
by a polynomial f of discriminant |Disc(f)| < 2|D[*/2. Define Fp to be the set
of monic, cubic, irreducible polynomials f € Z[z] such that |Disc(f)| = |D|N?
for an integer N with 1 < N < v/2|D|'/*, and let two polynomials in Fp be
equivalent if they define isomorphic extensions of Q. Then it follows that the 3-
part of the class number of Q(v/D) is bounded by the number M, of equivalence
classes of polynomials in Flp.

For each f € Fp, regard y? = f(x) as the Weierstrass equation of an elliptic
curve with discriminant 1728Disc(f), and with conductor dividing 1728Disc(f).

The equivalence classes in Fp correspond to different elliptic curves, as the
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2-division fields of the curves are distinct. Thus by (8.4),

Mp < > c@N)
1<N<V2|D[1/4
< > (1728|D|N?)*
1<SN<V2|D|/4
< |D|E Z N?E
1<N<V2|D|1/4
< [D]Ye,

where the implied constant depends only on € = 3¢/2 > 0. Therefore, under

the assumptions given above,
hs(D) < |D|Y/4te

for any € > 0, where the implied constant depends only on e.

In fact, one may obtain a nontrivial bound for hz(D) by assuming the Rie-
mann hypothesis for only a single L-function, as noted by Soundararajan in
[61]. The proof, as communicated in [36], is as follows. Let x4 be the quadratic
Dirichlet character associated to K = Q(y/—d) for a positive integer d. Let
CL3(—d) = {[a] € CL(—d) : [a]®> = 1}, so that h3(—d) = #CL3(—d). Assuming
d =1 (mod 4) for simplicity, let o be the Galois automorphism of K. Assuming
the Riemann hypothesis for the L-function L(xg, s), there are > d'/%~¢ primes
p with p < d/¢ and x4(p) = 1, and hence > d'/%~¢ prime ideals p of Ok with
MN(p) < d'/% and N(p) prime. If py, po are two distinct such ideals that represent
the same ideal class in CL(—d)/CLs(—d), then pJps € C'L3(—d) so that

AN(p7p2)® = y* + d2°

for some y,z € N, by the same argument leading to (6.1). However, since
N(pp2)® < d, we must have z = 0, leading to a contradiction. Therefore
#CL(—d)/CL3(—d) > d*/57¢, so that

ha(—d) = #CL3(—d) < d'/3*<,

where the implied constant depends only on €. Again, by the Scholz reflection
principle, an equivalent bound holds for h3(43d), so that we obtain

h3(D) < |D|V/3+e

for any discriminant D, under the assumptions given above.

8.4 The work of Helfgott and Venkatesh

In [36], Helfgott and Venkatesh present a method for bounding the number of in-
tegral points on elliptic curves that yields the bounds hz(D) = O(| D|0-44178--+¢)
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and C(Q, N) = O(N0-22377--+¢) (Theorems 4.2 and 4.5 of [36]). Their methods
are based on the idea that integer points on an elliptic curve that are v-adically
close to one another tend to repel each other. This enables them to define a type
of quasi-orthogonality, and thus state the problem of bounding the number of
integral points on an elliptic curve as a problem of sphere-packings. It is quite
interesting that this method also gives a nontrivial bound for hs(D). Before
we discuss Helfgott and Venkatesh’s result for C(Q, N), we therefore briefly
examine their result for h3(D).

As before, let £4 represent the curve
Exyt=a34+A

for any nonzero integer A. As we do in Section 6.2, Helfgott and Venkatesh
consider the case of an imaginary quadratic field Q(v/—d) where d is a square-
free positive integer and reduce the problem of bounding hs(—d) to counting

the number of integer points on the surface
23 =y? + d2?
with 2z,2y,22 € Z and 2 < dY/?,y <« d*/*, 2 < d*/*. They then deduce that

hs(—d) < d/4+e Zr<l<1al>§4 #{(2,y) € E_g.2(Q, {o0}) 1 & < d"/?,y < d¥/*}.

The general bound they obtain for the number of S-integer points on a curve
of the form &4 is as follows (Corollary 3.9 of [36]). Let K be a number field
and let S be a finite set of s places of K, including all infinite places and all
places at which £4 has bad reduction. Let R > max(1,rank 7zE4(Q)), where
rank zE4(Q) denotes the rank of £4(Q) as a Z-lattice. For each hg > 1, the
number of S-integer points of £4 with canonical height (as defined in [36])

<)+ €)> , (8.7)

for every sufficiently small € > 0. Here C' is an absolute constant and «(z) is a

satisfying h(P) < hg is at most

OK@]<CS AsHK:QD KA (1 4 1og hg)e R (ool

computable function for which we refer the reader to [36].
A result of Fouvry (Proposition 2 of [17]) states that

rank z€4(Q) < a+ bv(A) + 2logs hy(—A) (8.8)
for absolute constants a,b. Defining

log hs(—d
v = limsup 08 hs\—d) 3(=d)
d—o0 IOg d

9

it follows from (8.8) that for any z < d'/*,

2
rank zE_4.2(Q) < R =logd (10;3 + 0(1)) .
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Defining the set S = {p : p|6d22} U {oo} and setting hy = (logd)/4 + O(1) in
(8.7), Helfgott and Venkatesh then obtain

H#{P € E_go : h(P) < ho} < d(ws3)(a(57) ),

for any € > 0, where the implied constant depends only upon €. Thus

1 2y log 3
<z .
74+1og30‘( 8y )

Solving for v computationally, with v < 1/2, then gives the exponent

hy(—d) < d*T°

with A = 0.44178.... The Scholz reflection principle gives an equivalent result
for h3(+3d).

Helfgott and Venkatesh’s bound for C(Q, N) is more immediate, as one need
only apply (8.7) to curves £4 with A being 6-th power free and divisible only by
primes in S, where S is the set of primes dividing N (and including 2 and 3).
Employing an upper bound for the height of S-integers on £4 and assembling
this with (8.7), with canonical height h(P) < hg = ¢N<*®) for some constants
¢, c, It is a result of Corollary 3.11 of [36] that

#Ea(Zs) < N*explrank z(€4(Q)) (3 + €)],

where [ is the numerical constant 0.278236.... Using (8.8) to bound the rank of
£4(Q), this becomes

#EA(Zs) < N€exp[2logs(hs(—A)) (B + €)].
Thus a nontrivial bound hz(—A) < |[N|? gives a bound
#EA(ZS) < N250/10g3+e)

and hence
C(Q,N) < N2ﬂ9/ log3+e (8.9)

By Theorem 7.1 we may take 6 = 27/56 + € in (8.9), so that we obtain
C(Q, N) < NO-2422+e,

Note that this is slightly weaker than the bound of Helfgott and Venkatesh,
namely C(Q, N) = O(N**€) with A\ = 0.22377....

However, if N has a divisor of size Ny = N°/¢, by Theorem 6.1 and Lemma
8.1, we may take = 5/12 + € in (8.9), obtaining

C(Q, N) < NO-21105.+c

This is the best known bound for C(Q, N). This concludes the discussion of
Theorem 8.2.



Appendix A

Table A.1 gives the class numbers h of the real quadratic fields Q(v/D) for
square-free integers 2 < D < 100. Table A.2 gives the class numbers h of
the imaginary quadratic fields Q(v/—D) for square-free integers 0 < D < 500.
(Reference: [54].)

Table A.1: Real quadratic fields
D[bh[[D]h]

2 1 51 2

3 1 53 1

5 1 55 2

6 1 57 1

7 1 58 2
10 2 59 1
11 1 61 1
13 1 62 1
14 1 65 2
15 2 66 2
17 1 67 1
19 1 69 1
21 1 70 2
22 1 71 1
23 1 73 1
26 2 74 2
29 1 7 1
30 2 78 2
31 1 79 3
33 1 82 4
34 2 83 1
35 2 85 2
37 1 86 1
38 1 87 2
39 2 89 1
41 1 91 2
42 2 93 1
43 1 94 1
46 1 95 2
47 1 97 1




Table A.2: Imaginary quadratic fields

(D[ DI o] D] vl D[ nh] D] n] D] ] D]
1 1 71 7 143 10 215 14 287 | 14 365 | 20 434 | 24
2 1 73 4 145 8 217 8 290 | 20 366 12 435 4
3 1 74 | 10 146 16 218 10 291 4 367 9 437 | 20
5 2 7 8 149 14 219 4 293 | 18 370 12 438 8
6 2 78 4 151 7 221 16 295 8 371 8 439 15
7 1 79 5 154 8 222 12 298 6 373 10 442 8
10 2 82 4 155 4 223 7 299 8 374 | 28 443 5
11 1 83 3 157 6 226 8 301 8 377 | 16 445 8
13 2 85 4 158 8 227 5 302 12 379 3 446 | 32
14 | 4 86 | 10 159 10 229 10 303 | 10 381 20 447 | 14
15 2 87 6 161 16 230 | 20 305 16 382 8 449 | 20
17 | 4 89 | 12 163 1 231 12 307 3 383 17 451 6
19 1 91 2 165 8 233 12 309 | 12 385 8 453 12
21 4 93 4 166 10 235 2 310 8 386 | 20 454 14
22 2 94 8 167 | 11 237 | 12 311 19 389 | 22 455 | 20
23 3 95 8 170 12 238 8 313 8 390 16 457 8
26 6 97 4 173 14 239 15 314 | 26 391 14 458 | 26
29 6 101 14 174 | 12 241 12 317 | 10 393 12 461 | 30
30 | 4 102 4 177 4 246 12 318 | 12 394 | 10 462 8
31 3 103 5 178 8 247 6 319 | 10 395 8 463 7
33 | 4 105 8 179 5 249 12 321 20 397 6 465 16
34 | 4 106 6 181 10 251 7 322 8 398 | 20 466 8
35 2 107 3 182 12 253 4 323 4 399 16 467 7
37 | 2 109 6 183 8 254 16 326 | 22 401 20 469 16
38 6 110 | 12 185 16 255 12 327 | 12 402 16 470 | 20
39 | 4 111 8 186 12 257 | 16 329 | 24 403 2 471 16
41 8 113 8 187 2 258 8 330 8 406 16 473 12
42 4 114 8 190 4 259 4 331 3 407 | 16 474 | 20
43 1 115 2 191 13 262 6 334 | 12 409 16 478 8
46 | 4 118 6 193 4 263 13 335 18 410 16 479 | 25
47 | 5 119 | 10 194 | 20 265 8 337 8 411 6 481 16
51 2 122 10 195 4 266 | 20 339 6 413 | 20 482 | 20
53 6 123 2 197 | 10 267 2 341 28 415 10 483 4
55 4 127 5 199 9 269 | 22 345 8 417 | 12 485 | 20
57 | 4 129 | 12 201 12 271 11 346 | 10 418 8 487 7
58 2 130 4 202 6 273 8 347 5 419 9 489 | 20
59 3 131 5 203 4 274 12 349 | 14 421 10 491 9
61 6 133 4 205 277 6 353 | 16 422 10 493 12
62 8 134 | 14 206 | 20 278 14 354 | 16 426 | 24 494 | 28
65 8 137 8 209 | 20 281 | 20 355 4 427 2 497 | 24
66 8 138 8 210 8 282 8 357 8 429 16 498 8
67 1 139 3 211 3 283 3 358 6 430 12 499 3
69 8 141 8 213 8 285 16 359 | 19 431 21
70 | 4 142 4 214 6 286 12 362 18 433 12
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