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Abstract

In 1801, Gauss published Disquisitiones Arithmeticae, which, among many other
things, develops genus theory, describing the divisibility by 2 of class numbers
of quadratic fields. In the centuries since this work, the divisibility properties of
class numbers by integers g ≥ 3 have largely remained mysterious. In particular,
the problem of bounding the g-part hg(D) of class numbers of quadratic fields
Q(
√
D) for g ≥ 3 has remained unsolved. This thesis provides three nontrivial

bounds for h3(D), giving the first improvement on the previously known trivial
bound h3(D) � |D|1/2+ε.

This thesis approaches the problem via analytic number theory, phrasing
the problem of bounding h3(D) in terms of counting the number of integer
points in a bounded region on the cubic surface 4x3 = y2 + dz2, for a positive
square-free integer d. We obtain our first two nontrivial bounds for h3(D) by
regarding this as the congruence 4x3 ≡ y2 modulo d. Using exponential sum
techniques, we prove two nontrivial bounds for the number of solutions to a
congruence of the more general form xa ≡ yb (mod q), for a positive square-free
integer q and nonzero integers a, b. As results of these bounds, we show that
h3(D) � |D|5/12+ε if D has a divisor of size |D|5/6, and h3(D) � |D|55/112+ε

in general.
We obtain a third nontrivial bound of h3(D) � |D|27/56+ε by counting the

number of integer points on the cubic surface directly. Specifically, we estimate
the number of squares of the form 4x3 − dz2, using the square sieve and the
q-analogue of Van der Corput’s method.

Each of our three bounds for h3(D) also gives a corresponding improvement
on the previously known bound for the number of elliptic curves over Q with
fixed conductor.
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Chapter 1

Introduction

1.1 The class number

Let K be an algebraic number field and let JK be the corresponding group of
fractional ideals, with PK the subgroup of fractional principal ideals. The class
group is defined to be the quotient

CLK = JK/PK .

The class group admits the exact sequence

1 −→ O∗K −→ K∗ −→ JK −→ CLK −→ 1,

where O∗K denotes the group of units in K. Thus the class group CLK can be
seen as measuring the expansion that takes place when passing from numbers
to ideals. The class number hK is the order of the class group,

hK = #CLK .

It can be seen by Minkowski theory that hK is always finite. In particular, if
hK = 1 then OK is a principal ideal domain. In general, however, hK > 1.

In this thesis we are concerned with class numbers of quadratic fields Q(
√
D).

Class numbers are remarkably unpredictable, both in terms of their size and
their divisibility properties. In certain cases, computation of large sets of class
numbers has led to heuristic predictions for the behaviour of class numbers,
but it remains very difficult to prove properties of class numbers, even for as
restricted a family as imaginary or real quadratic fields.

Moreover, the properties of class numbers associated with one type of field
appear to be quite distinct from the properties of class numbers associated with
another type of field. In the case of imaginary versus real quadratic fields,
these differences are marked. For example, it is known that the only square-free
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integers D < 0 for which the corresponding imaginary quadratic field Q(
√
D)

has class number 1 are the nine values

D = −1,−2,−3,−7,−11,−19,−43,−67,−163.

Yet in the case of real quadratic fields, class number 1 occurs much more fre-
quently; for example, for square-free integers 2 ≤ D < 100, Q(

√
D) has class

number 1 for

D = 2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29, 31, 33, 37, 38, 41,

43, 46, 47, 53, 57, 59, 61, 62, 67, 69, 71, 73, 77, 83, 86, 89, 93, 94, 97...

It is conjectured that infinitely many real quadratic fields have class number 1.
However, it remains unknown whether there are infinitely many fields of any
degree with class number 1. And this is just one example of the variability of
the properties of class numbers between different types of fields. (For the curi-
ous, tables of class numbers of quadratic fields Q(

√
D) for square-free integers

−500 < D < 0 and 2 ≤ D < 100 are included in Appendix A.)
Yet class numbers are as useful as they are unpredictable. As a few examples,

the class number of an algebraic number field is closely related to the Dedekind
zeta function, as shown by Dirichlet’s class number formula. The divisibility by
p of the class number of Q(ξ), where ξ is a p-th root of unity, is closely related to
Fermat’s last theorem. The structures of class groups, and hence properties of
class numbers, are related to properties of isogenies of elliptic curves. Finally,
as we will study in more detail in Chapter 8, the 3-rank of class numbers of
quadratic fields (or the 2-rank of class numbers of cubic fields), can be used to
bound the number of elliptic curves over Q with fixed conductor.

Thus class numbers have fascinated mathematicians for hundreds of years,
not only because of their mysterious behaviour, but also because of their ten-
dency to appear unexpectedly in other areas of mathematics.

1.2 The 3-part of the class number

For a square-free integer D, consider the quadratic field Q(
√
D) with class group

CL(D) and class number h(D). The 3-part h3(D) is defined by

h3(D) = #{[a] ∈ CL(D) : [a]3 = 1}.

This admits the trivial bound

h3(D) ≤ h(D) � |D|1/2+ε, (1.1)

as we will see in Section 3.2. The following bound is conjectured:
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Conjecture.
h3(D) � |D|ε

for any ε > 0.

In the case of real fields, it is conjectured that for most D > 0, h(D) is itself
very small. In the case of imaginary fields, when D < 0, this conjecture is more
significant, as it indicates that although h(D) itself tends to infinity at least as
fast as |D|1/2−ε for any ε > 0, the 3-part is conjectured to be very small.

Before the work of this thesis, the only known unconditional bound in each
case was the trivial bound (1.1). The goal of this thesis is to prove an un-
conditional nontrivial bound for both positive and negative square-free integers
D,

h3(D) � |D|θ,with θ < 1/2.

1.3 The results of the Thesis

The main results of this thesis are three nontrivial upper bounds for the 3-part of
class numbers of quadratic fields, the first improvements on the trivial bound.1

We reduce the problem of bounding h3(D) to counting the number of integer
points within a bounded region on the cubic surface

4x3 = y2 + dz2, (1.2)

where d = |D|, and we assume thatD is square-free, D < 0. This is no handicap,
as having proved a bound for the 3-part of class numbers of imaginary quadratic
fields, we immediately obtain an equivalent bound for the 3-part of class numbers
of real quadratic fields, since for any square-free positive integer d, the Scholz
reflection principle [58] states that log3(h3(−d)) and log3(h3(+3d)) differ by at
most one.

The first bounds we prove for h3(D) are derived by working modulo d and us-
ing exponential sum techniques to estimate the number of solutions in a bounded
region to the congruence

4x3 ≡ y2 (mod d). (1.3)

In fact, we derive bounds for the number of solutions to a congruence of the
more general form

xa ≡ yb (mod q), (1.4)

where q is a square-free positive integer and a and b are nonzero integers satis-
fying certain conditions. The bounds for h3(D) then follow as corollaries.

1Independently and simultaneously with the work of this thesis, Helfgott and Venkatesh

[36] have also proved a nontrivial bound for the 3-part; we discuss their result briefly in

Chapter 8.
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Specifically, let Nq(X,Y ) denote the number of solutions to the congruence
(1.4) with (x, q) = 1, (y, q) = 1 such that x ≤ X and y ≤ Y . We prove in
Theorem 5.1 that if a and b are nonzero integers with (a, b) = 1 and a 6= b, and
if X ≤ q and Y ≤ q/2, then

Nq(X,Y ) � q1/2d(q)τ (log q)2 + q−1XY d(q)τ + q−1/2Xd(q)τ ,

where τ and the implied constant depend upon a, b. We further prove in Theo-
rem 5.2 that if a and b are nonzero integers with (b, q) = 1 and a/b 6∈ Z+, then
for any integer k ≥ 1,

Nq(X,Y ) � X
k
k+1Y

1
2k d(q)

τk
2k (log q)

1
2k ,

as long as X ≤ q
k+1
2k and Y ≤ q/2. Here τk and the implied constant depend

upon a, b, k.
If both a, b > 0, we may define N ′

q(X,Y ) to be the number of solutions to
(1.4) with x ≤ X and y ≤ Y , without assuming the relative primality conditions
(x, q) = 1, (y, q) = 1. Then equivalent results hold forN ′

q(X,Y ) as forNq(X,Y ),
which we present in Theorems 5.3 and 5.4.

Applying these results to the congruence (1.3), we obtain Theorem 6.1, which
states that if D has a divisor of size |D|5/6, then

h3(D) � |D|5/12+ε,

and Theorem 6.2, which states that

h3(D) � |D|55/112+ε,

for all square-free integers D.
We prove a third nontrivial bound for h3(D) by counting the number of

integer points on the cubic surface (1.2) directly. Specifically, we use the square
sieve and the q-analogue of van der Corput’s method to estimate the number of
squares of the form

4x3 − dz2,

within a bounded region. The result is Theorem 7.1:

h3(D) � |D|27/56+ε.

1.4 Immediate consequences of a nontrivial bound

for the 3-part

A nontrivial bound for the 3-part h3(D) is important in its own right, but such
a bound also has immediate results for several closely related problems.
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1.4.1 Cubic extensions of discriminant D

By Hasse’s result [26], the class number of Q(
√
D) is divisible by 3 if and only

if there is a cubic extension of Q of discriminant D. Thus our results for h3(D)
show that there are at most O(|D|27/56+ε) cubic extensions of Q with discrim-
inant D. In the case that D has a divisor of size |D|5/6, there are at most
O(|D|5/12+ε) cubic extensions of Q with discriminant D.

1.4.2 Elliptic curves with fixed conductor

As we will study in more detail in Chapter 8, h3(D) plays a critical role in
bounding the number of elliptic curves over Q with conductor N . A result
of Brumer and Silverman [5] shows that there are at most O(N1/2+ε) such
curves. Furthermore, any nontrivial bound h3(D) � |D|θ immediately refines
this bound to O(Nθ+ε). Thus the conjectured bound h3(D) � |D|ε would imply
that there are O(N ε) such curves, for any ε > 0.

Our results for h3(D) show that the number of elliptic curves over Q with
conductor N is at most O(N27/56+ε) in general, and at most O(N5/12+ε) if N
has a divisor of size N5/6. The work of Helfgott and Venkatesh [36] refines these
bounds further and allows us to show that if the conductorN has a divisor of size
N5/6, then the number of elliptic curves over Q with conductor N is O(Nλ+ε),
where λ = 0.21105.... These results are stated as Theorems 8.1 and 8.2.

1.4.3 Bounds for N±
3 (X)

A nontrivial bound for the 3-part also gives an estimate for the number of square-
free integersD of bounded size such that 3|h(D). LetN−

g (X) denote the number
of square-free integers −X ≤ D < 0 such that the class group CL(D) contains
an element of order g, and let N+

g (X) denote the corresponding quantity for
0 < D ≤ X. It is conjectured (as we will see in more detail in Section 2.3.2)
that for each integer g ≥ 2,

N−
g (X) ∼ C−g X and N+

g (X) ∼ C+
g X,

for constants C−g in the imaginary case and C+
g in the real case. This is known

to be true for g = 2, but remains unproven for g ≥ 3. In fact, it remains to be
proven in both the imaginary and real cases even that

N±
3 (X) � X1−ε. (1.5)

A bound of h3(D) � |D|θ gives the corresponding bound

N±
3 (X) � X1−θ;

in particular, the conjectured bound h3(D) � |D|ε would give the desired bound
(1.5). This follows from a striking result of Davenport and Heilbronn [11] on the
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asymptotic density of discriminants of cubic fields, which gives as a corollary the
mean value of the 3-part of class numbers of quadratic fields.2 In the imaginary
case, this states that ∑

−X≤D<0

h3(D) ∼ 2
∑

−X≤D<0

1

as X →∞, where both sums consider only square-free values D. Thus∑
−X≤D<0

(h3(D)− 1) ∼ 6
π2
X. (1.6)

Define N−
3 (X) to be the set of square-free integers −X ≤ D < 0 such that

CL(D) contains an element of order 3, so that N−
3 (X) = #N−

3 (X). Then
(h3(D)−1) is nonzero only for D ∈ N−

3 (X), so we may restrict the sum in (1.6)
to D ∈ N−

3 (X). Then assuming that h3(D) � |D|θ,∑
D∈N−

3 (X)

(h3(D)− 1) ≤
∑

D∈N−
3 (X)

h3(D) �
∑

D∈N−
3 (X)

|D|θ � XθN−
3 (X).

Comparison with (1.6) then shows immediately that

N−
3 (X) � X1−θ.

In the real case, the result of Davenport and Heilbronn states that∑
0<D≤X

h3(D) ∼ 4
3

∑
0<D≤X

1

as X → ∞. Reasoning as above, it is clear that a bound h3(D) � |D|θ also
yields the corresponding bound

N+
3 (X) � X1−θ.

Thus any nontrivial bound for h3(D) gives a bound for N±
3 (X). In par-

ticular, our work shows that N±
3 (X) � X29/56−ε. However, as we will see

in Sections 2.3.3 and 2.3.4, a number of methods have succeeded in attacking
N±

3 (X) directly, producing quite good lower bounds. Substantial improvements
will have to be made to the bound for h3(D) in order for the resulting bound for
N±

3 (X) to overtake known bounds for N±
3 (X) resulting from direct methods.

1.4.4 A note on hg(D) for g ≥ 5

We note that although the methods presented in this thesis do not appear at
first sight to depend crucially upon the fact that we consider the 3-part of the

2We note that analogous results for the asymptotic density of discriminants of quartic fields

and the mean value of the 2-class group of cubic fields have recently been given in the thesis

of Bhargava [4].
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class number, rather than the 5-part, or the g-part for any g ≥ 5, these methods
do not extend to higher values g. For g ≥ 5, one must consider increased ranges
for integer points on a variety analogous to (1.2); these increased ranges are too
large to be handled by the methods presented in this thesis. We discuss this in
more detail in Chapter 6.

1.5 Outline of the Thesis

We begin in Chapter 2 with a brief history of research on class numbers of
quadratic fields. Not only is the history of class numbers fascinating, it also
serves to put the work of this thesis in context. In Chapter 3 we present some
preliminary material, specifying notational conventions and stating a number
of results for exponential sums and congruences that will be critical to the
remainder of the thesis.

In Chapter 4 we begin the work of this thesis, proving two upper bounds
for the least s-power-free positive integer in an arithmetic progression, for any
integer s ≥ 2. While these results do not in themselves pertain directly to
class numbers, we present this work as an introduction to the methods we then
develop in Chapter 5 to estimate the number of solutions in a bounded region
to a congruence of the general form (1.4). In Chapter 6 we then use the results
of Chapter 5 to prove our first two nontrivial bounds for h3(D).

In Chapter 7 we use the square sieve and the q-analogue of van der Corput’s
method to prove our third nontrivial bound for h3(D). Finally, in Chapter 8, we
use our bounds for h3(D) to refine the known bound for the number of elliptic
curves over Q with conductor N .



Chapter 2

A brief history

2.1 Class numbers of quadratic fields

Research on class numbers of quadratic fields has a long history, beginning
with Gauss’s study of class numbers of quadratic forms. To put the results of
this thesis in the context of what is known or conjectured about class numbers
of quadratic fields, we give in this chapter a description of some of the most
important developments of this history, stating several of the nicest results that
have been proven so far, as well as the most tantalising conjectures that remain
unproven.

In Section 2.2 we discuss the problem of bounding the class numbers them-
selves; in the case of imaginary quadratic fields, this was famously solved in
the 1980’s, while in the case of real quadratic fields, little is known, although
much is conjectured. In Section 2.3 we study the divisibility properties of class
numbers, reviewing the work of Gauss on genus theory and the divisibility of
class numbers by 2, and summarising the conjectures of Cohen and Lenstra for
divisibility by any odd prime p. We also outline recent results on the divisibility
of class numbers by any integer g ≥ 3. This fascinating work illustrates the
many beautiful properties we expect class numbers to possess, as well as how
little we still know. In Section 2.4 we mention current research on the 3-part
specifically.

2.2 Bounding the class number

Let D be a square-free integer and consider the quadratic field Q(
√
D) with

class number h(D). In both the real and imaginary cases, the class number
admits the trivial upper bound

h(D) ≤ |D|1/2+ε,
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as we prove in Section 3.2.
In the case of imaginary fields, the so-called class number conjecture of Gauss

states that only finitely many imaginary quadratic fields have any specified
class number h. The companion problem to this conjecture, the class number
problem, asks for an effective method of computing all the imaginary quadratic
fields with class number h; thus the problem is to find an effective lower bound
for h(D) when D < 0. The class number conjecture was proved to be true in
1934, and an effective method of computation was proved in 1983. We give a
brief summary of this work in Section 2.2.1.

The situation for real fields is conjectured to be much different: it is con-
jectured that for D > 0, h(D) is usually very small, and in particular that
h(D) = 1 infinitely often. However, the real case is still not well understood.
We mention several partial results in Section 2.2.2.

2.2.1 The class number problem: imaginary quadratic fields

In 1801, Gauss enunciated the class number conjecture in Disquisitiones Arith-
meticae. In 1918, Landau [45] published a theorem of Hecke showing that the
generalised Riemann hypothesis implies the class number conjecture. (In par-
ticular, Hecke’s theorem showed that the nonexistence of a Siegel zero would
imply that h(D) → ∞ as |D| → ∞.) Then in 1933, Deuring [14] showed that
if the classical Riemann hypothesis is false, h(D) ≥ 2 for |D| sufficiently large.
Mordell [48] improved this in 1934 to the statement that if the classical Riemann
hypothesis is false, then h(D) → ∞ as |D| → ∞. Then Heilbronn [34], also in
1934, finally showed that if the generalised Riemann hypothesis is false, then
h(D) →∞ as |D| → ∞. Thus the statement

h(D) →∞ as |D| → ∞

was finally shown to be true unconditionally, proving Gauss’s conjecture.
It still remained to find an effective means of computing the finitely many

imaginary quadratic fields with class number h. In 1936, Siegel [59] proved that
for every ε > 0 there exists a constant c > 0 such that

h(D) > c|D|1/2−ε. (2.1)

However, this constant is not effectively computable. (Interestingly, Tatuzawa
[64] was able to show that there is a computable constant c such that (2.1) holds
for all except possibly one value D.)

The class number problem was first solved, after a good deal of effort, in the
case of class number 1. In 1934, Heilbronn and Linfoot [35] showed that there
could be at most one more square-free integer D < 0 such that Q(

√
D) has class

number 1, aside from the nine known values

D = −1,−2,−3,−7,−11,−19,−43,−67,−163.
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In particular, the existence of a tenth such value would imply the falsity of
the generalised Riemann hypothesis. In 1952, Heegner [33] published the first
proof that no such tenth value existed. His paper contained some flaws and, at
the time, was disregarded. In 1966, Baker [2] showed that no such tenth value
existed, using the independence of three logarithms, and in 1967, Stark [62] used
a method similar to Heegner’s to prove that no tenth field existed. The problem
continued to arouse interest for several years, as Deuring and others continued
to study Heegner’s original proof (see the summary of Goldfeld [20] for more
details).

The next obvious problem was to find all imaginary quadratic fields with
class number 2, and indeed, in 1971 both Baker [3] and Stark [63] showed that
there are exactly eighteen imaginary quadratic fields with class number 2, using
the linear independence of logarithms.

Yet the general class number problem remained open. Then in 1975-76,
Goldfeld [19] reduced the problem to showing that the Birch–Swinnerton-Dyer
conjecture holds true in a specific case, namely that there is an elliptic curve
over Q with Mordell-Weil rank 3 such that its L-series has a zero of rank 3 at
s = 1. Finally, in 1983, Gross and Zagier [22] used the theory of Heegner points
to show that such a curve exists. The resulting theorem, due to the combined
work of Goldfeld, Gross and Zagier, is that for every ε > 0 there exists an
effectively computable constant c > 0 such that

h(D) > c(log |D|)1−ε.

Oesterlé [53] showed specifically that

h(D) ≥ 1
7000

(log |D|)
∏
p||D|
p6=|D|

(
1−

2
√
p

p+ 1

)
.

This completely solved the class number problem for imaginary quadratic fields.
In reality, it is still not easy to compute all discriminants with a specific class
number, as a large (but finite) amount of computation is necessary; nevertheless
all fields with class number 3 (of which there are 16) and class number 4 (of
which there are 54) have been computed.

2.2.2 The class number problem: real quadratic fields

The situation for real fields is significantly less well understood; Siegel’s theorem
[59] for real quadratic fields states that

h(D)RD > D1/2−ε

for any ε > 0 and sufficiently large D, where RD is the regulator of the field
Q(
√
D). The key lies in the presence of the regulator, whose behaviour is not
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predictable by current methods. It is conjectured that the regulator is usually
about size D1/2, which would indicate that h(D) is usually very small.

Computational evidence by Wada [65], Mollin and Williams [47], and Ja-
cobson [42] supports the conjecture that h(D) = 1 infinitely often. Cohen and
Lenstra [9] have also presented heuristic arguments for the observed frequency
of class number 1 for real quadratic fields.

2.3 Divisibility properties

Divisibility properties of class numbers of quadratic fields are usually phrased
in terms of the following quantities. Denote by hg(D) the g-part of the class
number,

hg(D) = #{[a] ∈ CL(D) : [a]g = 1}.

Denote by N−
g (X) the number of square-free integers −X ≤ D < 0 such that

CL(D) contains a nontrivial element of order g; define N+
g (X) equivalently for

real fields. These quantities are closely related; as we saw in Section 1.4, a
bound for h3(D) gives a bound for N±

3 (X). Until recently, most successes in
proving divisibility properties of h(D) by an integer g ≥ 3 have been achieved by
attackingN±

g (X) directly. Although the main results of this thesis are for hg(D)
itself, with g = 3, we digress for the moment to discuss important background
material concerning N±

g (X).
It is conjectured that for each integer g ≥ 2,

N−
g (X) ∼ C−g X and N+

g (X) ∼ C+
g X

for constants C−g in the imaginary case and C+
g in the real case.

2.3.1 Gauss’s genus theory

Genus theory, developed by Gauss, shows that this is true for g = 2, with
C±2 = 6/π2. Gauss was motivated by the problem of determining those primes
represented by a given quadratic form with fundamental discriminant. Let
h∗(D) indicate the number of proper equivalence classes of quadratic forms
with discriminant D. The goal of genus theory is to distinguish, in the case that
h∗(D) > 1, which class contains forms that represent a given prime p, by col-
lecting proper equivalence classes into larger sets, the genera. Most importantly
in the context of this thesis, Gauss showed that there are 2r−1 genera, where
r is the number of distinct prime divisors of the fundamental discriminant D.
The genera partition the set of proper equivalence classes, hence the number of
classes in each genus is h∗(D)/2r−1. Thus 2r−1 divides h∗(D).
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Thus genus theory shows that CL(D) contains Z/2Z as a subgroup if the
square-free integer D has more than three distinct prime factors.1 In particular,
this holds for almost all square-free |D| ≤ X, so that

N±
2 (X) ∼ 6

π2
X.

(For a summary from the historical perspective, see the memoir of Ribenboim
[56]. For more modern references, see [52] or Hasse’s text [27].)

2.3.2 Cohen and Lenstra heuristics

For g ≥ 3, hg(D) and N±
g (X) are not well understood. Cohen and Lenstra [9]

have presented heuristics suggesting that for odd primes p, in the imaginary
case

C−p =
6
π2

(
1−

∞∏
k=1

(
1− 1

pk

))
,

and in the real case

C+
p =

6
π2

(
1−

∞∏
k=2

(
1− 1

pk

))
.

(Although we will not discuss this in detail, they also obtain conjectures for the
probability that the p-rank of the class group is equal to an integer n ≥ 1, and
in the imaginary case they further obtain heuristic probabilities that the class
group is a product of various cyclic groups.)

These conjectures are based on experimental observations of three phenom-
ena, as summarised in [9]: firstly, that the odd part of the class group of imag-
inary quadratic fields appears rarely to be non-cyclic; secondly, that for odd
primes p, the proportion of imaginary quadratic fields with class number divisi-
ble by p appears to be significantly greater than 1/p; and thirdly, that a positive
proportion of real quadratic fields with prime discriminant appear to have class
number 1. Reasoning that the lack of cyclic groups may be due to the fact that
such groups have many automorphisms, Cohen and Lenstra weighted isomor-
phism classes G of abelian groups by 1/#Aut(G). This, along with several other
heuristic assumptions, allowed them to make accurate predictions about proper-
ties of class numbers. For example, they predict that approximately 43.987% of

1In the case of imaginary quadratic fields, h∗(D) = h(D), so if D < 0 is a fundamental

discriminant, then 2|h(D) if D has at least 2 distinct prime divisors. In the case of real

quadratic fields, h∗(D) = h(D) or 2h(D), depending if there is a unit of norm −1 in the field

or not. Furthermore, the fundamental discriminant D associated to the square-free radicand

d of a quadratic field Q(
√

d) can have at most one more prime divisor (namely the prime 2)

than d. Thus in all cases, if D is a square-free integer it is sufficient that D has more than

three distinct prime divisors for h(D) to be divisible by 2.
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imaginary quadratic fields should have class number divisible by 3, and approx-
imately 75.446% of real quadratic fields with prime discriminant should have
class number 1, both of which predictions are in agreement with experimental
evidence.2

2.3.3 Recent work: imaginary quadratic fields

So far the conjectures of Cohen and Lenstra remain out of reach; for g ≥ 3 it
remains to show even that N−

g X � X1−ε for any ε > 0. A number of partial
results have been obtained. Gut [23] generalised Gauss’s result to show that
infinitely many imaginary quadratic fields have class number divisible by 3. In
general, Ankeny and Chowla [1] showed (as did Nagell [51]) that for any g ≥ 2
there are infinitely many imaginary quadratic fields with class group containing
a nontrivial element of order g, so that N−

g (X) → ∞ as X → ∞. In fact, as
Soundararajan points out in [61], their method shows that N−

g (X) � X1/2.
Murty [50] then showed that N−

g (X) � X1/2+1/g, which was improved in
the cases g = 4, 8 by Morton [49] to N−

g (X) � X1−ε, using class field theory.
More recently, Soundararajan [61] has shown that

N−
g (X) �

X1/2+2/g−ε if g ≡ 0 (mod 4)

X1/2+3/(g+2)−ε if g ≡ 2 (mod 4),

for sufficiently large X. Since N−
g (X) ≥ N−

2g(X), this also provides a bound
when g is odd.

The complementary question of when the class number is not divisible by a
prime p has also been studied. Recently, Kohnen and Ono [44] have shown that
for any prime p > 3, the number of square-free integers −X ≤ D < 0 such that
p - h(D) is �

√
X/ logX for sufficiently large X.

In the specific case of p = 3, Hartung [25] has shown that there are infinitely
many D < 0 with 3 - h(D). A result of Davenport and Heilbronn [11] further
shows that at least half of the square-free integers −X ≤ D < 0 have 3 - h(D).

2.3.4 Recent work: real quadratic fields

Honda [38] first showed that there are infinitely many real quadratic fields with
class numbers divisible by 3. (In [37] he also gives a criterion for the class number
of a quadratic field, real or imaginary, to be divisible by 3, using isogenies of
elliptic curves.) More generally, Yamamoto [70] and Weinberger [68] have shown
that there are infinitely many real quadratic fields with class number divisible

2In [10], Cohen and Martinet provide analogous heuristics for number fields of higher

degree, recently verified in the case of the mean size of the 2-class group of cubic fields in the

thesis of Bhargava [4].
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by g for any positive integer g. Ankeny and Chowla [1] have shown that if D
is a square-free positive integer of the form D = n2g + 1 with n > 4, then the
class group of Q(

√
D) contains a nontrivial element of order g. However, as it

is unknown whether there are infinitely many square-free integers of the form
n2g + 1, this does not give a result for N+

g (X) parallel to their result in the
imaginary case.

Murty [50] has shown that N+
g (X) � X1/2g−ε for any positive integer g.

Recently, Yu [71] sharpened this result to N+
g (X) � X1/g−ε, using a result of

Yamamoto [70]. In the specific case g = 3, Chakraborty and Murty [8] have also
used the result of Yamamoto [70] to obtain the bound N+

3 (X) � X5/6. Byeon
and Koh [7] have further improved this to N+

3 (X) � X7/8, using the result of
Soundararajan [61] for imaginary quadratic fields.

Concerning indivisibility properties for class numbers of real quadratic fields,
a result of Davenport and Heilbronn [11] shows that 3 - h(D) for at least 5/6 of
the square-free integers 0 < D ≤ X.

2.4 Bounding the 3-part

Thus we arrive at the problem of bounding the 3-part h3(D). Several conditional
results are known, as we will discuss in more detail in Section 8.3. Soundarara-
jan has shown (as communicated in [36]) that if χD is the quadratic Dirichlet
character associated with Q(

√
D), the Riemann hypothesis for only the spe-

cific L-function L(χD, s) implies h3(D) � |D|1/3+ε. Wong [69] has shown that
the Birch–Swinnerton-Dyer conjecture, together with the Riemann hypothesis,
gives the result h3(D) � |D|1/4+ε.

In this thesis, we give three nontrivial bounds for h3(D). Independently and
simultaneously with the work of this thesis, Helfgott and Venkatesh [36] have
also improved on the trivial bound for h3(D), using a new method for counting
integer points on elliptic curves. Their result is that h3(D) � |D|0.44178...+ε

for both real and imaginary quadratic fields. While this work occurred at the
same time as the work leading to this thesis, it was entirely independent; indeed
the methods used in this thesis are quite different from those of Helfgott and
Venkatesh. In particular, the work of Chapter 5 covers a much broader problem
than simply bounding h3(D). We discuss the work of Helfgott and Venkatesh
in more detail in Chapter 8.



Chapter 3

Preliminaries

3.1 Notation

Throughout the thesis, the notation A � B indicates that A ≤ cB for some
positive constant c that depends only on certain variables as stated. We denote
by [x] the greatest integer part of x and by ‖x‖ the distance from x to the
nearest integer, i.e. ‖x‖ = min{x− [x], [x] + 1− x}. By (A,B] we mean the set
of integers {A < n ≤ B}.

We will also use a number of arithmetic functions. The functions φ(n) and
µ(n) represent the Euler totient function and the Möbius function, respectively.
Also, ν(n) represents the number of distinct prime divisors of n, d(n) represents
the divisor function, and dk(n) represents the k-th generalised divisor function,
i.e. the number of ways of expressing n as the product of k factors, including
ordering.

The exponential function e(x) represents e2πix and eq(x) represents e2πix/q.
Also, we denote by n the unique solution to nn ≡ 1 (mod q) with 1 ≤ n ≤ q.
If a is a negative integer, then na denotes n|a|. By convention, whenever n
appears, it is implicit that only values of n with (n, q) = 1 are considered in the
expression. The letter p always denotes a prime.

3.2 The trivial bound for the class number

We briefly sketch the trivial bound for the class number hK of an algebraic
number field K. We use the following elementary lemma (Lemma 4.2 of [52]).

Lemma 3.1. Let R(n) be the number of distinct ideals with norm n in a given
algebraic number field K of degree N . Then

R(n) ≤ dN (n) = O(nε),
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for any ε > 0.

Proof. The function R is multiplicative, since every ideal of norm mn with
(m,n) = 1 is a unique product of ideals with norm m and n respectively. Thus
we need only consider the case when n is a prime power. Let n = pa be a prime
power, with

pOK = pe1
1 · · · pes

s

where pi are prime ideals in OK . If I is an ideal of norm N(I) = pa and p|I,
then N(p)|N(I), so that N(p) must be a power of p. Hence p ∈ p and so p

coincides with one of the ideals pi. Thus

I = pb1
1 · · · pbs

s ,

with suitable 0 ≤ bi ≤ ei. Thus every such I induces a factorisation of pa into
s factors:

pa = N(I) = N(pb1
1 ) · · ·N(pbs

s ).

If J is another ideal of norm pa inducing the same factorisation, then

J = pc1
1 · · · pcs

s ,

and N(pbi
i ) = N(pci

i ) for all i = 1, . . . , s, whence bi = ci and thus I = J . Thus
R(pa) cannot exceed ds(pa). There are at most [K : Q] prime ideals in the
integral closure of OK , so that s ≤ N , and hence R(pa) ≤ dN (pa).

As a result of this lemma, we have the following trivial bound for the class
number hK of an algebraic number field K of degree N . (This proof is originally
due to Landau; see Theorem 4.4 of [52].)

Theorem 3.1. If K is an algebraic number field of degree N > 1, then

hK = O(|DK |1/2 logN−1 |DK |),

where DK is the discriminant of the field.

Proof. By the Minkowski bound, in every ideal class there is an integral ideal
of norm

N(b) ≤ cN
√
|DK |,

for a constant cN . Thus

hK ≤
∑

n≤cN |DK |1/2
R(n) ≤

∑
n≤cN |DK |1/2

dN (n).

One can prove by induction on N that∑
n≤x

dN (n) = O(x logN−1 x),

and the result follows.
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In the specific case of quadratic fields, we have:

Lemma 3.2. For h(D) the class number of a quadratic field Q(
√
D),

h(D) � |D|1/2+ε

for any ε > 0.

We will refer to this as the trivial bound for the class number.

3.3 Congruences

We will frequently bound the number of solutions to simple congruences of the
following form.

Lemma 3.3. For l > 0 an integer and a number a modulo q, if (b, q) = 1, then

#{n (mod q) : anl ≡ b (mod q)} ≤ 2lν(q).

Proof. If (a, q) 6= 1 then there are no solutions since (b, q) = 1. Thus we may
reduce to the case of a congruence nl ≡ c (mod q) where (c, q) = 1. Let
f(x) = xl − c. For q = pr1

1 · · · prm
m , then by the Chinese remainder theorem,

the number of solutions of f(x) ≡ 0 modulo q is the product of the number of
solutions of f(x) ≡ 0 modulo pri

i for each i = 1, . . . ,m. Let N(pr) denote the
number of solutions n of f(x) ≡ 0 modulo pr.

First suppose that p > 2. Then there is a primitive root g modulo pr, so we
may write c ≡ gu and n ≡ gv modulo pr for some u, v. Finding a solution n of
f(x) ≡ 0 (mod pr) is then equivalent to finding a solution v of

lv ≡ u (mod φ(pr)),

and hence
N(pr) ≤ (l, φ(pr)).

For our purposes, it is sufficient that N(pr) ≤ l.
If p = 2, then the fact that (Z/2rZ)× ∼= C2 × C2r−2 enables us to write

c = (−1)e5f and n = (−1)u5v where e, u = 0 or 1, and 0 ≤ f, v ≤ 2r−2. Then
the problem is to find solutions u, v such that

(−1)ul5vl ≡ (−1)e5f (mod 2r),

or equivalently such that

ul ≡ e (mod 2)

vl ≡ f (mod 2r−2).

There are (l, 2r−2) solutions modulo 2r−2 to the second congruence, and at most
2 solutions modulo 2 to the first congruence. Thus N(pr) ≤ 2(l, 2r−2) ≤ 2l.
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3.4 Bounds for exponential sums

We will use a number of bounds for exponential sums. As these are either clas-
sical results to be found in any number theory text or are quite deep results
resulting from Weil’s proof of the Riemann hypothesis for curves over finite
fields, we state these results without proof, giving references and brief explana-
tions where appropriate.

3.4.1 Incomplete sums

The first result is an elementary bound for incomplete exponential sums (see,
for example, Chapter 7 of [41]).

Lemma 3.4. For an integer a and positive integers M,N, q, let

A(q;M,a) =
∑

N<n≤N+M

eq(na).

Then
|A(q;M,a)| ≤ min(M, ‖a/q‖−1).

3.4.2 Gauss sums

The classical bounds for Gauss sums and for exponential sums of higher degree
monomials will be used frequently (see Chapter 7 of [41]).

Lemma 3.5. For an integer a and a prime p > 2 with p - a,∣∣∣∣∣
p∑

x=1

ep(ax2)

∣∣∣∣∣ ≤ p1/2.

Lemma 3.6. For an integer a, a positive integer k, and a prime p > k with
p - a and d = (k, p− 1), ∣∣∣∣∣

p∑
x=1

ep(axk)

∣∣∣∣∣ ≤ (d− 1)p1/2.

3.4.3 Weil’s bound for exponential sums

It is a well-known result of Weil’s proof of the Riemann hypothesis [66] for curves
over finite fields that exponential sums of certain polynomials with respect to a
prime modulus may be bounded by the square-root of the modulus.

Lemma 3.7. For a prime p and a polynomial f(x) = cnx
n + · · · + c0 with

integer coefficients having 0 < n < p and p - cn,∣∣∣∣∣
p∑

x=1

ep(f(x))

∣∣∣∣∣ ≤ (n− 1)p1/2.
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Lemma 3.8. Let χ be a nontrivial multiplicative character of order l modulo a
prime p and ψ a nontrivial additive character of Fp. Let f(x) be a polynomial
over Fp of degree d with (d, l) = 1 and with all distinct roots in the algebraic
closure Fp. Let g(x) be a polynomial over Fp of degree e with (e, p) = 1. Then∣∣∣∣∣

p∑
x=1

χ(f(x))ψ(g(x))

∣∣∣∣∣ ≤ (d+ e− 1)p1/2.

These are quite deep results. We briefly outline the general idea behind
the proof, but we refer the reader to Weil’s note [67] or Schmidt’s treatment in
Chapter II of [57] for a complete discussion.

For a prime power q = pr, consider the finite field k of q elements and
k(t) the field of rational functions in a transcendental element t, which may be
regarded as the function field over k of a projective line. Given a character ψ
of the additive group k and a character χ of the multiplicative group k∗, it is
possible to define an abelian character φ over k(t) whose L-series is a polynomial
of degree M with roots αi such that a sum of the form

∑
ψχ may be expressed

as a sum of the roots of φ, i.e. as (−1)r
∑
αi for some positive integer r.

Since by class field theory the character φ belongs to an abelian extension
of k(t) and its L-series divides the zeta function of that extension, the truth of
the Riemann hypothesis implies that all the roots αi have modulus

√
q. Thus

it follows that the sum
∑
ψχ is bounded in modulus by M

√
q. Specific choices

of the characters ψ and χ yield bounds for exponential sums of different types,
such as the bounds for exponential sums of polynomials given above, or bounds
for Kloosterman sums, as considered in the following section.

3.4.4 Kloosterman sums

In [12], Deligne proves the so-called Weil bound for exponential sums of rational
functions of one variable. We state a specific case of Deligne’s general result
below, along with the resulting lemma we will require later.

Let p be a prime and let X0 be an absolutely irreducible smooth projective
curve of genus g over Fp. Let f be a rational function, f : X0 → P1, not
identically equal to infinity. Let νx(f) represent the order of the pole of f at x
if f(x) = ∞, and set νx(f) = 0 otherwise. Let S represent the sum

S =
∑

x∈X0

ep(f(x)).

Deligne’s result shows that

|S| ≤

2g − 2 +
∑

νx(f) 6=0

(1 + νx(f))

 p1/2. (3.1)



CHAPTER 3. PRELIMINARIES 20

As in the case of the Weil bound for exponential sums of polynomials de-
scribed in the previous section, this is proved by expressing the character sum
under consideration as a sum of roots of a function governed by the Riemann
hypothesis for curves over finite fields (see Section 3 of [12]). We will use the
following instance of this result.

Lemma 3.9. For integers a, b with a < 0, b > 0, integers h, l and a prime p
with p - h, l and p > |a|, b,∣∣∣∣∣

p∑
x=1

ep(hxa + lxb)

∣∣∣∣∣ ≤ (|a|+ b)p1/2.

Proof. We simply take f(x) = hxa + lxb, which has a pole of order |a| at zero
and a pole of order b at infinity. Here we recall that if a < 0, then xa denotes
x|a| modulo p. Summing over P1, with genus zero, (3.1) immediately gives the
result.

3.5 Multiplicative properties

We will frequently find it convenient to use multiplicative properties of expo-
nential sums. We prove two such properties here. The first is quite general,
following Lemma 3 of [40].

Lemma 3.10. Let ψ(q; a, b) be a condition on a positive integer q and integers
a and b such that
(i) ψ(q; a1, b1) is equivalent to ψ(q; a2, b2) if a1 ≡ a2 (mod q) and b1 ≡ b2 (mod q);
(ii) if (q1, q2) = 1 then ψ(q1q2; a, b) is equivalent to the conjunction of the con-
ditions ψ(q1; a, b) and ψ(q2; a, b).
For integers x, y and a positive integer q, define the exponential sum

S(q;x, y) =
∑

a,b (mod q)
ψ(q;a,b)

eq(ax+ by).

Then if (q1, q2) = 1, the following multiplicative property holds:

S(q1q2;x, y) = S(q1;xq2, yq2)S(q2;xq1, yq1),

where q1 and q2 are defined modulo q2 and q1 respectively by

q1q1 ≡ 1 (mod q2)

q2q2 ≡ 1 (mod q1).
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Proof. First note that given pairs x1, y1 (mod q1) and x2, y2 (mod q2), there is
a unique pair x, y modulo q1q2 such that

x ≡ x1 (mod q1)

x ≡ x2 (mod q2)

and

y ≡ y1 (mod q1)

y ≡ y2 (mod q2),

namely

x ≡ q2q2x1 + q1q1x2 (mod q1q2)

y ≡ q2q2y1 + q1q1y2 (mod q1q2).

Thus if the conditions ψ(q1;x1, y1) and ψ(q2;x2, y2) both hold, then ψ(q1;x, y)
and ψ(q2;x, y) both hold and hence ψ(q1q2;x, y) holds, and conversely. There-
fore, simply multiplying the exponential sums S(q1;xq2, yq2) and S(q2;xq1, yq1)
and expressing the resulting product as a double sum modulo q1q2 proves the
lemma.

In our work with the square sieve in Chapter 7 we will also need the follow-
ing more specific multiplicative property for exponential sums involving Jacobi
symbols

(
n
r

)
.

Lemma 3.11. For integers k, z, an odd positive integer r, and a square-free
positive integer d with r - d, let

S(d, r; k, z) =
r∑

α=1

(
4α3 − dz2

r

)
er(kα).

Then if (r0, r1) = 1, the following multiplicative property holds:

S(d, r0r1; k, z) = S(d, r0; kr1, z)S(d, r1; kr0, z),

where r0r0 ≡ 1 (mod r1) and r1r1 ≡ 1 (mod r0).

Proof. We may verify this directly. Write α = α1r0 + α0r1 modulo r0r1. Then

S(d, r0r1; k, z) =
∑

α0 (mod r0)
α1 (mod r1)

(
4(α1r0 + α0r1)3 − dz2

r0r1

)
er0r1(k(α1r0 + α0r1))

=
∑

α0 (mod r0)
α1 (mod r1)

(
4(α0r1)3 − dz2

r0

)(
4(α1r0)3 − dz2

r1

)
er0(kα0)er1(kα1).
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Making the transformations

α0 7→ α0r1 (mod r0),

α1 7→ α1r0 (mod r1),

and separating the double sum over α0 (mod r0) and α1 (mod r1) into two
sums, we then obtain the desired factorisation

S(d, r0; kr1, z)S(d, r1; kr0, z).



Chapter 4

The least s-power-free

number in an arithmetic

progression

4.1 Introduction

In this chapter we present upper bounds for the least s-power-free positive
integer ns(a, q) occurring in an arithmetic progression a (mod q), for any integer
s ≥ 2. These results are an extension of a result of Heath-Brown [30] giving
the best known upper bound for the least square-free positive integer in an
arithmetic progression. While the results of this chapter do not relate directly
to class numbers of quadratic fields, the methods presented here are the basis
for our approach to counting the number of solutions in a bounded region to a
congruence of the form xa ≡ yb (mod q), as presented in Chapter 5.

In studying the least s-power-free positive integer in an arithmetic progres-
sion a (mod q), one must first assume that (a, q) is itself s-power-free, otherwise
no such number exists. In the case s = 2, Prachar [55] was the first to provide
an upper bound for n2(a, q), namely

n2(a, q) � q
3
2 exp

(
c

log q
log log q

)
,

for (a, q) = 1, with a specified constant c. Erdös [15] subsequently refined this
to

n2(a, q) � q
3
2 (log q)−1

in the case (a, q) = 1 and

n2(a, q) � q
3
2 (log log q)(log q)−1
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in general. In [39], Hooley used exponential sum techniques, employing the Weil
bound, to prove the further result that for any ε > 0, the numbers q for which

max
(a,q)=1

n2(a, q) ≤ q
4
3+ε

have positive lower density. In [30], Heath-Brown extended the methods of
Hooley, obtaining the upper bound

n2(a, q) � (d(q) log q)6(qq1/2
0 + q2q−1

0 ) (4.1)

for any divisor q0|q. This result is most efficient for a divisor of size q0 ≈ q2/3,
in which case one obtains an exponent of 4/3 + ε for n2(a, q). Heath-Brown
furthermore extended ideas of Burgess [6] for character sums to prove the general
result

n2(a, q) � (d(q) log q)6q13/9, (4.2)

where both bounds hold uniformly in a.

4.2 Statement of the Theorems

Following Heath-Brown, we prove two analogous bounds for ns(a, q) for any
integer s ≥ 2.

Theorem 4.1. For any integer s ≥ 2, if (a, q) is s-power-free, then

ns(a, q) � (qq
1
2
0 + q

s
s−1 q

− 1
s−1

0 )(a, q)
s−2

2(s−1) qε

for any ε > 0, for any divisor q0|q with q0 ≥ q1/s.

The implied constant depends only on s and ε, and the factor qε may be
expressed explicitly in terms of powers of d(q) and log q. This theorem reduces
to (4.1) in the case s = 2, and as is to be expected, the bound for ns(a, q)
becomes weaker as s increases. Note that the theorem is least efficient when q

is a prime, or when q is the product of two factors each of size ≈ q1/2. The best
case occurs when the divisor q0 ≈ q

2
s+1 ; for example, if q = ks+1 or q = k!.

Theorem 4.2. For any integer s ≥ 2, if q is square-free, then

ns(a, q) � q
1+ 1

s

“
2s2

2s2+s−1

”
+ε

for any ε > 0.

Again, the implied constant depends only on s and ε, and the factor qε

may be expressed explicitly in terms of powers of d(q) and log q. This theorem
reduces to (4.2) in the case s = 2. Some of the power of this theorem is lost
by assuming q is square-free. In the main part of the discussion that follows
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we make only the necessary assumption that (a, q) is s-power-free; it is only
in the last stage of the proof of Theorem 4.2 that we must make the further
assumption that q is square-free. However, this is the case of most interest to
us, as we will only be concerned with square-free moduli q when we extend these
methods in Chapter 5.

Both Theorems 4.1 and 4.2 are improvements over the trivial bound

ns(a, q) � q1+
1
s+ε, (4.3)

which we derive in Section 4.4.1. Both theorems are straightforward extensions
of the methods of Heath-Brown in [30]. We prove Theorem 4.1 using exponential
sums, employing Weil’s bound for exponential sums with prime moduli, and
elementary methods for exponential sums with composite moduli. We prove
Theorem 4.2 using mean value properties of exponential sums.

In Section 4.3 we reduce both theorems to bounding a certain sum over a
finite interval. In Section 4.4 we prove Theorem 4.1, except for the bound of
an exponential sum V (q;m, b), which we derive in Section 4.5. In Section 4.6
we describe the mean value methods for Theorem 4.2. We derive several key
estimates in Section 4.7, and then finally prove Theorem 4.2 in Section 4.8.

4.3 Reduction of the problem

We begin by expressing the problem of bounding ns(a, q) in terms of the number
of solutions to a congruence modulo q.

Definition 4.1. For an integer s ≥ 2, let

ηs(n) =

1 if for all primes p, ps - n

0 otherwise.

Note that η2(n) = µ2(n). Set t = (log q)1/s and let

P =
∏
p≤t

or p|q

p.

Then ηs((n, P s)) = ηs(n) if n ≤ t. If n > t then ηs(n) = ηs((n, P s)) = 1 if no
ps|n. But if there is a prime p such that ps|n but neither p ≤ t nor p|q, then
ηs((n, P s)) = 1, yet ηs(n) = 0. As a result,

ηs((n, P s))− ηs(n) ≤
∑
ps|n

p-q, p>t

1.

Thus it follows that∑
n≤x

n≡a (mod q)

ηs(n) ≥
∑
n≤x

n≡a (mod q)

ηs((n, P s))−
∑
n≤x

n≡a (mod q)

∑
ps|n

p-q, p>t

1. (4.4)
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Definition 4.2. Let

S(d, q, a, x, s) = #{m ≤ xd−s : mds ≡ a (mod q)}.

It is easy to prove by multiplicativity that

ηs((n, P s)) =
∑
ds|n
d|P

µ(d).

Then ∑
n≤x

n≡a (mod q)

ηs((n, P s)) =
∑
n≤x

n≡a (mod q)

∑
ds|n
d|P

µ(d) =
∑
d|P

µ(d)S(d, q, a, x, s).

Also, ∑
n≤x

n≡a (mod q)

∑
ps|n

p-q,p>t

1 ≤
∑

t<p≤x1/s
p-q

∑
n≤x

n≡a (mod q)
ps|n

1 =
∑

t<p≤x1/s
p-q

S(p, q, a, x, s).

Thus we may write (4.4) as:

Proposition 4.1.∑
n≤x

n≡a (mod q)

ηs(n) ≥
∑
d|P

µ(d)S(d, q, a, x, s)−
∑

t<p≤x1/s
p-q

S(p, q, a, x, s).

In order to find an upper bound for ns(a, q) it is thus sufficient to find a
lower bound for x such that the left hand side in Proposition 4.1 is strictly
positive. While bounding the first term on the right in Proposition 4.1 from
below is relatively simple, bounding the second term on the right from above is
the main goal of this chapter.

We begin by finding a lower bound for the first term on the right hand side
in Proposition 4.1.

Lemma 4.1.

S(d, q, a, x, s) =

xd−sq−1(ds, q) +O(1) if (ds, q)|a

0 if (ds, q) - a.

Proof. First, if (ds, q) - a then there are no solutions m to the congruence

mds ≡ a (mod q).

Next let h = (ds, q) and suppose h|a. Then for any m ≤ xd−s such that
mds ≡ a (mod q),

mdsh−1 ≡ ah−1 (mod qh−1).

Any such solution m may be written as

m = N · qh−1 + L

for some 0 ≤ N ≤ xd−sq−1h and 0 ≤ L ≤ qh−1, and the result follows.
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A lower bound for the sum under consideration then follows easily:

Proposition 4.2. Assume q1+
1
2s ≤ x ≤ q2. Then∑

d|P

µ(d)S(d, q, a, x, s) � xφ(q)q−2.

Proof. By Lemma 4.1,∑
d|P

µ(d)S(d, q, a, x, s) =
x

q

∑
d|P

(ds,q)|a

µ(d)d−s(ds, q) +O(
∑
d|P

1).

First note that the number of divisors of P is at most the number of possible
products composed of primes p ≤ t, times the number of prime divisors of q.
Thus P has at most 2td(q) divisors. For each d|P ,

(ds, q) =
∏
p|d

(ps, q),

so by multiplicativity, we have the product formula∑
d|P

(ds,q)|a

µ(d)d−s(ds, q) =
∏
p|P

(ps,q)|a

(1− p−s(ps, q)).

Therefore∑
d|P

µ(d)S(d, q, a, x, s) =
x

q

∏
p≤t or p|q
(ps,q)|a

(1− p−s(ps, q)) +O(2td(q)).

Denote the product on the right hand side by C(a, q, s). Our goal is to
bound C(a, q, s) from below. First assume that (a, q) = 1 so that C(a, q, s) only
includes p|P such that (ps, q) = 1. Then

C(a, q, s) =
∏

p≤t or p|q
(ps,q)=1

(1− p−s)

≥
∏
p

(1− p−s)

=
1
ζ(s)

,

which is a strictly positive number for any integer s ≥ 2.
More generally, for (a, q) an s-power-free integer > 1, we have

C(a, q, s) ≥
∏
p-q
p≤t

(1− p−s(ps, q))
∏
p|q

(ps,q)|a

(1− p−s(ps, q)).

In the first product, (ps, q) = 1 since p - q. In the second product, since (ps, q)|a
and (a, q) is s-power-free then (ps, q) < ps. But also (ps, q) is a strictly positive
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power of p, since p|q. Thus the least value a factor (1− p−s(ps, q)) can achieve
is (1− p−1). Therefore,

C(a, q, s) ≥
∏
p-q

(1− p−s)
∏
p|q

(1− p−1)

≥
∏
p

(1− p−s)
∏
p|q

(1− p−1)

=
1
ζ(s)

∏
p|q

(1− p−1)

=
1
ζ(s)

· φ(q)
q
.

Thus in general if (a, q) is s-power-free,

C(a, q, s) � φ(q)q−1.

Recall that ∑
d|P

µ(d)S(d, q, a, x, s) =
x

q
C(a, q, s) +O(2td(q)).

Assuming, as we will for the remainder of the discussion, that

q1+
1
2s ≤ x ≤ q2, (4.5)

this is then certainly sufficient to give∑
d|P

µ(d)S(d, q, a, x, s) � xφ(q)q−2.

This completes our lower bound for the first term on the right hand side
in Proposition 4.1. In order to find an upper bound for the second term on
the right hand side in Proposition 4.1 we will break the sum of S(p, q, a, x, s)
over primes p - q in the interval t < p ≤ x1/s into three parts, summing over
the intervals t < p ≤ y, y < p ≤ z, and z < p ≤ x1/s, for appropriately
chosen values of x, y, z. We will accomplish bounds for the sums over the first
and third intervals relatively easily. The sum over the second interval requires
a more detailed analysis; it is the bound for this term that distinguishes the
results of Theorems 4.1 and 4.2.

We bound the sum over the first interval t < p ≤ y as follows. All implied
constants depend only upon s unless otherwise noted.

Proposition 4.3. If y = xq−1, then∑
t<p≤y
p-q

S(p, q, a, x, s) � xq−1(log q)−1/s.
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Proof. By Lemma 4.1,∑
t<p≤y
p-q

S(p, q, a, x, s) � x

q

∑
t<p≤y
p-q

(ps,q)|a

p−s(ps, q) +
∑
t<p≤y
p-q

(ps,q)|a

1

Noting that (ps, q) = 1 since p - q, we then have:∑
t<p≤y
p-q

S(p, q, a, x, s) � x

q

∑
t<p≤y
p-q

p−s +
∑
t<p≤y
p-q

1

� x

q

∑
t<p≤y

p−s + y(log y)−1,

by the prime number theorem. Note that∑
t<p≤y

p−s ≤
∑
p>t

p−s � t−1.

Thus ∑
t<p≤y
p-q

S(p, q, a, x, s) � xq−1(log q)−1/s + y(log y)−1.

In order to bound this expression by xq−1(log q)−1/s, it is sufficient to choose

y = xq−1. (4.6)

This completes the proof.

We next bound the sum over the third interval z < p ≤ x1/s.

Definition 4.3. Let

T (m, q, a, z, x, s) = #{z < p ≤ x1/s, p - q : mps ≡ a (mod q)}.

Then immediately∑
z<p≤x1/s

p-q

S(p, q, a, x, s) =
∑

z<p≤x1/s
p-q

#{m ≤ xp−s : mps ≡ a (mod q)}

≤
∑

m≤xz−s

T (m, q, a, z, x, s). (4.7)

Note that any solution m of

mps ≡ a (mod q)

must have (a, q)|mps, but p - q, hence (a, q)|m. Thus T (m, q, a, z, x, s) = 0
unless (a, q)|m. In particular, if z > x1/s(a, q)−1/s, the sum (4.7) is zero, since
then m < (a, q) for each m ≤ xz−s.
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Let d = (a, q) and write q = dq1, a = da1, and m = dm1. Then

T (m, q, a, z, x, s) ≤ (1 + x1/sq−1
1 )#{u (mod q1) : m1u

s ≡ a1 (mod q1)}.

Using Lemma 3.3 to count the number of solutions to this congruence, it follows
immediately that

T (m, q, a, z, x, s) � sν(q)(1 + x1/sq−1
1 ).

We now use this to choose a value of z and obtain an upper bound for the sum
of S(p, q, a, x, s) over the interval z < p ≤ x1/s.

Proposition 4.4. Let

z = min(2x
1
s (a, q)−

1
s , s

ν(q)
s (log q)(x

1
s2 + q

1
s (a, q)−

1
s )). (4.8)

Then ∑
z<p≤x1/s

p-q

S(p, q, a, x, s) � xq−1(log q)−s.

Proof. Abbreviate (4.8) as z = min(A,B). If A is the minimal expression, so
that z > x1/s(a, q)−1/s, then the sum (4.7) is zero. Thus we need only consider
the case when z = B. In this case we have:∑

z<p≤x1/s
p-q

S(p, q, a, x, s) ≤
∑

m≤xz−s

T (m, q, a, z, x, s)

� sν(q)(1 + x1/sq−1
1 )

∑
m≤xz−s
(a,q)|m

1

� sν(q)(1 + x1/sq−1
1 )(xz−s(a, q)−1 + 1).

Using the explicit expression z = B we then obtain:

∑
z<p≤x1/s

p-q

S(p, q, a, x, s) � sν(q)x(a, q)−1(1 + x1/sq−1
1 )[

sν(q)/s(log q)(x
1
s2 + q

1
s (a, q)−

1
s )
]s

� x(a, q)−1(1 + x1/sq−1(a, q))
(log q)s(x1/s + q(a, q)−1)

� xq−1(log q)−s.

We have now chosen y and z such that the sum of S(p, q, a, x, s) over the
interval t < p ≤ y is bounded above by xq−1(log q)−1/s and the sum over the
interval z < p ≤ x1/s is bounded above by xq−1(log q)−s, for some appropriate
value of x not yet explicitly chosen. Suppose we have a lower bound for x such
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that the sum of S(p, q, a, x, s) over the middle interval y < p ≤ z is also bounded
above by xq−1(log q)−s. Then we would have a lower bound for x for which∑

n≤x
n≡a (mod q)

ηs(n) ≥
∑
d|P

S(d, q, a, x, s)−
∑

t<p≤x1/s
p-q

S(p, q, a, x, s)

� xφ(q)q−2 − xq−1(log q)−1/s − xq−1(log q)−s

� xφ(q)q−2.

The last line follows since φ(n)/n1−ε � 1 for every ε > 0 and sufficiently large
n (see Theorem 327 of [24], for example). In other words, we would have the
desired upper bound for ns(a, q).

It remains to bound the middle sum,∑
y<p≤z
p-q

S(p, q, a, x, s). (4.9)

We could obviate the need to bound (4.9) by choosing y ≥ z, but this would
only allow us to choose

x� min(q
s
s−1 (a, q)−

1
s−1 , q

s2

s2−1 + q1+
1
s (a, q)−1)qε.

Note that this does improve as (a, q) increases; however, our goal is to save a
power of q over the trivial bound (4.3).

4.4 Theorem 4.1: the Weil bound

We will prove a nontrivial bound for the remaining sum (4.9) using exponential
sums. It will be easier to manipulate the following closely related function:

Definition 4.4. For y < w ≤ z, let

U(w,M, q, a, s) =
∑

w<n≤2w
(n,q)=1

#{m ≤M : mns ≡ a (mod q)}

where (a, q) = 1 and M ≤ q/2.

It follows that:

Lemma 4.2.∑
w<p≤2w

p-q

S(p, q, a, x, s) ≤ U(w, xw−s(a, q)−1, q(a, q)−1, a(a, q)−1, s).

Proof. It is easily verified that

xw−s(a, q)−1 ≤ q

2
(a, q)−1,
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for w > y, recalling from (4.5) and (4.6) that we have chosen q1+
1
2s ≤ x ≤ q2

and y = xq−1.
Letting d = (a, q),∑

w<p≤2w
p-q

S(p, q, a, x, s) =
∑

w<p≤2w
p-q

#{m ≤ xp−s : mps ≡ a (mod q)}

≤
∑

w<n≤2w
(n,q)=1

#{m ≤ xn−s : mns ≡ a (mod q)}

≤
∑

w<n≤2w
(n,qd−1)=1

#{md−1 ≤ xw−sd−1 : md−1ns ≡ ad−1 (mod qd−1)}

= U(w, xw−s(a, q)−1, q(a, q)−1, a(a, q)−1, s).

4.4.1 The trivial bound for ns(a, q)

It is at this point that it is easy to see that the trivial bound for ns(a, q) is
O(q1+1/s+ε). Suppose for convenience that (a, q) = 1, so that∑
w<p≤2w

p-q

S(p, q, a, x, s) ≤ U(w, xw−s, q, a, s)

= #{n,m : w < n ≤ 2w, m ≤ xw−s, mns ≡ a (mod q)}.

Fixing m and counting the possible values of n for each m, we obtain

U(w, xw−s, q, a, s) � sν(q)(xq−1w1−s + xw−s). (4.10)

Alternatively, fixing n and counting the possible values ofm for each n we obtain

U(w, xw−s, q, a, s) � xq−1w1−s + w. (4.11)

If w ≥ x
1
s+1 , then to bound (4.9) by xq−1(log q)−s, we see by (4.10) that we

must have xw−s � xq−1(log q)−s, which is true as long as x � q1+1/s+ε. If
w ≤ x

1
s+1 , then we see by (4.11) that we must have w � xq−1(log q)−s, which

is true as long as x� q1+1/s+ε. Thus

ns(a, q) � q1+
1
s+ε,

which we refer to as the trivial bound. A similar analysis shows that the same
trivial bound applies when (a, q) > 1.

4.4.2 Expressing U(w, M, q, a, s) as an exponential sum

We improve on this trivial bound using exponential sum techniques. Define
δ(n) = 1 if there exists an m with 1 ≤ m ≤M such that m ≡ ans (mod q), and
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let δ(n) = 0 otherwise. Then

U(w,M, q, a, s) =
∑

w<n≤2w

δ(n).

Define

δ1(x) =

1 if ‖x‖ ≤Mq−1

0 otherwise.

Furthermore, let

δ2(x) =
(

sin(πHx)
H sin(πx)

)2

=

∣∣∣∣∣
H∑

h=1

e(hx)

∣∣∣∣∣
2

= H−2
∑
|h|<H

(H − |h|)e(hx)

with H = [(q/2)M−1]. We obtain the following relation between the functions
δ, δ1 and δ2.

Lemma 4.3.

δ(n) ≤ δ1

(
ans

q

)
� δ2

(
ans

q

)
.

Proof. For the first inequality, it is sufficient to show that if δ(n) = 1 then
δ1(ans/q) = 1. If δ(n) = 1, then for some integer k,

1 ≤ m = ans + kq ≤M

and hence ∥∥∥∥ans

q

∥∥∥∥ ≤Mq−1,

so that δ1(ans/q) = 1.
For the second inequality, it is sufficient to show that if δ1(x) = 1 then

δ2(x) ≥ c > 0 for a constant c independent of x. The function δ2(x) is an
even function with period 1, hence δ2(x) = δ2(‖x‖). Also, δ2(x) can be defined
at x = 0 so that it is continuous for all x. Now suppose δ1(x) = 1 so that
‖x‖ ≤ Mq−1 and thus ‖x‖ ≤ 1/(2H). On the interval 0 ≤ t ≤ π/2, we have
2t/π ≤ sin t ≤ t. Therefore if ‖x‖ ≤ 1/(2H),

sin(πH‖x‖)
H sin(π‖x‖)

≥ 2H‖x‖
πH‖x‖

=
2
π
.

We may now express the function U(w,M, q, a, s) in terms of the following
exponential sum.

Proposition 4.5.

U(w,M, q, a, s) � H−1
H−1∑
h=0

∣∣∣∣∣∣
∑

w<n≤2w

eq(hans)

∣∣∣∣∣∣ .
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Proof. Using Lemma 4.3 and the Fourier transform for δ2 we see immediately
that

U(w,M, q, a, s) =
∑

w<n≤2w

δ(n)

�
∑

w<n≤2w

δ2

(
ans

q

)

=
∑

w<n≤2w

H−2
∑
|h|<H

(H − |h|)eq(hans)


� H−1

H−1∑
h=0

∣∣∣∣∣∣
∑

w<n≤2w

eq(hans)

∣∣∣∣∣∣ .

4.4.3 Bounding the inner sum N(w, q, ha, s)

Let
N(w, q, ha, s) =

∑
w<n≤2w

eq(hans)

so that

U(w,M, q, a, s) � H−1
H−1∑
h=0

|N(w, q, ha, s)| . (4.12)

Let m = ha. Then we may extend N(w, q,m, s) to a sum over a complete set
of residues modulo q as follows:

N(w, q,m, s) =
q∑

k=1

eq(mk
s
)
∑

w<n≤2w

1
q

q∑
b=1

eq(b(k − n))

=
1
q

q∑
b=1

∑
w<n≤2w

eq(−bn)
q∑

k=1

eq(mk
s
+ bk).

As in Lemma 3.4, let

A(q;w,−b) =
∑

w<n≤2w

eq(−bn),

so that
|A(q;w,−b)| ≤ min(w, ‖b/q‖−1).

Definition 4.5. Let

V (q;m, b) =
q∑

k=1

eq(mk
s
+ bk).
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Then

|N(w, q,m, s)| ≤ 1
q

q∑
b=1

|V (q;m, b)||A(q;w,−b)|.

Assume the following bound for V (q;m, b):

Lemma 4.4. If (m, q) = 1 then

|V (q;m, b)| � d(q)σq1/2,

where σ is a positive integer dependent only on s.

We prove this lemma in the following section, but for now we proceed with
the proof of Theorem 4.1.

Proposition 4.6.

|N(w, q, ha, s)| � d(q)σ1

[
q−1/2(h, q)1/2w + q1/2 log q

]
,

where σ1 = σ + 1.

Proof. First suppose that (h, q) = 1. Recall that the function U only considers
values of a such that (a, q) = 1. Thus defining m = ha, we have (m, q) = 1 and
so by Lemma 4.4,

|N(w, q, ha, s)| � q−1(d(q)σq1/2)
q∑

b=1

min(w, ‖b/q‖−1)

� d(q)σq−1/2

w + 2q
∑

1≤b≤q/2

b−1


� d(q)σ

[
q−1/2w + q1/2 log q

]
. (4.13)

In the general case where (h, q) = δ, write q = δq1 and ha = δm so that
(m, q1) = 1. Let D be the product of primes p such that p|δ and p - q1. Then

N(w, q, ha, s) =
∑

w<n≤2w

e

(
δmns

dq1

)

=
∑

w<n≤2w
(n,D)=1

e

(
mns

q1

)

=
∑
j|D

µ(j)
∑

w<n≤2w
j|n

e

(
mns

q1

)

=
∑
j|D

µ(j)
∑

w<jl≤2w

e

(
mj

s
l
s

q1

)
.
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Note that since j|D then (j, q1) = 1 and so (mj
s
, q1) = 1. Thus we may apply

the bound (4.13) of the previous case, obtaining

|N(w, q, ha, s)| � d(D)d(q)σ
[
q
−1/2
1 w + q

1/2
1 log q1

]
.

Since d(D) � d(q), we define σ1 = σ + 1 and we have the final bound

|N(w, q, ha, s)| � d(q)σ1

[
q−1/2(h, q)1/2w + q1/2 log q

]
.

This immediately gives a bound for U(w,M, q, a, s):

Proposition 4.7.

U(w,M, q, a, s) � d(q)σ1

[
q1/2 log q + wq−1M + wq−1/2d(q)

]
.

Proof. Applying the bound of the previous proposition to (4.12),

U(w,M, q, a, s)

� H−1
H−1∑
h=0

|N(w, q, ha, s)|

� H−1
H−1∑
h=0

d(q)σ1

[
q−1/2(h, q)1/2w + q1/2 log q

]
� d(q)σ1

[
q1/2 log q + wq−1/2H−1

H−1∑
h=0

(h, q)1/2

]

� d(q)σ1

[
q1/2 log q + wH−1 + wq−1/2H−1

H−1∑
h=1

(h, q)1/2

]
.

We may estimate the sum in the last term by:

H−1
H−1∑
h=1

(h, q)1/2 = H−1
∑
d|q

d1/2
H−1∑
h=1
d|h

1 � H−1
∑
d|q

d1/2(H/d) =
∑
d|q

d−1/2 � d(q).

Recalling that H = [(q/2)M−1], this gives

U(w,M, q, a, s) � d(q)σ1

[
q1/2 log q + wq−1M + wq−1/2d(q)

]
.

4.4.4 The assumption of a divisor q0

Proposition 4.7 is not sufficient to prove Theorem 4.1 in itself, as it would only
allow us to choose x � q1+1/s+ε, giving the trivial bound ns(a, q) � q1+1/s+ε.
However, we may refine this to a non-trivial bound for ns(a, q), assuming that
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q has a factor q0 of suitable size. Write q1 = q(a, q)−1 and q2 = (q0, q1). By
definition,

U(w,M, q1, a, s) =
∑

w<n≤2w
(n,q1)=1

#{m ≤M : mns ≡ a (mod q1)}.

Any solution m of mns ≡ a modulo q1 is also a solution modulo q2, so trivially

U(w,M, q1, a, s) ≤ U(w,M, q2, a, s). (4.14)

Thus by Lemma 4.2,∑
w<p≤2w

p-q

S(p, q, a, x, s) ≤ U(w, xw−s(a, q)−1, q2, a(a, q)−1, s).

Note that the requirement M = xw−s(a, q)−1 ≤ q2/2 is satisfied for y < w ≤ z

with y and z chosen as in (4.6) and (4.8), as long as

x� q
s
s−1 q

− 1
s−1

0 . (4.15)

Applying Proposition 4.7,

U(w,M, q2, a, s) � d(q2)σ1

[
q
1/2
2 log q2 + wq−1

2 M + wq
−1/2
2 d(q2)

]
.

Thus∑
w<p≤2w

p-q

S(p, q, a, x, s) � d(q)σ1

[
q
1/2
0 log q + xw1−sq−1

2 (a, q)−1 + wq
−1/2
0 d(q)(a, q)1/2

]
� d(q)σ1

[
q
1/2
0 log q + xw1−sq−1

0 + wq
−1/2
0 d(q)(a, q)1/2

]
.

Let J be the least integer such that J ≥ (log z − log y)/ log 2. Summing over
dyadic intervals,

∑
y<p≤z
p-q

S(p, q, a, x, s) ≤
J−1∑
j=0

∑
w<p≤2w
w=2jy
p-q

S(p, q, a, x, s)

�
J−1∑
j=0

d(q)σ1

[
q
1/2
0 log q + 2−jxy1−sq−1

0 + 2jyq
−1/2
0 d(q)(a, q)1/2

]
.

Thus∑
y<p≤z
p-q

S(p, q, a, x, s) � d(q)σ1

[
q
1/2
0 (log q)2 + xy1−sq−1

0 + zq
−1/2
0 d(q)(a, q)1/2

]
.

It remains to choose x so that this is bounded by xq−1(log q)−s. With y and
z as chosen in (4.6) and (4.8), is sufficient to choose x such that

d(q)σ1

[
q
1/2
0 (log q)2 + x2−sqs−1q−1

0 + x1/sq
−1/2
0 d(q)(a, q)1/2−1/s

]
� xq−1(log q)−s,
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or
x� d(q)σ2(log q)2(a, q)

s−2
2(s−1) max(qq

1
2
0 , q

s
s−1 q

− 1
s−1

0 ),

where σ2 is a positive integer dependent only on s. This satisfies the previously
stated requirements (4.5) and (4.15) for x, so long as the divisor q0 satisfies
q0 ≥ q1/s. Thus we have the final bound

ns(a, q) � (qq
1
2
0 + q

s
s−1 q

− 1
s−1

0 )(a, q)
s−2

2(s−1) qε

for any divisor q0 ≥ q1/s, and for any ε > 0, where the implied constant depends
only upon s and ε. Aside from the bound for V (q;m, b) derived in the following
section, this completes the proof of Theorem 4.1.

4.5 Bounding the sum V (q; m, b)

In this section we prove Lemma 4.4. V (q;m, b) is multiplicative by Lemma 3.10
in the sense that

V (q1q2;m, b) = V (q1;mq2, bq2)V (q2;mq1, bq1)

for (q1, q2) = 1, where q1q1 ≡ 1 (mod q2) and q2q2 ≡ 1 (mod q1). Thus it suffices
to bound V (q;m, b) for prime powers q = pf . Throughout this section we will
assume that (m, q) = 1.

4.5.1 Prime moduli

In the case q = p, V (p;m, b) is a Kloosterman sum,

V (p;m, b) =
p∑

n=1

e

(
mns + bn

p

)
.

For p > s, since p - m, the Weil bound given in Lemma 3.9 shows that

|V (p;m, b)| ≤ (s+ 1)p1/2.

For p ≤ s, the trivial bound

|V (p;m, b)| ≤ p ≤ (s+ 1)p1/2

is sufficient.

4.5.2 Composite moduli

We will bound V (pf ;m, b) for f ≥ 2 by elementary methods, following Heath-
Brown in [30] (who in turn follows methods of Hooley used in an unpublished
proof of Theorem 3 in [39]).
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Let g = [f/2]. Write n = u+ pgv with 1 ≤ u ≤ pg, 1 ≤ v ≤ pf−g. Then

ns = (u+ pgv)s ≡ us − spgvus+1 +
s(s− 1)

2
p2gv2us+2 (mod pf ).

For convenience let β = s(s−1)
2 ; then

V (pf ;m, b) =
pg∑

u=1

pf−g∑
v=1

e

(
mus + bu

pf

)
e

(
pg(bv − smvus+1 + pgβmv2us+2)

pf

)
,

so that

|V (pf ;m, b)| ≤
pg∑

u=1

∣∣∣∣∣∣
pf−g∑
v=1

e

(
(b− smus+1)v + pgβmv2us+2

pf−g

)∣∣∣∣∣∣ .
In the case f = 2g, the inner sum reduces to

pg∑
v=1

e

(
(b− smus+1)v

pg

)
=

pg if pg|(b− smus+1)

0 if pg - (b− smus+1).

Therefore
|V (pf ;m, b)| ≤ pgNp, (4.16)

where we define Np by

Np = #{u (mod pg) : b ≡ smus+1 (mod pg)}.

In the case f = 2g+1, then 1 ≤ v ≤ pg+1 so we may write v = w+pk where
1 ≤ w ≤ p and 1 ≤ k ≤ pg. Then

|V (pf ;m, b)| ≤
pg∑

u=1

∣∣∣∣∣
p∑

w=1

e

(
(b− smus+1)w + pgβw2mus+2

pg+1

) pg∑
k=1

e

(
(b− smus+1)k

pg

)∣∣∣∣∣ .
The innermost sum vanishes unless pg|(b − smus+1), so we need only consider
u such that b− smus+1 = pgθu for some θu. Then

|V (pf ;m, b)| ≤ pg

pg∑
u=1

pg|(b−smus+1)

∣∣∣∣∣
p∑

w=1

e

(
θuw + βmus+2w2

p

)∣∣∣∣∣ .
Let Tp represent the bound for the absolute value of the inner sum. Then in
the case f = 2g + 1,

|V (pf ;m, b)| ≤ pgNpTp. (4.17)

It remains to bound Np and Tp.

Lemma 4.5. Assume (m, q) = 1. For any prime divisor p|q,

Np = #{u (mod pg) : b ≡ smus+1 (mod pg)} � (s+ 1)2.
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Proof. First assume that p - s(s+ 1). Then p - smus+1, so Np = 0 unless p - b.
Then Np is bounded above by the number of solutions of

f(u) = us+1 − smb ≡ 0 (mod pg)

with (u, q) = 1. The formal derivative of f is f ′(u) = (s+ 1)us. By assumption
p - (s+ 1) so the only solutions of f ′(u) ≡ 0 (mod p) are congruent to 0 modulo
p. Thus f(u) and f ′(u) share no solutions modulo p and hence f(u) has exactly
as many solutions modulo pg as modulo p, hence no more than s+ 1.

If p|s(s + 1) then p can divide at most one of s, s + 1. Suppose that p|s,
p - (s+ 1). By assumption (u, q) = 1, so we may think of

Np = #{u (mod pg), (u, pg) = 1 : bus+1 ≡ sm (mod pg)}.

Define β so that pβ = (b, pg). Then we must have pβ |s, or else there are
no solutions. Write b = pβb1, s = pβs1 and g1 = g − β. If g1 = 0, then
Np ≤ pg = pβ ≤ s. Thus suppose that g1 ≥ 1. Examine the congruence

b1u
s+1 ≡ s1m (mod pg1), (4.18)

where (b1, p) = 1. For any s1, the solutions u of this congruence are obtained
by lifting solutions of the corresponding congruence modulo p, of which there
are at most s+ 1. Thus there are at most s+ 1 solutions modulo pg1 to (4.18),
giving � pβ(s+ 1) total solutions modulo pg. Thus Np � (s+ 1)2.

If p - s but p|(s+1) then we may argue as in Lemma 3.3 to obtain the result
that Np � 2(s+ 1) ≤ (s+ 1)2. This concludes the proof.

Lemma 4.6. Assume (m, q) = 1. For any prime divisor p|q,

Tp =

∣∣∣∣∣
p∑

w=1

ep(θuw + βmus+2w2)

∣∣∣∣∣�√
s(s− 1)p1/2.

Proof. Let p be any prime with p|q, p > 2. First assume that p - s(s− 1). Then
p - β and p - m so we may complete the square. Then

Tp =

∣∣∣∣∣
p∑

w=1

ep(βmus+2(w + 2βmus+2θu)2)

∣∣∣∣∣ ≤ p1/2

by the classical bound for Gauss sums given in Lemma 3.5.
If p|s(s− 1), then trivially Tp ≤ p. But p can divide only one of s and s− 1,

so that p�
√
s(s− 1). In the case p = 2, we use the trivial bound

Tp ≤ 2 ≤
√
s(s− 1)p1/2,

for any s ≥ 2.
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It follows from these two lemmas that in the case f = 2g, by (4.16),

|V (pf ;m, b)| � (s+ 1)2pf/2.

In the case f = 2g + 1, by (4.17),

|V (pf ;m, b)| � pg(s+ 1)2
√
s(s− 1)p1/2 � s3pf/2.

By the multiplicativity of V (q;m, b) we then have the bound:

|V (q;m, b)| ≤ cν(q)s3ν(q)q1/2,

for a constant c depending only on s. For convenience we will express cν(q)s3ν(q)

as d(q)σ for a positive integer σ depending only on s, using the fact that for any
positive integer q, nν(q) ≤ d(q)log n/ log 2. This completes the proof of Lemma
4.4.

4.6 Theorem 4.2: the mean value problem

We next consider the scenario of Theorem 4.2, in which we do not assume that
q has a divisor q0 of appropriate size. In the following discussion, all implied
constants depend only on s and the variable k ≥ 1 we introduce below.

Recall from Proposition 4.5 that

U(w,M, q, a, s) � H−1
H−1∑
h=0

∣∣∣∣∣∣
∑

w<n≤2w

eq(hans)

∣∣∣∣∣∣ ,
where H = [(q/2)M−1]. We would like to average over h, so we need to con-
sider a full set of residues h modulo q. Therefore we apply Hölder’s inequality,
whereby

U(w,M, q, a, s) �M
1
2k

1
q

q∑
h=1

∣∣∣∣∣∣
∑

w<n≤2w

eq(hns)

∣∣∣∣∣∣
2k


1
2k

(4.19)

for any integer k ≥ 1. We will specify k in terms of s later, but for now we
proceed to examine the general case. Note that here we have assumed that
(a, q) = 1, which we may do since we will apply the bound we derive, as in
Lemma 4.2, to U(w, xw−s(a, q)−1, q(a, q)−1, a(a, q)−1, s).

Definition 4.6. For a finite set of integers I, let

N(I) =
1
q

q∑
h=1

∣∣∣∣∣∑
n∈I

eq(hns)

∣∣∣∣∣
2k

.
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We may then write (4.19) as

U(w,M, q, a, s) �M
1
2kN(I)

1
2k , (4.20)

with the set of integers I = (w, 2w]. (Recall that we have defined the notation
(A,B] to indicate the set of integers {A < n ≤ B}.) It will be more convenient
to work with N(I) in the following equivalent form.

Lemma 4.7. For a finite set of integers I,

N(I) = #{(n1, . . . , n2k), ni ∈ I :
k∑

i=1

ns
i ≡

k∑
i=1

ns
i+k (mod q)}.

Proof. Let
S(q, h) =

∑
n∈I

eq(hns).

Then

N(I) =
1
q

q∑
h=1

|S(q, h)|2k

=
1
q

q∑
h=1

S(q, h)kS(q, h)
k

=
1
q

q∑
h=1

∑
n1,...,nk∈I

eq

(
k∑

i=1

hns
i

) ∑
n1,...,nk∈I

eq

− k∑
j=1

hns
j


=

∑
n1,...,n2k∈I

1
q

q∑
h=1

eq

(
h

(
k∑

i=1

ni
s −

k∑
i=1

ns
i+k

))

= #{(n1, . . . , n2k), ni ∈ I :
k∑

i=1

ns
i ≡

k∑
i=1

ns
i+k (mod q)}.

4.6.1 The trivial bound for N(I)

From the expression given for N(I) in Lemma 4.7 we can immediately obtain
the following trivial bound for N(I).

Proposition 4.8. For the set of integers I = {1 ≤ n ≤ I},

N(I) � sν(q)(I2kq−1 + I2k−1).

Proof. There are I2k−1 ways of choosing n1, . . . , n2k−1. Once n1, . . . , n2k−1 have
been chosen, n2k must be such that

ns
2k ≡

k∑
i=1

ns
i −

k−1∑
i=1

ns
i+k (mod q),
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so that there are � sν(q) choices for n2k modulo q, and hence � (Iq−1 + 1)
choices for n2k ∈ I. Thus

N(I) � sν(q)I2k−1(Iq−1 + 1).

Using this trivial bound in (4.20) we see that

U(w,M, q, a, s) � w
[
sν(q)M(w−1 + q−1)

] 1
2k
.

Dyadic summation then gives a final bound for the sum of S(p, q, a, x, s):∑
y<p≤z
p-q

S(p, q, a, x, s) � s
ν(q)
2k x

1
2k

[
z1− s

2k q−
1
2k + z1− 1

2k−
s
2k

]
.

In order to bound this by xq−1(log q)−s as desired, with z as in (4.8), we would
have to choose

x� q1+
1
s+ε.

Thus this gives only the trivial bound for ns(a, q). Hence we must bound N(I)
more effectively; this is the main goal of the rest of the chapter.

4.6.2 Bounding N(I) by averaging

We will improve on the trivial bound for N(I) by taking advantage of averaging
over h, which then allows us to average further over a set of auxiliary primes
p - q. Let I = {1 ≤ n ≤ I}, where I ≤ q. In the following discussion, suppose
p is a prime in the range Q < p ≤ 2Q with p - q. We will choose Q explicitly
later, but for now we only specify Q < I.

Proposition 4.9.

N(I) � sν(q)I2k−1Q−1 +
1
q

q∑
h=1

∣∣∣∣∣∣∣
∑
n∈I
p-n

e

(
hns

q

)∣∣∣∣∣∣∣
2k

.

Proof. It is sufficient to show that 2k-tuples (n1, . . . , n2k) with at least one
ni divisible by p contribute only a term of magnitude sν(q)I2k−1Q−1 to N(I).
Without loss of generality, consider 2k-tuples (n1, . . . , n2k) with p|n1. There are
at most Ip−1 < IQ−1 choices of n1 such that p|n1 and 1 ≤ n1 ≤ I. There are
I2k−2 possible choices for n2, . . . , n2k−1, and hence at most I2k−1Q−1 possible
choices for n1, . . . , n2k−1. These choices for n1, . . . , n2k−1 determine � sν(q)

possible choices for n2k modulo q. Since I ≤ q, these are all the choices for
n2k ∈ I as well. Thus in total the contribution of terms where p divides at least
one entry in the 2k-tuple (n1, . . . , n2k) is � sν(q)I2k−1Q−1, where the implied
constant depends only on k.
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Define for each 0 < f < p,

I(p, f) =
(
−fq
p
,
I − fq

p

]
.

Proposition 4.10.

N(I) � sν(q)I2k−1Q−1 +Q2k−1

p−1∑
f=1

N(I(p, f)).

Proof. Examine the inner sum in Proposition 4.9 over n ∈ I such that p - n.
Since by assumption the auxiliary prime p - q, these remaining n fall into the
p− 1 residue classes

n ≡ fq (mod p), 0 < f < p.

Thus ∣∣∣∣∣∣∣
∑
n∈I
p-n

eq(hns)

∣∣∣∣∣∣∣
2k

=

∣∣∣∣∣∣∣
p−1∑
f=1

∑
n∈I

n≡fq (mod p)

eq(hns)

∣∣∣∣∣∣∣
2k

.

Applying Hölder’s inequality,∣∣∣∣∣∣∣
∑
n∈I
p-n

eq(hns)

∣∣∣∣∣∣∣
2k

≤ (p− 1)2k−1

p−1∑
f=1

∣∣∣∣∣∣∣
∑
n∈I

n≡fq (mod p)

eq(hns)

∣∣∣∣∣∣∣
2k

.

Write n = fq + pα so that α ∈ I(p, f) as defined above. Then n ≡ pα (mod q).
Thus for each f = 1, . . . , p− 1, we have

q∑
h=1

∣∣∣∣∣∣∣
∑
n∈I

n≡fq (mod p)

eq(hns)

∣∣∣∣∣∣∣
2k

=
q∑

h=1

∣∣∣∣∣∣
∑

α∈I(p,f)

eq(hpsαs)

∣∣∣∣∣∣
2k

.

Since (ps, q) = 1, hps ranges over a complete set of residues modulo q as h does,
so we may write this as:

q∑
h=1

∣∣∣∣∣∣
∑

α∈I(p,f)

eq(hαs)

∣∣∣∣∣∣
2k

.

This step is critical: averaging over h has allowed us to remove the specific
auxiliary prime p from the argument of the exponential.

We now have

N(I) � sν(q)I2k−1Q−1 + (p− 1)2k−1

p−1∑
f=1

1
q

q∑
h=1

∣∣∣∣∣∣
∑

α∈I(p,f)

e

(
hαs

q

)∣∣∣∣∣∣
2k

.

Recalling that Q < p ≤ 2Q, we may conclude

N(I) � sν(q)I2k−1Q−1 +Q2k−1

p−1∑
f=1

N(I(p, f)).
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4.6.3 Averaging the good set over primes

In order to bound the sum of N(I(p, f)) over f = 1, . . . , p − 1 appearing in
Proposition 4.10, we partition all 2k-tuples (n1, . . . , n2k) into two disjoint sets
G and B, which we call, after Heath-Brown, the “good” set and the “bad” set.
We will specify these sets later; for now, we define a version of the function
N(I) restricted to each of these sets. For notational convenience, define for a
positive real number t,

I(t) = (−qt, IQ−1 − qt].

Then I(p, f) ⊆ I(f/p), since p > Q. Since N(I) is an increasing function on
the set I, N(I(p, f)) ≤ N(I(f/p)).

Definition 4.7. For two disjoint sets G and B partitioning the set of all 2k-
tuples n = (n1, . . . , n2k), define

NG(t) = #{n ∈ G,ni ∈ I(t) :
k∑

i=1

ns
i ≡

k∑
i=1

ns
i+k (mod q)},

NB(t) = #{n ∈ B,ni ∈ I(t) :
k∑

i=1

ns
i ≡

k∑
i=1

ns
i+k (mod q)}.

We will average only NG(t) over primes; the bad set B will be sufficiently
small for NB(t) to admit a trivial bound.

Definition 4.8. Let
K = max

t
NB(t).

Then for any 0 < f < p,

N(I(p, f)) ≤ N(I(f/p)) = NB(f/p) +NG(f/p) ≤ K +NG(f/p).

Thus from Proposition 4.10,

N(I) � sν(q)I2k−1Q−1 +Q2kK +Q2k−1

p−1∑
f=1

NG

(
f

p

)
.

We now proceed to average over all p - q with Q < p ≤ 2Q.

Proposition 4.11. Assume Q ≥ c log q for a constant c. Then

N(I) � sν(q)I2k−1Q−1 +Q2kK +Q2k−2(logQ)
∑

Q<p≤2Q
p-q

p−1∑
f=1

NG

(
f

p

)
.

Proof. By the prime number theorem, the number of primes p in the range
Q < p ≤ 2Q is � Q(logQ)−1. Since

ν(q) = O

(
log q

log log q

)
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(see for example Section 22.10 of [24]), we see that O (log q/ log log q) of the
primes Q < p ≤ 2Q are factors of q. Suppose we impose the condition

Q ≥ c log q

for some constant c. Then under this condition, the number of primes p with
Q < p ≤ 2Q and p - q is � Q(logQ)−1. Averaging N(I) over these primes, we
obtain the result.

We next focus on bounding the sum of NG(f/p) over f = 1, . . . , p− 1. It is
convenient to define

J

(
f

p

)
=
fq

p
,

and
I ′(t) = (−qt, 2IQ−1 − qt].

We also define N ′
G(t) in a manner analogous to NG(t):

Definition 4.9. Let

N ′
G(t) = #{n ∈ G,ni ∈ I ′(t) :

k∑
i=1

ns
i ≡

k∑
i=1

ns
i+k (mod q)}.

NG and N ′
G are related by the following inequality.

Proposition 4.12.

NG

(
f

p

)
≤ QI−1

∑
0≤j≤IQ−1

N ′
G

j + J
(

f
p

)
q

 .

Proof. First note that

I(t) ⊆ I ′
(
t+

j

q

)
for any integer 0 ≤ j ≤ IQ−1, since

(−qt, IQ−1−qt] ⊆ (−qt− j, IQ−1−qt+(IQ−1− j)] ⊆ (−qt− j, 2IQ−1−qt− j].

Thus for each f = 1, . . . , p− 1,

I
(
f

p

)
⊆ I ′

(
f

p
+
j

q

)
⊆ I ′

(
j + J(f/p)

q

)
.

Then since N increases as a function of the interval,

NG

(
f

p

)
≤ N ′

G

j + J
(

f
p

)
q


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for any integer 0 ≤ j ≤ IQ−1. Averaging over j we obtain the desired result,

NG

(
f

p

)
≤ QI−1

∑
0≤j≤IQ−1

N ′
G

j + J
(

f
p

)
q

 .

We next express the sum of NG averaged over p and f given in Proposition
4.11 in terms of N ′

G.

Proposition 4.13. Assume that 8IQ ≤ q. Then

∑
p,f

NG

(
f

p

)
≤ QI−1

2q−1∑
j=0

N ′
G

(
j

q

)
,

where the sum on the left hand side is over all primes Q < p ≤ 2Q, p - q, and
0 < f < p.

Proof. This results from the following two facts. First observe that if either
p 6= p′ or f 6= f ′, or both, then∣∣∣∣J (fp

)
− J

(
f ′

p′

)∣∣∣∣ = ∣∣∣∣fqp − f ′q

p′

∣∣∣∣ = q

∣∣∣∣fp′ − f ′p

pp′

∣∣∣∣ ≥ q

pp′
≥ q

4Q2
≥ 2I
Q
,

assuming that 8IQ ≤ q. Thus if p 6= p′ or f 6= f ′ then I ′(j + J(f/p)) and
I ′(j + J(f ′/p′)) are intervals of length 2IQ−1 (with open left endpoint) shifted
away from each other by at least 2IQ−1, and hence they are disjoint. Secondly,
for any integer 0 ≤ j ≤ IQ−1,

0 ≤ j + J

(
f

p

)
≤ IQ−1 +

fq

p
< 2q

since 0 < f < p and I ≤ q. Thus all possible values of j + J(f/p) are within
the range [0, 2q), and the result follows.

For a fixed integer 0 ≤ j ≤ 2q − 1, N ′
G(j/q) is the number of solutions to

the congruence
k∑

i=1

ns
i ≡

k∑
i=1

ns
i+k (mod q),

with (n1, . . . , n2k) ∈ G, where ni ∈ I ′(j/q) = (−j, 2IQ−1 − j]. Making the
change of variables ni 7→ ni − j, we can equivalently consider N ′

G(j/q) as the
number of solutions to the congruence

k∑
i=1

(ni − j)s ≡
k∑

i=1

(ni+k − j)s (mod q), (4.21)

with (n1− j, . . . , n2k− j) ∈ G, where ni ∈ (0, 2IQ−1]. Note that the congruence
(4.21) is identical for 0 ≤ j, j′ < 2q if j ≡ j′ (mod q). Thus it suffices to consider
values 0 ≤ j < q. Therefore we define:
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Definition 4.10. Let L denote the number of solutions to the congruence

k∑
i=1

(ni − j)s ≡
k∑

i=1

(ni+k − j)s (mod q),

where 0 ≤ j < q and (n1 − j, . . . , n2k − j) ∈ G with 0 < ni ≤ 2IQ−1.

It follows immediately that:

Proposition 4.14.

N(I) � sν(q)I2k−1Q−1 +Q2kK +Q2k−1I−1(logQ)L.

We have now bounded N(I) in terms of L and K, where these are defined
in terms of the good and bad sets G and B. In the following section we proceed
to estimate L and K individually; in the process of doing so it becomes clear
how the sets G and B should be defined.

4.7 Estimating L and K for q square-free

Decompose L as
L =

∑
n∈G

L(n; q),

where L(n; q) is the number of solutions 0 ≤ j < q of the congruence (4.21) for
a fixed 2k-tuple n. Then L(n; q) is multiplicative with respect to q, so that for
q =

∏
pf ,

L(n; q) =
∏

L(n; pf ).

The methods for bounding L(n; pf ) we present here are only effective if f = 1;
therefore from this point onward we assume that q is square-free.

We first show that if we assume certain restrictions on the elements ni, we
may bound L(n; p) by a constant independent of p.

Lemma 4.8. Suppose ∃i ≤ k such that for all h = k + 1, . . . , 2k, we have
ni 6≡ nh (mod p). Then

L(n; p) ≤ s(2k − 1)− 1.

Proof. Consider the congruence

k∑
i=1

(ni − j)s ≡
k∑

i=1

(ni+k − j)s (mod p). (4.22)

We may relabel the k-tuple (n1, . . . , nk) so that n1 6≡ nh (mod p) for each
h = k + 1, . . . , 2k. Furthermore, label any of n2, . . . , nk that are congruent
to n1 modulo p so that they are the first elements following n1 in the k-tuple
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(n1, . . . , nk). Suppose there are a total of k0 elements congruent to n1 modulo
p, including n1. Then we may write the congruence (4.22) as

k0(n1 − j)s +
k∑

i=k0+1

(ni − j)s ≡
k∑

i=1

(ni+k − j)s (mod p)

where 1 ≤ k0 ≤ k. Let l = n1 − j. Then this becomes

k0l
s
+

k∑
i=k0+1

(ni − n1 + l)s ≡
k∑

i=1

(ni+k − n1 + l)s (mod p). (4.23)

Define mi = ni − n1 for each i = k0 + 1, . . . , 2k. Note that in each case
mi 6≡ 0 (mod p) since we have ordered n1, . . . , n2k so that ni 6≡ n1 for all
i = k0 + 1, . . . , 2k. Define

m =
2k∏

j=k0+1

mj ,

so that p - m. Now multiply the congruence (4.23) by

ls
2k∏

j=k0+1

(mj + l)s

to obtain

k0

2k∏
j=k0+1

(mj + l)s + ls
k∑

i=k0+1

(mi + l)
s

2k∏
j=k0+1

(mj + l)s

− ls
2k∑

i=k+1

(mi + l)
s

2k∏
j=k0+1

(mj + l)s ≡ 0 (mod p).

Note that in each of the two sums, for each i the term (mi + l)
s

cancels with
one of the factors (mj + l)s in the product. In effect, we have rid the congruence
of denominators, so it is now a polynomial in l. Moreover, note that all the
highest order terms (of degree s(2k − k0)) cancel exactly, so the degree of the
polynomial is in fact at most s(2k − k0) − 1. For 1 ≤ k0 ≤ k, this means that
we have a polynomial in l of degree at most s(2k−1)−1. The constant term of
the polynomial is k0m

s. Since p - m, this term can only vanish if p|k0, in which
case we must have p ≤ k0 ≤ k.

First suppose that p > k. Then the constant term does not vanish, so the
polynomial is not identically zero, and hence it can have at most s(2k − 1)− 1
roots. Since l = n1 − j, each root l is in one-to-one correspondence with a
solution j of the original congruence defining L(n; p), hence

L(n; p) ≤ s(2k − 1)− 1.
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Next suppose that p ≤ k. Then trivially p ≤ s(2k − 1)− 1 for s ≥ 2, k ≥ 2.
Of course a congruence modulo p can have at most p solutions, so again

L(n; p) ≤ s(2k − 1)− 1.

This completes the proof of the lemma.

4.7.1 The good and bad sets

We use the key assumption that enabled us to prove Lemma 4.8 to define the
sets G and B.

Definition 4.11. Define

B = {n : ∀i ≤ k ∃h > k s.t. ni = nh}

G = {n /∈ B}.

A bound for K follows immediately.

Proposition 4.15.
K = max

t
NB(t) � (IQ−1)k.

Proof. Consider an element n ∈ B. There are IQ−1 ways to choose each of the
entries nh ∈ I(t) = (−qt, IQ−1 − qt] for h = k + 1, . . . , 2k. Then each of the
entries ni for i = 1, . . . , k must be chosen from these k possible values. Hence

NB(t) ≤ kk(IQ−1)k.

This bound is independent of t, so the result follows, with an implicit constant
dependent on k.

Consider the set G. For each i = 1, . . . , k, define

Ai(n) =
2k∏

h=k+1

(ni − nh).

If n = (n1, . . . , n2k) ∈ G then for some i ≤ k we have Ai(n) 6= 0. Let

Gi = {n : Ai(n) 6= 0},

so that

G =
k⋃

i=1

Gi.

Proposition 4.16. For n ∈ Gi,

L(n; p) ≤ ds(2k−1)−1(p) · (p,Ai(n)).
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Proof. If p - Ai(n) then there exists k < h ≤ 2k such that ni 6≡ nh (mod p), so
by Lemma 4.8,

L(n; p) ≤ s(2k − 1)− 1.

If p|Ai(n) then trivially
L(n; p) ≤ (p,Ai(n)).

Thus, regardless of whether p divides Ai(n) or not,

L(n; p) ≤ ds(2k−1)−1(p) · (p,Ai(n)).

It follows immediately that for square-free q,

L =
∑
n∈G

L(n; q)

≤
k∑

i=1

∑
n∈Gi

L(n; q)

=
k∑

i=1

∑
n∈Gi

∏
p|q

L(n; p)

�
k∑

i=1

ds(2k−1)−1(q)
∑
n∈Gi

(q, Ai(n)). (4.24)

We bound the innermost sum by the following argument, as in Lemma 2 of [28].

Proposition 4.17. For each 1 ≤ i ≤ k,∑
n∈Gi

(q, Ai(n)) � d(q)k(IQ−1)2k.

Proof. Without loss of generality, let i = 1. Since n ∈ G1, then A1(n) 6= 0. Let
αj = (q, n1 − nj) for each j = k + 1, . . . , 2k, so that

(q, A1(n)) =
(
q,
∏

αj

)
.

Then, ∑
n∈G1

(q, A1(n)) ≤
∑
αj |q

∏
αj

∑
n

αj |(n1−nj)

1.

Since A1(n) 6= 0 then nj 6= n1 for all j = k + 1, . . . , 2k. So for a fixed value of
n1, of which there are 2IQ−1 possible choices, the conditions 0 < nj ≤ 2IQ−1

and αj |(n1 − nj) give � 2IQ−1α−1
j choices for each nj , since we are assuming

nj 6= n1. Thus

∑
n∈G1

(q, A1(n)) �
∑
αj |q

∏
αj · (2IQ−1)

 2k∏
j=k+1

(
2IQ−1

αj

) (2IQ−1)k−1.
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The last factor of (2IQ−1)k−1 accounts for all possible combinations of nh, with
1 < h ≤ k. Therefore∑

n∈G1

(q, A1(n)) � (IQ−1)2k
∑
αj |q

j=k+1,...,2k

1

� d(q)k(IQ−1)2k.

Applying this result in (4.24) immediately gives the final bound for L:

Proposition 4.18.
L� d(q)τs,k(IQ−1)2k,

where τs,k = (2s+ 1)k − (s+ 1).

We conclude this section with a proposition combining all these results into
our final bound for N(I).

Proposition 4.19. Assume q is square-free. Let I = {1 ≤ n ≤ I} where
I ≤ q

k+1
2k . Choose Q = 1

8I
k−1
k+1 . Then for any k ≥ 2,

N(I) � d(q)τs,k(log q)I
2k2
k+1 ,

where the implied constant depends only on s and k.

Proof. By the bounds for K and L given in Propositions 4.15 and 4.18,

N(I) � sν(q)I2k−1Q−1 +Q2k(IQ−1)k +Q2k−1I−1(logQ)d(q)τs,k(IQ−1)2k,

assuming that

c log q ≤ Q < I ≤ q,

8IQ ≤ q.

These conditions are satisfied with I and Q as chosen in the hypothesis. Thus

N(I) � sν(q)I
2k2
k+1 + I

2k2
k+1 + d(q)τs,kI

2k2
k+1 log q.

Note that for square-free q, sν(q) = d(q)
log s
log 2 � d(q)τs,k . We may conclude that

N(I) � d(q)τs,k(log q)I
2k2
k+1 .
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4.8 Proof of Theorem 4.2

In order to complete the proof of Theorem 4.2, it remains only to bound the
sum ∑

y<p≤z
p-q

S(p, q, a, x, s).

Recall from Lemma 4.2 that∑
w<p≤2w

p-q

S(p, q, a, x, s) ≤ U(w, xw−s(a, q)−1, q(a, q)−1, a(a, q)−1, s).

From (4.20),
U(w,M, q, a) �M

1
2kN(I)

1
2k ,

where I = {w < n ≤ 2w}. Since N(I) increases as a function of the interval,
we may instead take I = {1 ≤ n ≤ 2w} and apply the bound for N(I) given
in Proposition 4.19, simply including any resulting factors of 2 in the implied
constant. We obtain

U(w, xw−s(a, q)−1, q(a, q)−1, a(a, q)−1, s)

� (xw−s(a, q)−1)
1
2k

[
d(q)τs,k(log q)w

2k2
k+1

] 1
2k
. (4.25)

Let J be the least integer such that J ≥ (log z − log y)/ log 2. Then

∑
y<p≤z
p-q

S(p, q, a, x, s) ≤
J−1∑
j=0

∑
w<p≤2w, p-q

w=2jy

S(p, q, a, x, s)

�
J−1∑
j=0

U(2jy, x(2jy)−s(a, q)−1, q(a, q)−1, a(a, q)−1, s)

�
J−1∑
j=0

(x(2jy)−s(a, q)−1)
1
2k

[
d(q)τs,k(log q)(2jy)

2k2
k+1

] 1
2k

� x
1
2k (a, q)−

1
2k d(q)

τs,k
2k (log q)

1
2k

J−1∑
j=0

(2jy)
k
k+1−

s
2k (4.26)

� x
1
2k z

k
k+1−

s
2k (a, q)−

1
2k d(q)

τs,k
2k (log q)

1
2k . (4.27)

Note that in applying the bound (4.25) we must have I = 2w = 2j+1y ≤ q
k+1
2k

in each case, so in particular we must have 2Jy ≈ z ≤ q
k+1
2k , which is always

satisfied for z as in (4.8).
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To obtain a nontrivial bound it is sufficient1 to choose k = s. Then∑
y<p≤z
p-q

S(p, q, a, x, s) � x
1
2s z

s−1
2(s+1) (a, q)−

1
2s (log q)

1
2s d(q)

2s2−1
2s .

Recall from (4.8) that

z = min(2x
1
s (a, q)−

1
s , s

ν(q)
s (log q)(x

1
s2 + q

1
s (a, q)−

1
s )).

Then∑
y<p≤z
p-q

S(p, q, a, x, s) � x
1
2s (log q)

s2+1
2s(s+1) d(q)

2s2−1
2s s

ν(q)(s−1)
2s(s+1)

[
x

s−1
2s2(s+1) + q

s−1
2s(s+1)

]
.

Recalling x ≤ q2 and approximating

s
ν(q)(s−1)
2s(s+1) ≤ d(q)

s−1
s+1 ,

we then obtain∑
y<p≤z
p-q

S(p, q, a, x, s) � x
1
2s (log q)

s2+1
2s(s+1) d(q)

2s3+4s2−3s−1
2s(s+1) q

s−1
2s(s+1) ,

where the implied constant depends only upon s.
In order that this sum may be bounded by xq−1(log q)−s, it is sufficient to

choose x such that

x� (log q)
2s3+3s2+1
(2s−1)(s+1) d(q)

2s3+4s2−3s−1
(2s−1)(s+1) q

2s2+3s−1
(2s−1)(s+1) .

This then gives the result of Theorem 4.2:

ns(a, q) � q
2s2+3s−1

(2s−1)(s+1)+ε = q
1+ 1

s

“
2s2

2s2+s−1

”
+ε
. (4.28)

In fact, if we expand the exponent of q in (4.28), we obtain a main term of

q1+
1
s−

1
2s2

+ 3
4s3

− 5
8s4

+···.

Thus it is clear that the improvement over the trivial bound comes from the
higher order terms in the expansion of the exponent. This completes the dis-
cussion of Theorem 4.2.

1In fact, the optimal choice is approximately k ≈ s/2 for sufficiently large s. This can be

seen by noting that in order for (4.27) to be bounded above by xq−1(log q)−s, we must choose

x � q
1+ 1

s

„
2k2

2k2+k−1

«
+ε

.

The exponent gives the trivial bound for k = 1, decreases for several small values of k > 1,

and then increases to 1 with large k. We would thus in general choose the smallest k such

that the exponent of 2jy in (4.26) is positive.



Chapter 5

Solutions to a congruence

5.1 Introduction

Consider the congruence
xa ≡ yb (mod q) (5.1)

where q is a square-free positive integer and a and b are nonzero integers.1 Let
Nq(X,Y ) denote the number of positive integer solutions (x, y) to this congru-
ence with (x, q) = 1, (y, q) = 1, in the bounded region x ≤ X and y ≤ Y , where
X,Y ≥ 1.

Given y with (y, q) = 1, there are O(|a|ν(q)) solutions x modulo q to (5.1).
Thus there are O(|a|ν(q)(Xq−1 + 1)) solutions x ≤ X. Alternatively, given x

with (x, q) = 1, there are O(|b|ν(q)(Y q−1 + 1)) solutions y ≤ Y . Thus in total

Nq(X,Y ) = O(qε(XY q−1 + min(X,Y ))).

We will refer to this as the trivial bound. In particular, if X,Y ≤ q then the
trivial bound is

Nq(X,Y ) = O(qε min(X,Y )).

One could hope to improve on this trivial bound when X,Y ≤ q by showing
either of the following bounds:

Bound 1.
Nq(X,Y ) = o(qε min(X,Y )).

Bound 2.
Nq(X,Y ) = O(XY q−1+ε).

1Recall that if a < 0, then na denotes n|a|.



CHAPTER 5. SOLUTIONS TO A CONGRUENCE 56

Note that Bound 2 implies Bound 1. In this chapter we extend the methods
presented in Chapter 4 to prove two bounds for Nq(X,Y ), each of which is
better than the trivial bound, for X and Y in certain ranges.

While Nq(X,Y ) is interesting in its own right, in the next chapter we demon-
strate that our bounds for Nq(X,Y ) give nontrivial bounds for the 3-part of
class numbers of quadratic fields. With this application in mind, we restrict our
attention to square-free moduli q.

5.2 Statement of the Theorems

In this chapter we prove the following theorems.

Theorem 5.1. Let q be square-free and let a, b be nonzero integers such that
(a, b) = 1 and a 6= b. If X ≤ q and Y ≤ q/2 then

Nq(X,Y ) � q1/2d(q)τ (log q)2 + q−1XY d(q)τ + q−1/2Xd(q)τ ,

where τ and the implied constant depend on a, b.

Suppose X = qα and Y = qβ , with α, β ≤ 1. Then Theorem 5.1 achieves
the trivial bound O(qε min(X,Y )), disregarding comparison of factors of size
qε, as long as 1/2 ≤ α, β ≤ 1. Theorem 5.1 achieves Bound 1 whenever both
1/2 < α < 1 and 1/2 < β < 1. Theorem 5.1 achieves Bound 2 whenever
α+ β ≥ 3/2.2’3

Theorem 5.2. Let q be square-free and let a, b be nonzero integers such that
a/b 6∈ Z+ and (b, q) = 1. Let k ≥ 1 be any integer. If X ≤ q

k+1
2k and Y ≤ q/2,

then
Nq(X,Y ) � X

k
k+1Y

1
2k d(q)

τk
2k (log q)

1
2k

where τk and the implied constant depend on a, b, k.

Note that it is advantageous to choose X to be the smaller of the two ranges;
suppose that X = qα and Y = qβ with α ≤ β ≤ 1. Theorem 5.2 achieves Bound
1 if and only if

β

α
<

2k
k + 1

for some k ≥ 1, and Bound 2 if and only if

αk

k + 1
+

β

2k
≤ α+ β − 1

2In fact, a result similar to that of Theorem 5.1 holds whenever a 6= b, without assuming

relative primality of a and b. The proof is more complicated in this more general case, and

since Theorem 5.1 is more than sufficient for our purposes, we only consider the case (a, b) = 1.
3Note that we must exclude the case a = b = 1. In this case Nq(X, Y ) can attain the

trivial bound, Nq(X, Y ) � qε min(X, Y ); for example if q is a large prime.
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for some k ≥ 1. However, in applications it is more convenient simply to ap-
ply Theorem 5.2 for specific values α and β and then optimise the value of k
accordingly.

If both a and b are positive integers, we may define N ′
q(X,Y ) to be the

number of positive integer solutions (x, y) to (5.1) in the bounded region x ≤ X

and y ≤ Y , without assuming the relative primality conditions (x, q) = 1 and
(y, q) = 1. Then the following equivalent results hold for N ′

q(X,Y ), which we
state here for use in the next chapter.

Theorem 5.3. Let q be square-free and let a, b be positive integers such that
(a, b) = 1 and a 6= b. If X ≤ q and Y ≤ q/2 then

N ′
q(X,Y ) � q1/2d(q)τ (log q)2 + q−1XY d(q)τ + q−1/2Xd(q)τ ,

where τ and the implied constant depend on a, b.

Theorem 5.4. Let q be square-free and let a, b be positive integers such that
a/b 6∈ Z+ and (b, q) = 1. Let k ≥ 1 be an integer. If X ≤ q

k+1
2k and Y ≤ q/2,

then
N ′

q(X,Y ) � X
k
k+1Y

1
2k d(q)

τk
2k (log q)

1
2k

where τk and the implied constant depend on a, b, k.

Theorems 5.3 and 5.4 are proved in the same manner as Theorems 5.1 and
5.2, with only minor modifications. Thus we will only give the proof in the case
when we assume (x, q) = 1, (y, q) = 1.

We prove Theorem 5.1 in Section 5.3, using the Weil bound for certain key
exponential sums, in a straightforward extension of the methods of Theorem 4.1.
In Section 5.4 we describe the mean value methods we use to prove Theorem
5.2. While this approach is based on the methods of Theorem 4.2, which in
turn are based on the methods of Heath-Brown [30], the proof is significantly
more involved. In particular we must choose our averaging set of auxiliary
primes more carefully. Moreover, in Section 5.5 we must handle the vanishing
of two polynomials Hα(n, j) and H̄α(n, j) over C and modulo primes with some
delicacy. This is the most novel feature of the work in this chapter.

5.3 Theorem 5.1: the Weil bound

Note that we may reduce the problem to considering a to be a nonzero integer
and b a positive integer. We always require that (x, q) = (y, q) = 1. Thus if
both a < 0, b < 0, solutions (x, y) of the congruence (5.1), which may be written
as

x|a| ≡ y|b| (mod q),
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are equivalent to solutions of the congruence

x|a| ≡ y|b| (mod q).

If a > 0, b < 0, then solutions of the congruence (5.1), which may be written as

xa ≡ y|b| (mod q),

are equivalent to solutions of the congruence

xa ≡ y|b| (mod q).

Thus from this point onward we restrict the integer b ≥ 1 while a may be any
nonzero integer with (a, b) = 1.

We begin by breaking the range x ≤ X into dyadic ranges w < n ≤ 2w and
counting solutions within these partial ranges.

Definition 5.1. Let

U(w,M, q) =
∑

w<n≤2w
(n,q)=1

#{m ≤M : mb ≡ na (mod q)},

where M ≤ q/2.

In order to express U(w,M, q) more conveniently as an exponential sum,
define for each (n, q) = 1,

δ(n) =
∑

m (mod q)
mb≡na (mod q)

δ1

(
m

q

)
,

where

δ1(x) =

1 if ‖x‖ ≤Mq−1,

0 otherwise.

Then
δ(n) = #{m (mod q) : mb ≡ na (mod q), ‖m/q‖ ≤M/q},

so that δ(n) counts m with 1 ≤ m ≤ M , as well as m with 0 ≤ (q −m) ≤ M .
Thus we have the inequality

U(w,M, q) ≤
∑

w<n≤2w
(n,q)=1

δ(n).

Define as before,

δ2(x) =
(

sin(πHx)
H sin(πx)

)2

=

∣∣∣∣∣
H∑

h=1

e(hx)

∣∣∣∣∣
2

= H−2
∑
|h|<H

(H − |h|)e(hx),
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with H = [(q/2)M−1]. By Lemma 4.3,

δ1

(
m

q

)
� δ2

(
m

q

)
.

This immediately gives:

Proposition 5.1.

U(w,M, q) � H−1
H−1∑
h=0

∣∣∣∣∣∣∣
∑

w<n≤2w
(n,q)=1

∑
m (mod q)

mb≡na (mod q)

eq(hm)

∣∣∣∣∣∣∣ .
We investigate the inner sum over n. We may extend this to a sum over a

complete set of residues mod q as follows:∑
w<n≤2w
(n,q)=1

∑
m (mod q)

mb≡na (mod q)

eq(hm)

=
∑

k (mod q)
(k,q)=1

∑
w<n≤2w

1
q

q∑
l=1

eq(l(k − n))
∑

m (mod q)
mb≡ka (mod q)

eq(hm)

=
1
q

q∑
l=1

∑
w<n≤2w

eq(−ln)
∑

k,m (mod q)
mb≡ka (mod q)

(k,q)=1

eq(hm+ lk).

As in Lemma 3.4, let A(q;w,−l) be the sum

A(q;w,−l) =
∑

w<n≤2w

eq(−ln),

so that
|A(q;w,−l)| ≤ min(w, ‖l/q‖−1).

Definition 5.2. Let

V (q;h, l) =
∑

k,m (mod q)
mb≡ka (mod q)

(k,q)=1

eq(hm+ lk).

Then

U(w,M, q) � H−1q−1
H−1∑
h=0

q∑
l=1

|V (q;h, l)||A(q;w,−l)|. (5.2)

5.3.1 Bounding the sum V (q; h, l)

By Lemma 3.10, V (q;h, l) is multiplicative in the sense that

V (q1q2;h, l) = V (q1;hq2, lq2)V (q2;hq1, lq1)

for (q1, q2) = 1, where q1q1 ≡ 1 (mod q2) and q2q2 ≡ 1 (mod q1).
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Lemma 5.1. For q square-free and (a,b)=1 with a 6= b,

|V (q;h, l)| ≤ η
ν(q)
a,b q1/2(q, h, l)1/2,

where ηa,b = 2(|a|+ b).

Proof. Since q is square-free we need only consider V (p;h, l) for each prime p|q:

V (p;h, l) =
∑

m, k (mod p)
mb≡ka (mod p)

(k,p)=1

ep(hm+ lk).

Suppose first that p - hl. Since (a, b) = 1, there exist integers r, s such that

ar + bs = 1.

For k 6≡ 0 (mod p) and hence m 6≡ 0 (mod p), set α ≡ mrks (mod p) so that
αa ≡ m, αb ≡ k modulo p. Then

V (p;h, l) =
p∑

α=1

ep(hαa + lαb)− 1,

where we must subtract off the term α = p. If a > 0, the Weil bound4 (Lemma
3.7) then shows that for p - hl with p > max(a, b),

|V (p;h, l)| ≤ (max(a, b)− 1)p1/2 + 1.

If a < 0, the Weil bound for such Kloosterman sums (Lemma 3.9) shows that
for p - hl with p > max(|a|, b),

|V (p;h, l)| ≤ (|a|+ b)p1/2 + 1.

Now suppose that p|h but p - l. Then

V (p;h, l) =
∑

m, k (mod p)
mb≡ka (mod p)

(k,p)=1

ep(lk)

=
∑

k (mod p)
(k,p)=1

ep(lk)
∑

m (mod p)
mb≡ka (mod p)

1

=
∑

k (mod p)

ep(lk)ψb(ka)− 1,

where again we subtract off the k = p term. Here

ψb(n) =


1 if n ≡ 0 (mod p)

(b, p− 1) if n ≡ xb (mod p) for some x

0 otherwise.

4It is to apply the Weil bound that we must assume a 6= b, so that the polynomial hαa+lαb

is indeed a nonzero polynomial.
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Note that since (a, b) = 1, ψb(ka) = ψb(k). Trivially, if k may be written as
a bth power modulo p, so may ka. In the other direction, if k 6≡ 0 (mod p)
and ka ≡ xb (mod p) for some x, then recall that ar + bs = 1 and write
kra ≡ xrb (mod p). Then krakbs ≡ xrbkbs, and hence k ≡ (xrks)b (mod p), so
that k may also be written as a bth power modulo p. Therefore

V (p;h, l) =
∑

k (mod p)

ep(lk)ψb(k)− 1

=
∑

t (mod p)

ep(ltb)− 1.

The classical bound for such sums given in Lemma 3.6 with p - l, p > b then
gives

|V (p;h, l)| ≤ ((b, p− 1)− 1)p1/2 + 1.

Alternatively, if p|l but p - h, then for p > |a| we have

|V (p;h, l)| ≤ ((|a|, p− 1)− 1)p1/2 + 1.

If p|l and p|h then trivially

|V (p;h, l)| ≤ p ≤ p1/2(p, h, l)1/2.

The trivial bound

|V (p;h, l)| ≤ p ≤ max(|a|, b)1/2p1/2

is also sufficient for those primes p ≤ max(|a|, b).
Thus for any prime p|q,

|V (p;h, l)| ≤ ηa,bp
1/2(p, h, l)1/2,

where we may take the constant ηa,b = 2 max(|a| + b). By the multiplicative
property of V (q;h, l), we have the final bound

|V (q;h, l)| ≤ η
ν(q)
a,b q1/2(q, h, l)1/2.

5.3.2 Bounding U(w,M, q)

We may now bound U(w,M, q). Recall from (5.2) that

U(w,M, q) � H−1q−1
H−1∑
h=0

q∑
l=1

|V (q;h, l)||A(q;w,−l)|.
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Applying the bound of Lemma 5.1 to V (q;h, l), then:

U(w,M, q) � η
ν(q)
a,b H−1q−1/2

[
q∑

l=1

min(w, ‖l/q‖−1)(q, l)1/2

+
q∑

l=1

min(w, ‖l/q‖−1)
H−1∑
h=1

(q, h, l)1/2

]
.

Only when l = q is w the minimum, so we may write

U(w,M, q) � η
ν(q)
a,b H−1q−1/2

[
q−1∑
l=1

‖l/q‖−1(q, l)1/2 + wq1/2

+
q−1∑
l=1

‖l/q‖−1
H−1∑
h=1

((q, h), (q, l))1/2 + w
H−1∑
h=1

(q, h)1/2

]
.

We may bound the three sums as follows.

Lemma 5.2.
q−1∑
l=1

‖l/q‖−1(q, l)1/2 � qd(q) log q.

Proof.

q−1∑
l=1

‖l/q‖−1(q, l)1/2 ≤ 2
∑

1≤l≤q/2

q

l
(q, l)1/2

≤ 2q
∑
d|q

d1/2
∑

1≤l≤q/2
d|l

1
l

= 2q
∑
d|q

d−1/2
∑

1≤c≤q/(2d)

1
c

� qd(q) log q.

Lemma 5.3.

q−1∑
l=1

‖l/q‖−1
H−1∑
h=1

((q, h), (q, l))1/2 � Hqd(q) log q.
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Proof.
q−1∑
l=1

‖l/q‖−1
H−1∑
h=1

((q, h), (q, l))1/2 ≤ 2
∑

1≤l≤q/2

q

l

H−1∑
h=1

((q, h), (q, l))1/2

≤ 2q
∑

1≤l≤q/2

1
l

∑
d|(q,l)

d1/2
H−1∑
h=1
d|(q,h)

1

≤ 2q
∑

1≤l≤q/2

1
l

∑
d|(q,l)

d1/2
H−1∑
h=1
d|h

1

� q
∑

1≤l≤q/2

1
l

∑
d|(q,l)

d1/2(H/d)

≤ Hq
∑

1≤l≤q/2

1
l

∑
d|(q,l)

d−1/2

≤ Hqd(q)
∑

1≤l≤q/2

1
l

� Hqd(q) log q.

Lemma 5.4.
H−1∑
h=1

(q, h)1/2 � Hd(q).

Proof.
H−1∑
h=1

(q, h)1/2 ≤
∑
d|q

d1/2
H−1∑
h=1
d|h

1

�
∑
d|q

d1/2(H/d)

� H
∑
d|q

d−1/2

� Hd(q).

It follows from these three lemmas that

U(w,M, q) � η
ν(q)
a,b

[
H−1q1/2d(q) log q +H−1w + q1/2d(q) log q + q−1/2wd(q)

]
.

Recall that H = [(q/2)M−1]. For square-free q, nν(q) = d(q)
logn
log 2 , so let τ be

the least integer with τ ≥ log ηa,b/ log 2 + 1. We have:

Proposition 5.2.

U(w,M, q) � q1/2d(q)τ log q + q−1Md(q)τw + q−1/2d(q)τw.
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5.3.3 Proof of Theorem 5.1

Dyadic summation quickly yields a bound for Nq(X,Y ). Let J be the least
integer such that J ≥ logX/ log 2. Then if Y ≤ q/2,

Nq(X,Y ) ≤
J−1∑
j=0

U(2j , Y, q)

�
J−1∑
j=0

[
q1/2d(q)τ log q + q−1Y d(q)τ2j + q−1/2d(q)τ2j

]
� q1/2(logX)d(q)τ log q + q−1XY d(q)τ + q−1/2Xd(q)τ .

Since X ≤ q we may conclude

Nq(X,Y ) � q1/2d(q)τ (log q)2 + q−1XY d(q)τ + q−1/2Xd(q)τ .

This completes the proof of Theorem 5.1.

5.4 Theorem 5.2: the mean value problem

We again examine U(w,M, q), this time using mean value properties of expo-
nential sums. In the remainder of the discussion we will assume that a is any
nonzero integer and that the integer b ≥ 1 satisfies (b, q) = 1 and a/b 6∈ Z+. (In
particular, if a > 0, we must assume b ≥ 2.)

Recall from Proposition 5.1 that

U(w,M, q) � H−1
H−1∑
h=0

∣∣∣∣∣∣∣
∑

w<n≤2w
(n,q)=1

∑
m (mod q)

mb≡na (mod q)

eq(hm)

∣∣∣∣∣∣∣ .
As in Theorem 4.2, we wish to average over a complete set of residues h modulo
q. Therefore, applying Hölder’s inequality,

U(w,M, q) �M
1
2k

1
q

q∑
h=1

∣∣∣∣∣∣∣
∑

w<n≤2w
(n,q)=1

∑
m (mod q)

mb≡na (mod q)

eq(hm)

∣∣∣∣∣∣∣
2k


1
2k

for any integer k ≥ 1. We do not specify k, but prove the theorem for any
integer k ≥ 1. This allows for the choice of optimal k in applications such as
those of Chapter 6. All implicit constants depend only upon a, b, k. We will
assume unless otherwise noted that we only consider (n, q) = 1.

Definition 5.3. For any finite set of integers I and α ∈ (Z/qZ)×, let

Nα(I) =
1
q

q∑
h=1

∣∣∣∣∣∣∣
∑
n∈I

∑
m (mod q)

mb≡αna (mod q)

eq(hm)

∣∣∣∣∣∣∣
2k

.
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We will denote N1(I) simply by N(I).

It follows immediately that

Proposition 5.3.
U(w,M, q) �M

1
2kN(I)

1
2k ,

where I = (w, 2w].

As in Chapter 4, we will bound N(I) for a more general interval of the form
I = [1, I]. (Recall that we have defined the notation (A,B] to denote the set
of integers {A < n ≤ B}.) In fact, N(I) increases as a function of the interval
I; we will see that it is sufficient to use a bound for N(I) with I = [1, 2w] in
Proposition 5.3.

We have the following equivalent representation for Nα(I).

Lemma 5.5.

Nα(I) = #{(n,m) = (n1, . . . , n2k,m1, . . . ,m2k), ni ∈ I,mi (mod q) :

mb
i ≡ αna

i (mod q) for 1 ≤ i ≤ 2k and
k∑

i=1

mi ≡
k∑

i=1

mi+k (mod q)}.

Proof. Let
S(q, h) =

∑
n∈I

∑
m (mod q)

mb≡αna (mod q)

eq(hm).

Then

Nα(I) =
1
q

q∑
h=1

|S(q, h)|2k

=
1
q

q∑
h=1

S(q, h)kS(q, h)
k
,

so that

Nα(I) =
1
q

q∑
h=1

 ∑
n1,...,nk∈I

∑
m1,...,mk

mb
i
≡αna

i
(mod q)

eq

(
k∑

i=1

hmi

)

·

 ∑
n1,...,nk∈I

∑
m1,...,mk

mb
j
≡αna

j
(mod q)

eq

− k∑
j=1

hmj




=
∑

n1,...,n2k∈I

∑
m1,...,m2k

mb
i
≡αna

i
(mod q)

1
q

q∑
h=1

eq

(
h

(
k∑

i=1

mi −
k∑

i=1

mi+k

))
.

The result follows.
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5.4.1 The trivial bound for N(I)

We easily obtain the following trivial bound for N(I) when I is a set of consec-
utive positive integers.

Proposition 5.4. Let I = {1 ≤ n ≤ I}. Then

N(I) � (bν(q))2k−1(|a|ν(q))(I2kq−1 + I2k−1).

Proof. Fix n1, . . . , n2k−1, for which there are at most I2k−1 choices. Since q is
square-free, these determine � (bν(q))2k−1 choices for m1, . . . ,m2k−1 modulo q.
There is then one value of m2k (mod q) that satisfies the congruence

m2k ≡
k∑

i=1

mi −
k−1∑
i=1

mi+k (mod q).

For this value of m2k there are � |a|ν(q) values of n2k modulo q such that

mb
2k ≡ na

2k (mod q).

Hence there are � (|a|ν(q))(Iq−1 + 1) values for n2k ∈ I. Thus in total we
obtain

N(I) � (bν(q))2k−1(|a|ν(q))I2k−1(Iq−1 + 1).

We may easily see that this bound for N(I) gives no more than the trivial
bound for Nq(X,Y ). Writing the factor (bν(q))2k−1(|a|ν(q)) as qε, it follows from
Proposition 5.3 that

U(w,M, q) � w(qεM(w−1 + q−1))
1
2k .

This then gives the result that

Nq(X,Y ) � Y
1
2k (X1− 1

2k +Xq−
1
2k )qε.

This is never better than O(qε min(X,Y )), for X,Y ≤ q and k ≥ 1, disregarding
comparison of factors of size qε. Thus our goal is to improve on this trivial bound
for N(I).

5.4.2 Bounding N(I) by averaging

As in Theorem 4.2, we improve upon the trivial bound for N(I) by taking
advantage of averaging over h in order to average further over a set of auxiliary
primes satisfying certain criteria. Let I = {1 ≤ n ≤ I}. Fix a prime p - q with
Q < p ≤ 2Q and Q < I ≤ q, where we will specify the parameters I and Q

later.
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Proposition 5.5.

N(I) � d(q)ωkI2k−1Q−1 +
1
q

q∑
h=1

∣∣∣∣∣∣∣
∑
n∈I
p-n

∑
m (mod q)

mb≡na (mod q)

eq(hm)

∣∣∣∣∣∣∣
2k

where ωk is a positive integer depending explicitly on a, b, k.

Proof. It suffices to bound the contribution toN(I) from 4k-tuples (n,m) where
p|ni for some i. Without loss of generality, assume p|n1. There are then � Ip−1

possible values for n1 and these determine � bν(q) choices for m1, based on
mb

1 ≡ na
1 (mod q). There are at most I2k−2 choices for n2, . . . , n2k−1 and

similarly these determine � (bν(q))2k−2 choices for m2, . . . ,m2k−1. There is
then one choice for m2k modulo q that satisfies the congruence

m2k ≡
k∑

i=1

mi −
k−1∑
i=1

mi+k (mod q).

For this value of m2k there are � |a|ν(q) values of n2k modulo q such that

mb
2k ≡ na

2k (mod q).

Since I ≤ q, these are all the possible values of n2k ∈ I as well. Thus, in total
the contribution to N(I) from (n,m) with p|n1 is at most

� (bν(q))2k−1(|a|ν(q))I2k−1Q−1.

For square-free q, nν(q) = d(q)log n/ log 2. Therefore we could write

(bν(q))2k−1(|a|ν(q)) = d(q)ωk

where ωk is the least integer such that

ωk ≥ (log b/ log 2)(2k − 1) + log |a|/ log 2.

However, this is needlessly scrupulous, as any factor of d(q) will contribute only
qε to the final bound. Therefore we will use the trivial bound bν(q) ≤ d(q)b and
simply take

ωk = b(2k − 1) + |a|.

This completes the proof.

We next consider the sum over n ∈ I such that p - n. Since p - q, these
remaining n fall into the p− 1 nonzero residue classes

n ≡ fq (mod p), 0 < f < p.
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Note that for q square-free, the prime p is either expressible as a bth power
modulo q or it belongs to another of the at most bν(q) cosets of Γ/Γb, where
Γ = (Z/qZ)×. Let R1 = 1, R2, . . . , Rbν(q) be a fixed set of representatives for
these cosets. Define

I(p, f) =
(
−fq
p
,
I − fq

p

]
.

Proposition 5.6.

N(I) � d(q)ωkI2k−1Q−1 +Q2k−1

p−1∑
f=1

Nα(I(p, f)),

where α = Ra
t according as p belongs to the coset of Γ/Γb represented by Rt.

Proof. Applying Hölder’s inequality to the two innermost sums in Proposition
5.5 yields∣∣∣∣∣∣∣
∑
n∈I
p-n

∑
m (mod q)

mb≡na (mod q)

eq(hm)

∣∣∣∣∣∣∣
2k

=

∣∣∣∣∣∣∣
p−1∑
f=1

∑
n∈I

n≡fq (mod p)

∑
m (mod q)

mb≡na (mod q)

eq(hm)

∣∣∣∣∣∣∣
2k

≤ (p− 1)2k−1

p−1∑
f=1

∣∣∣∣∣∣∣
∑
n∈I

n≡fq (mod p)

∑
m (mod q)

mb≡na (mod q)

eq(hm)

∣∣∣∣∣∣∣
2k

.

Write n = fq + ps so that s ∈ I(p, f). Then the congruence mb ≡ na (mod q)
is equivalent to mb ≡ pasa (mod q). Temporarily let

S(p, f) =
1
q

q∑
h=1

∣∣∣∣∣∣∣
∑

s∈I(p,f)

∑
m (mod q)

mb≡pasa (mod q)

eq(hm)

∣∣∣∣∣∣∣
2k

.

The prime p belongs to a coset RtΓb of the quotient group Γ/Γb and so may
be written as p = Rtg

b where both Rt and g are in Γ = (Z/qZ)×. Set m = gau

so that the congruence mb ≡ pasa (mod q) is equivalent to the congruence
ub ≡ Ra

t s
a (mod q). Thus

S(p, f) =
1
q

q∑
h=1

∣∣∣∣∣∣∣∣
∑

s∈I(p,f)

∑
u (mod q)

ub≡Rat s
a (mod q)

eq(hgau)

∣∣∣∣∣∣∣∣
2k

.

Since g ∈ (Z/qZ)×, then

S(p, f) =
1
q

q∑
l=1

∣∣∣∣∣∣∣∣
∑

s∈I(p,f)

∑
u (mod q)

ub≡Rat s
a (mod q)

eq(lu)

∣∣∣∣∣∣∣∣
2k

.
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Setting α = Ra
t , we thus have

S(p, f) = Nα(I(p, f)).

Summing S(p, f) over all the residue classes corresponding to f = 1, . . . , p− 1,
we finally obtain

N(I) � d(q)ωkI2k−1Q−1 +Q2k−1

p−1∑
f=1

Nα(I(p, f)).

This result is of critical importance, as it removes any dependence on the
prime p from the argument of the exponential sum, so we may now average
N(I) over a large number of primes.

5.4.3 Averaging the good set over primes

As in Theorem 4.2, we first separate the quantity Nα(I(p, f)) into two parts,
according to a distinction between “good” and “bad” 2k-tuples (n1, . . . , n2k).
Define for any real number t,

I(t) = (−qt, IQ−1 − qt]

and let Nα(t) = Nα(I(t)). Since I(p, f) ⊆ I(f/p) and Nα(I) increases with the
set I, then

Nα(I(p, f)) ≤ Nα(I(f/p)) = Nα(f/p).

Definition 5.4. For disjoint sets G and B partitioning the set of 2k-tuples
n = (n1, . . . , n2k), define

NG
α (t) = #{(n,m),n ∈ G,ni ∈ I(t),mi (mod q) : (n, q) = 1, (m, q) = 1,

mb
i ≡ αna

i (mod q) for 1 ≤ i ≤ 2k, and
k∑

i=1

mi ≡
k∑

i=1

mi+k (mod q)},

NB
α (t) = #{(n,m),n ∈ B,ni ∈ I(t),mi (mod q) : (n, q) = 1, (m, q) = 1,

mb
i ≡ αna

i (mod q) for 1 ≤ i ≤ 2k, and
k∑

i=1

mi ≡
k∑

i=1

mi+k (mod q)}.

We will average only NG
α (t) over primes, since the set B of bad 2k-tuples

will be sufficiently small for NB
α (t) to admit a trivial bound.

From these definitions, we immediately obtain:

N(I) � d(q)ωkI2k−1Q−1 +Q2k−1

p−1∑
f=1

NB
α

(
f

p

)
+Q2k−1

p−1∑
f=1

NG
α

(
f

p

)
,

where α = Ra
t , as in Proposition 5.6.
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Definition 5.5. Let
Kα = max

t
NB

α (t).

We have the following result:

N(I) � d(q)ωkI2k−1Q−1 +Q2kKα +Q2k−1

p−1∑
f=1

NG
α

(
f

p

)
.

We now average over a set of auxiliary primes p. By the prime number
theorem, there are O(Q(logQ)−1) primes p in the range Q < p ≤ 2Q. Of these,
O(log q/ log log q) are factors of q. We would like to average over as large a set
of primes as possible; therefore given q and Q, consider the largest of the at
most bν(q) sets

Pt = {Q < p ≤ 2Q, p - q : p ∈ RtΓb}.

Assuming Q ≥ c log q for some constant c, we are then averaging over a set of
� Q(bν(q) logQ)−1 primes. Therefore

N(I) � d(q)ωkI2k−1Q−1 +Q2kKα + bν(q)Q2k−2(logQ)
∑

p

p−1∑
f=1

NG
α

(
f

p

)
,

where the sum is over primes p in the largest set Pt, with α accordingly defined
to be α = Ra

t .
Let I ′(t) = (−qt, 2IQ−1−qt] and defineNG′

α (t) in analogy toNG
α (t), the only

alteration being that we require ni ∈ I ′(t). It follows exactly as in Propositions
4.11 and 4.13 of Section 4.6.3 that we may rearrange the intervals we consider
so that the sum of NG

α (t) is only dependent on the set Pt of auxiliary primes
over which we average in terms of the value of α. We obtain

N(I) � d(q)ωkI2k−1Q−1 +Q2kKα + bν(q)Q2k−1I−1(logQ)
2q−1∑
j=1

NG′

α

(
j

q

)
.

Definition 5.6. Let Lα denote the number of solutions (n,m, j) with n ∈ G

and

ni ∈ (0, 2IQ−1] for i = 1, . . . , 2k,

mi (mod q) for i = 1, . . . , 2k,

0 ≤ j < q

such that for each i = 1, . . . , 2k, (ni, q) = 1, (mi, q) = 1,

mb
i ≡ α(ni − j)a (mod q),

and
k∑

i=1

mi ≡
k∑

i=1

mi+k (mod q).
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We summarise the results of this section with the following proposition:

Proposition 5.7.

N(I) � d(q)ωkI2k−1Q−1 +Q2kKα + bν(q)Q2k−1I−1(logQ)Lα,

where α = Ra
t , with Rt a fixed representative for the largest set Pt.

5.5 The good and bad sets

It remains to estimate Lα and Kα. The difficulty lies in defining the sets G and
B and estimating Lα. Let Lα(n; q) represent the number of solutions (m, j)
corresponding to a fixed 2k-tuple n ∈ G. Then Lα(n; q) is multiplicative with
respect to q, thus for square-free q =

∏
p we may write

Lα(n; q) =
∏

Lα(n; p).

We will bound Lα(n; p) for each prime p|q by bounding the number of roots of
a certain polynomial. Once we have determined the conditions we must impose
on n for the polynomial to have a small number of roots in a certain sense, it
will be clear how to define the good and bad sets G and B. For technical reasons
we consider the cases when the exponent a > 0 and a < 0 separately.

5.5.1 Positive exponent: defining the polynomial Hα(n, j)

First assume that a > 0. Let

β =

b for b even,

2b for b odd.

Let F (Y) be the polynomial in Z[X1, . . . , X2k, Y1, . . . , Y2k, Z] defined by

F (Y) =
∏
{ω}

F{ω}(Y) =
∏

ω2,...,ω2k

(Y1 + ξω2Y2 + · · ·+ ξω2kY2k),

where ξ is a primitive βth root of unity and the (2k − 1)-tuples of exponents
ω2, . . . , ω2k range over all values in the set {0, . . . , β − 1}. Thus the coefficients
ξω2 , . . . , ξω2k attain all possible sequences of {+1,−1} of length 2k − 1. In
particular, one factor F{ω}(Y) of the polynomial F (Y) has coefficients of +1
for Y1, . . . , Yk, and coefficients of −1 for Yk+1, . . . , Y2k. It is this factor in which
we are most interested.

Imagine for the moment that we could take fractional powers modulo a
prime p; fix n and substitute α1/b(n− j)a/b for Y. Then this particular factor
F{ω}(α1/b(n− j)a/b) would vanish whenever

k∑
i=1

α1/b(ni − j)a/b −
k∑

i=1

α1/b(ni+k − j)a/b ≡ 0 (mod p).
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Thus we can think of the number of roots of F (α1/b(n − j)a/b) as giving an
upper bound for the number of values j for which there is a vector m such that
(n,m, j) is a solution satisfying the criteria given in the definition of Lα.

As we cannot actually take such fractional powers modulo p, we have to
be more careful. However, the polynomial F as defined does have a special
property that allows us to proceed with this line of argument. For note that
F (Y) is in fact a polynomial in Yb = (Y b

1 , . . . , Y
b
2k). Therefore if we have the

relation
Y b

i = α(Xi − Z)a

for each i = 1, . . . , 2k, then there exist polynomials G and Hα such that

F (Y) = G(Yb) = G(α(X− Z)a) = Hα(X, Z).

Specifically, for a fixed vector n, if m is such that

mb
i ≡ α(ni − j)a (mod p)

for each i = 1, . . . , 2k, and if

F (m) ≡ 0 (mod p),

then
Hα(n, j) ≡ 0 (mod p).

Therefore it is sufficient to bound the number of roots j of Hα(n, j) modulo p,
as then

Lα(n; p) ≤ b2k#{roots j of Hα(n, j) modulo p}, (5.3)

where the factor of b2k arises from the number of ways of choosing the 2k-tuple
m modulo p.

5.5.2 The vanishing of Hα(n, j) over C

Studying those n for which Hα(n, j) can vanish identically over C makes it clear
how to define the good set G of those n for which Hα(n, j) has few roots, and
the bad set B of those n for which Hα(n, j) can have arbitrarily many roots.
In the following section we then study the number of roots Hα(n, j) can have
modulo a prime p, for n ∈ G.

Suppose that Hα(n, z) is identically zero for z ∈ C. Then one of the factors
in the product defining Hα(n, z) must vanish identically over C, so for some set
of exponents ω1, . . . , ω2k, with ω1 = 0,

2k∑
i=1

ξωi(ni − z)a/b = 0 (5.4)
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for all z ∈ C. Expand each term in (5.4) as a power series,

(ni − z)a/b = (−z)a/b(1− ni/z)a/b

= c0(−z)a/b + c1(−z)a/b−1ni + c2(−z)a/b−2n2
i + · · · ,

where cl 6= 0 for all l ≥ 0.5 We then see that in order for all the coefficients of
z in (5.4) to be zero, we must have

E(m) =
2k∑
i=1

ξωinm
i = 0,

for all integers m ≥ 0.
Regard E(0) = 0, . . . , E(2k − 1) = 0 as a system of linear equations in

variables ti = ξωi for 1 ≤ i ≤ 2k:

t1n
0
1 + t2n

0
2 + · · ·+ t2kn

0
2k = 0

...

t1n
2k−1
1 + t2n

2k−1
2 + · · ·+ t2kn

2k−1
2k = 0.

Construct the corresponding matrix

A =


n0

1 n0
2 · · · n0

2k

n1
1 n1

2 · · · n1
2k

...
...

...
n2k−1

1 n2k−1
2 · · · n2k−1

2k

 .

Since the vector (ξω1 , . . . , ξω2k) of all nonzero values is a solution to the equation
A(t1, . . . , t2k) = (0, . . . , 0), the Vandermonde determinant shows that∏

1≤i<h≤2k

(ni − nh) = 0.

5We observe that since a > 0 we must require b 6= 1, since otherwise the coefficients cl, of

the form

cl =
a
b
(a

b
− 1) · · · (a

b
− (l − 1))

l!
,

vanish for l > a. The proof could proceed if the exponent a were sufficiently large, a ≥ 2k−1,

for the optimal choice of k. However, one would not know this were the case without already

applying the result of the theorem.

In fact, this is an indication of a deeper problem. We may think informally of the require-

ment in the definition of N(I) given in Lemma 5.5 as

kX
i=1

ns
i ≡

kX
i=1

ns
i+k (mod q),

where s = a/b is a rational number. In general, this generates sufficiently many conditions to

limit the number of allowable vectors n only if the resulting expansion is infinite, i.e. only if

s is negative, or is a positive non-integer. If s is a positive integer, the resulting expansion

is finite, and it is possible that too few conditions are generated to restrict the choice of n

sufficiently.
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Without loss of generality, suppose that n1 − n2 = 0. Let n1,2 = n1 = n2, so
that in the set of linear equations we may collapse the two variables t1 and t2

into one variable; for example

t1n
0
1 + t2n

0
2 + · · ·+ t2kn

0
2k = 0

becomes
(t1 + t2)n0

1,2 + · · ·+ t2kn
0
2k = 0.

(It is possible that more than two of the ni are of equal value; if so one simply
collapses all of the variables ti with equal values ni into one variable and the
reasoning proceeds in a similar fashion.) If ξω1 + ξω2 6= 0, then we obtain the
(2k − 1)× (2k − 1) matrix

A′ =


n0

1,2 n0
3 · · · n0

2k

n1
1,2 n1

3 · · · n1
2k

...
...

...
n2k−1

1,2 n2k−1
3 · · · n2k−1

2k

 ,

and again the Vandermonde determinant shows that ni−nh = 0 for some i 6= h.
If ξω1 + ξω2 = 0, then examine the (2k− 2)× (2k− 2) matrix omitting the first
two columns of A entirely. (Again, if more than two of the ni are of equal
value and the corresponding roots of unity ξωi sum to zero, simply omit all
the appropriate columns of A.) Proceeding in this fashion, one shows that if
Hα(n, z) vanishes identically over C, then for each i = 1, . . . , 2k, there exists
h 6= i such that ni − nh = 0.

Therefore we choose the sets B and G as follows.

Definition 5.7. Let

B = {n : ∀i, 1 ≤ i ≤ 2k, ∃h 6= i, 1 ≤ h ≤ 2k, s.t. ni = nh}

G = {n : n /∈ B}.

For each n and each 1 ≤ i ≤ 2k, define

Ai(n) =
∏
h6=i

(ni − nh).

Then if n ∈ G, there exists some 1 ≤ i ≤ 2k such that Ai(n) 6= 0.

5.5.3 The vanishing of Hα(n, j) modulo p

While Hα(n, j) cannot vanish identically over C for n ∈ G as defined above, it
is still possible that Hα(n, j) could vanish identically modulo p for arbitrarily
large primes p dividing q.
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The highest degree possible forHα(n, j) with respect to j is δk = (a/b)β2k−1.

There are thus at most δk roots j modulo p, unless the polynomial vanishes
identically modulo p. Suppose a prime p divides all the coefficients of terms of
the form α(ni − j)a in the expanded product Hα(n, j). (Note that necessarily
α = Ra

t ∈ (Z/qZ)×, so that p - α.) The coefficients of these terms arise from
multiplying the β2k−1 factors of Hα(n, j) and are hence dependent only upon b
and k. Thus there exists a constant cb,k such that if p divides all the coefficients
of terms of the form α(ni − j)a in the expanded product, then p ≤ cb,k.

For p > cb,k, it is still possible that Hα(n, j) could vanish identically modulo
p because of congruences among the values ni modulo p. We will show that if
Hα(n, j) vanishes identically modulo p for a sufficiently large prime p, then n
is “bad” modulo p in the following sense:

Lemma 5.6. Suppose the polynomial Hα(n, j) vanishes identically modulo a
prime p > Pa,b,k for a constant Pa,b,k explicitly dependent on a, b, k. Then
p|Ai(n) for all 1 ≤ i ≤ 2k.

Proof. Fix n and regard Hα(n, z) as a polynomial in Z[z]. If Hα(n, z) vanishes
identically modulo p, then so does Hα(n, zb). Set d = aβ2k−1 and consider the
polynomial J(z) = α−β2k−1/bz−dHα(n, zb) in Z[z−b]. We may think of J(z) as
a product over all possible sets of exponents {ω} = {ω1 = 0, . . . , ω2k},

J(z) =
∏
{ω}

J{ω}(z), (5.5)

where each factor is of the form

J{ω}(z) = ξω1

(
1− n1

zb

)a/b

+ · · ·+ ξω2k

(
1− n2k

zb

)a/b

.

Each factor J{ω}(z) may be regarded as a formal power series over Q,

J{ω}(z) =
∞∑

m=0

v{ω},m(z−b)m.

For each factor J{ω}(z) and an integer M ≥ 1 we will choose later, define the
truncation

JM
{ω}(z) =

M∑
m=0

v{ω},m(z−b)m,

and let
JM (z) =

∏
{ω}

JM
{ω}(z). (5.6)

Let K be the field K = Q(v{ω},m), where {ω} ranges over all sets of expo-
nents, and 0 ≤ m ≤M (i.e. we simply adjoin the coefficients of each truncated
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factor JM
{ω}). Let p be a fixed prime ideal above p in K. Then JM (z) may be

written as a sum
JM (z) = PM (z) +QM (z),

where PM (z) is a polynomial of degree M defined over OK, and QM (z) is also
a polynomial over OK, but of terms of degree strictly greater than M .

By assumption, J(z) is identically zero modulo p. Equating coefficients
in equation (5.5), one sees that each coefficient of PM (z) is zero modulo p.
Thus there exists a factor JM

{ω}(z) such that all its coefficients v{ω},m with
0 ≤ m ≤ M/N are zero modulo p, where N = β2k−1 is the number of factors
in the product (5.6) defining JM (z). Each coefficient vm (where we understand
the set {ω} to be fixed, and drop the subscript) is of the form

vm = (−1)m
a
b (a

b − 1) · · · (a
b − (m− 1))

m!

2k∑
i=1

ξωinm
i .

Choose M = N(2k − 1). We also require that the prime p satisfies p > b,
p > 2k−1 and p - a(a− b) · · · (a− b(2k−2)). So for a sufficiently large constant
Pa,b,k defined in terms of a, b, k (which we also choose to be at least cb,k), if
p > Pa,b,k, then since vm = 0 modulo p for each 0 ≤ m ≤ 2k − 1, we have

E(m) =
2k∑
i=1

ξωinm
i = 0

modulo p for each 0 ≤ m ≤ 2k − 1.
As when studying the vanishing of Hα(n, j) over C, we construct the matrix

A =


n0

1 n0
2 · · · n0

2k

n1
1 n1

2 · · · n1
2k

...
...

...
n2k−1

1 n2k−1
2 · · · n2k−1

2k

 .

Once again, the Vandermonde determinant shows that∏
i<h

(ni − nh) = 0 modulo p,

so that there exists i 6= h such that ni − nh = 0 modulo p. Proceeding in the
same fashion as before, one shows that for each 1 ≤ i ≤ 2k there exists some
h 6= i, 1 ≤ h ≤ 2k, such that ni − nh = 0 modulo p. In each case, since ni − nh

is a rational integer, in fact p|(ni − nh). Thus p|Ai(n) for all 1 ≤ i ≤ 2k. This
completes the proof.

5.5.4 Negative exponent: defining the polynomial H̄α(n, j)

We next consider the case when a < 0. We proceed with an argument similar
to the case when the exponent a > 0, but slightly more complicated. We first
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define a polynomial H̄α(n, j) analogous to Hα(n, j). Let β and F (Y) be as
before, and let

F̄ (Y) =

(
2k∏
i=1

Y −1
i

)N

F (Y),

where N = β2k−1 is the number of factors in the product over {ω} defining
F (Y). If we have the relation

Y b
i = α(Xi − Z)−|a|

for each i = 1, . . . , 2k, then there exist polynomials Ḡ and H̄α such that

F̄ (Y) = Ḡ(Yb) = Ḡ(α(X− Z)−|a|) = H̄α(X, Z).

Informally, we may think of the polynomial H̄α as the product

H̄α(n, j) = H̄(1)
α (n, j)H̄(2)

α (n, j)

=

(
2k∏
i=1

α−1/b(ni − j)|a|/b

)N

·
∏
{ω}

(
ξω1α1/b(n1 − j)−|a|/b + · · ·+ ξω2kα1/b(n2k − j)−|a|/b

)
,

or as

H̄α(n, j) =
∏
{ω}

ξω1α−(2k−1)/b
∏
i 6=1

(ni − j)|a|/b + · · ·+ ξω2kα−(2k−1)/b
∏
i 6=2k

(ni − j)|a|/b

 .

In particular, if n is fixed and m is such that

mb
i ≡ α(ni − j)−|a| (mod p)

for each i = 1, . . . , 2k, and if

F̄ (m) ≡ 0 (mod p),

then
H̄α(n, j) ≡ 0 (mod p).

Therefore it is once again sufficient to bound the number of roots j of H̄α(n, j)
modulo p.

5.5.5 The vanishing of H̄α(n, j) over C

Suppose that H̄α(n, z) is identically zero for z ∈ C. Then either H̄(1)
α (n, z) or

H̄
(2)
α (n, z) must vanish identically over C. Visibly the coefficient of (−z)2kN(|a|/b)
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in the expansion of H̄(1)
α (n, z) is 1, thus it must be that H̄(2)

α (n, z) vanishes iden-
tically over C. As in the case a > 0, it follows that for some set of exponents
ω1, . . . , ω2k, with ω1 = 0,

2k∑
i=1

ξωi(ni − z)−|a|/b = 0 (5.7)

for all z ∈ C. Using an argument analogous6 to that in the case a > 0, it follows
that if H̄(2)

α (n, z) vanishes identically over C, then for each i = 1, . . . , 2k, there
exists h 6= i such that ni − nh = 0. Therefore we may choose the sets B and G
as before. We also define Ai(n) for each i = 1, . . . , 2k as before.

5.5.6 The vanishing of H̄α(n, j) modulo p

Thus H̄α(n, j) cannot vanish identically over C for n ∈ G, but it is still possible
that H̄α(n, j) could vanish identically modulo p for arbitrarily large primes p
dividing q.

The highest degree possible for H̄α(n, j) is δ̄k = (|a|/b)(2k− 1)β2k−1. There
are thus at most δ̄k roots j modulo p, unless the polynomial vanishes identically
modulo p. Once again, there is a constant c̄b,k such that if p divides all the
coefficients of terms of the form α(ni−j)|a| in the expanded product of H̄α(n, j),
then p ≤ c̄b,k. We may prove a lemma analogous to Lemma 5.6, showing that
if H̄α(n, j) vanishes identically modulo p for a sufficiently large prime p, then n
is “bad” modulo p in the following sense:

Lemma 5.7. Suppose the polynomial H̄α(n, j) vanishes identically modulo a
prime p > P̄a,b,k for a constant P̄a,b,k explicitly dependent on a, b, k. Then
p|Ai(n) for all 1 ≤ i ≤ 2k.

Proof. Fix n and regard H̄α(n, z) as a polynomial in Z[z]. If H̄α(n, z) vanishes
identically modulo p, then so does H̄α(n, zb). Set d̄ = |a|(2k − 1)β2k−1 and
consider the polynomial J̄(z) = α(2k−1)N/bz−d̄H̄α(n, zb) in Z[z−b]. We may
think of J̄(z) as a product over all sets of exponents {ω} = {ω1 = 0, . . . , ω2k},

J̄(z) =
∏
{ω}

J̄{ω}(z), (5.8)

where each factor is of the form

J̄{ω}(z) = J̄
(1)
{ω}(z)J̄

(2)
{ω}(z)

=

(
2k∏
i=1

(
1− ni

zb

)|a|/b
)

·
(
ξω1

(
1− n1

zb

)−|a|/b

+ · · ·+ ξω2k

(
1− n2k

zb

)−|a|/b
)
,

6Note that in this case we may have b = 1, since the expansion of the resulting series is

still infinite, since a < 0.
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or alternatively,

J̄{ω}(z) =

ξω1
∏
i 6=1

(
1− ni

zb

)|a|/b

+ · · ·+ ξω2k
∏
i 6=2k

(
1− ni

zb

)|a|/b

 .

Each factor J̄{ω}(z) may be regarded as a product of the formal power series
for J̄ (1)

{ω}(z) and J̄ (2)
{ω}(z) over Q. As before, we define Mth power truncations of

each power series, which we denote by J̄ (1),M
{ω} (z) and J̄ (2),M

{ω} (z), and let

J̄M (z) =
∏
{ω}

J̄M
{ω}(z) =

∏
{ω}

J̄
(1),M
{ω} (z)J̄ (2),M

{ω} (z). (5.9)

Let K represent the field formed by adjoining the coefficients of each truncated
factor to Q, and let p be a fixed prime ideal above p in K. Then J̄M (z) may be
written as a sum

J̄M (z) = P̄M (z) + Q̄M (z),

where P̄M (z) is a polynomial of degree M defined over OK, and Q̄M (z) is also
a polynomial over OK, but of terms of degree strictly greater than M .

By assumption, J̄(z) is identically zero modulo p. Equating coefficients in
equation (5.8), it follows that each coefficient of P̄M (z) is zero modulo p. Thus
there exists a factor J̄M

{ω}(z) such the coefficients of all terms (in z−b) with
degree 0 ≤ m ≤ M/N are zero modulo p. Furthermore, for this specific factor,
it must be that at least one of J̄ (1),M

{ω} (z) and J̄ (2),M
{ω} (z) has the property that the

coefficients of all terms with degree 0 ≤ m ≤M/2N are zero modulo p. Visibly,
J̄

(1),M
{ω} (z) has constant term 1, so it must be that all coefficients of terms in

J̄
(2),M
{ω} (z) with degree 0 ≤ m ≤M/2N are zero modulo p.

Choosing M = 2N(2k − 1) and an appropriately large constant P̄ā,b,k, we
may argue as in the case a > 0 to conclude that for a prime p|q with p > P̄ā,b,k,
if p divides the coefficients of terms of degree 0 ≤ m ≤ 2k − 1 in the truncated
expansion J̄ (2),M

{ω} (z), then for each 1 ≤ i ≤ 2k there exists some h 6= i such that
ni − nh = 0 modulo p. In each case, since ni − nh is a rational integer, in fact
p|(ni − nh). Thus p|Ai(n) for all 1 ≤ i ≤ 2k. This completes the proof.

5.6 Final bounds for Lα and Kα

We may now estimate Lα and Kα. We need no longer distinguish between the
exponent a being positive or negative (other than in choosing certain constants),
as we have seen that we may choose the sets G and B identically in each case.

5.6.1 Estimating Lα

For each n ∈ G, Ai(n) 6= 0 for at least one value 1 ≤ i ≤ 2k. Let

Gi = {n ∈ G : Ai(n) 6= 0},
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so that

G =
2k⋃
i=1

Gi.

Proposition 5.8. If n ∈ Gi then for any p|q,

Lα(n; p) ≤ dηk(p)b
2k(p,Ai(n)),

where ηk = max(Pa,b,k, P̄ā,b,k, δk, δ̄k).

Proof. First consider the case a > 0. If p - Ai(n), then by Lemma 5.6, Hα(n, j)
can only vanish identically modulo p if p ≤ Pa,b,k. If the polynomial is not
identically zero modulo p then it has at most δk roots, where δk = (a/b)β2k−1

is its highest possible degree. Thus if p - Ai(n), then Hα(n, j) has at most
γk = max(Pa,b,k, δk) roots. It then follows from (5.3) that

Lα(n; p) ≤ dγk(p)b
2k,

using the fact that l = dl(p) for any integer l ≥ 1. If p|Ai(n) then there can be
at most p roots of Hα(n, j). Thus, regardless of whether p divides Ai(n) or not,

Lα(n; p) ≤ dγk(p)b
2k(p,Ai(n)).

Alternatively, if a < 0, then using Lemma 5.7, we obtain the analogous result:

Lα(n; p) ≤ dγ̄k(p)b
2k(p,Ai(n)),

where γ̄k = max(P̄a,b,k, δ̄k).

We may thus bound Lα as follows:

Lα ≤
2k∑
i=1

∑
n∈Gi

Lα(n; q)

�
2k∑
i=1

∑
n∈Gi

∏
Lα(n; p)

�
2k∑
i=1

∑
n∈Gi

∏
dηk(p)b

2k(p,Ai(n))

�
2k∑
i=1

d(q)ηk+2kb
∑
n∈Gi

(q, Ai(n)).

We bound the inner sum over n ∈ Gi by an argument similar to that of
Proposition 4.17 in Chapter 4.

Proposition 5.9. For each i = 1, . . . , 2k,∑
n∈Gi

(q, Ai(n)) � d(q)2k−1(IQ−1)2k.
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Proof. Without loss of generality, let i = 1. Let αh = (q, n1 − nh) for each
h > 1, so that

(q, A1(n)) =
(
q,
∏

αh

)
.

Then ∑
n∈G1

(q, A1(n)) ≤
∑
αh|q

∏
αh

∑
n

αh|(n1−nh)

1.

Since A1(n) 6= 0 then nh 6= n1 for all h > 1. So for a fixed value of n1, for
which there are 2IQ−1 possible choices, the conditions 0 < nh ≤ 2IQ−1 and
αh|(n1 − nh) give � 2IQ−1α−1

h choices for each nh, since necessarily nh 6= n1.
Thus ∑

n∈G1

(q, A1(n)) �
∑
αh|q

∏
αh · (2IQ−1)

∏
h>1

(
2IQ−1

αh

)
Therefore ∑

n∈G1

(q, A1(n)) � (IQ−1)2k
∑
αh|q
h>1

1

� d(q)2k−1(IQ−1)2k.

The final bound for Lα follows immediately.

Proposition 5.10.

Lα � d(q)ηk+2kb+2k−1(IQ−1)2k.

5.6.2 Estimating Kα

The bound for Kα follows easily from the definition of the set B.

Proposition 5.11.
Kα � d(q)2kb(IQ−1)k.

Proof. Consider an element n ∈ B. Since for each i = 1, . . . , 2k there exists
j 6= i such that ni = nj , then it is possible to choose only k distinct ni, and
then the remaining k values must be equal to one of those already chosen. There
are at most (IQ−1)k ways to chose k of the ni, and then there are at most k!
ways to choose the remaining k of the ni. Once the 2k-tuple n has been chosen,
there are � (bν(q))2k choices for the 2k-tuple m. This gives

NB
α (t) � k!(bν(q))2k(IQ−1)k,

independent of t. Therefore,

Kα = max
t
NB

α (t) � d(q)2kb(IQ−1)k.
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5.6.3 The final bound for N(I)

We summarise these results in the following proposition, the final bound for
N(I).

Proposition 5.12. Let q be a square-free positive integer. Let I = {1 ≤ n ≤ I}
where I ≤ q

k+1
2k . Choose Q = 1

8I
k−1
k+1 . Then for any k ≥ 1,

N(I) � d(q)τk(log q)I
2k2
k+1 ,

where τk depends only on a, b, k.

Proof. Recall from Proposition 5.7 that

N(I) � d(q)ωkI2k−1Q−1 +Q2kKα + bν(q)Q2k−1I−1(logQ)Lα.

The bounds for Lα and Kα given in Propositions 5.10 and 5.11 then show that

N(I) � d(q)ωkI2k−1Q−1+d(q)2kbIkQk+bν(q)d(q)ηk+2kb+2k−1(logQ)I2k−1Q−1,

independent of the value of α. This was proved under the conditions

c log q ≤ Q < I ≤ q,

8IQ ≤ q.

Choosing I and Q as in the hypothesis of the proposition, these conditions are
satisfied. To simplify notation, set

τk = max(ωk, 2kb, b+ ηk + 2kb+ 2k − 1).

We may conclude
N(I) � d(q)τk(log q)I

2k2
k+1 .

5.6.4 Proof of Theorem 5.2

We may now prove Theorem 5.2. By Proposition 5.3,

U(w,M, q) �M
1
2kN(I)

1
2k ,

where I = (w, 2w]. Since N(I) increases as a function of the interval, we may
in fact take I = [1, 2w], so that applying the bound of Proposition 5.12,

U(w,M, q) �M
1
2k d(q)

τk
2k (log q)

1
2kw

k
k+1 ,

where we must assume I = 2w ≤ q
k+1
2k and M ≤ q/2.

We may now give the final bound for Nq(X,Y ). Assume that X ≤ q
k+1
2k so

that the first condition given above is satisfied and Y ≤ q/2 so that the second
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condition is satisfied. Let J be the least integer such that J ≥ logX/ log 2.
Then

Nq(X,Y ) ≤
J−1∑
j=0

U(2j , Y, q)

�
J−1∑
j=0

Y
1
2k d(q)

τk
2k (log q)

1
2k (2j)

k
k+1

� X
k
k+1Y

1
2k d(q)

τk
2k (log q)

1
2k .

This concludes the proof of Theorem 5.2.



Chapter 6

Two bounds for the 3-part

of class numbers of

quadratic fields

6.1 Statement of the Theorems

In this chapter we present our first two nontrivial bounds for the 3-part of class
numbers of quadratic fields. These bounds follow from the results for N ′

q(X,Y )
given in Chapter 5. Let D be a square-free integer, positive or negative. Con-
sider h3(D), the 3-part of the class number of the quadratic field Q(

√
D).

Theorem 6.1. For any positive divisor d0 of |D|,

h3(D) � d
1/2+ε
0 + d−1

0 |D|5/4+ε + d
−1/2
0 |D|1/2+ε,

where the implied constant depends only upon ε. If the divisor d0 satisfies
|D|α � d0 � |D|β with α > 3/4 and β < 1, then

h3(D) � |D|θ,

where θ < 1/2. In particular, if d0 ≈ |D|5/6, then

h3(D) � |D|5/12+ε,

for any ε > 0.

In the general case, we prove:

Theorem 6.2. For any square-free integer D,

h3(D) � |D| 55
112+ε

for any ε > 0, where the implied constant depends only upon ε.

These theorems are the first improvements on the known trivial bound.
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6.2 Reduction of the problem

We begin by reducing the problem of bounding the 3-part to counting the num-
ber of integer points in a bounded region on a cubic surface, which we then
further reduce to counting the number of solutions of a congruence of the form
studied in Chapter 5. Theorems 6.1 and 6.2 then follow as corollaries to Theo-
rems 5.3 and 5.4, respectively.

We now restrict our attention to imaginary quadratic fields. Let d be a
square-free positive integer and consider the field Q(

√
−d) with class group

CL(−d) and class number h(−d). An integral basis for Q(
√
−d) is given by

{1, 1
2 (1 +

√
−d)} if −d ≡ 1 (mod 4) and {1,

√
−d} if −d ≡ 2, 3 (mod 4). The

discriminant ∆ of the field is equal to −d if −d ≡ 1 (mod 4) and −4d if
−d ≡ 2, 3 (mod 4).

Suppose there is a nontrivial ideal class [a] ∈ CL(−d) such that [a]3 is the
principal ideal class, so that 3|h(−d). By the Minkowski bound, there is an
integral ideal b in the ideal class [a] with

N(b) ≤ 2
π

√
|∆|.

Since b3 is principal, we may write

N(b3) =
y2 + dz2

4

for some x, y ∈ N, or
4(N(b))3 = y2 + dz2. (6.1)

An integer point on the cubic surface

4x3 = y2 + dz2 (6.2)

specifies at most O(dε) ideals b by Lemma 3.1. Thus we may obtain an upper
bound for h3(−d) by bounding the number of integer points on the surface (6.2)
with x ≤ L, where L = (4/π)d1/2, and hence y ≤ M , and z ≤ N , where
M = (16/π3/2)d3/4, and N = (16/π3/2)d1/4.

Any such integer point (x, y, z) on the surface also provides a solution (x, y)
of the congruence

4x3 ≡ y2 (mod d) (6.3)

with x ≤ L and y ≤ M . Conversely, any solution (x, y) of this congruence
specifies at most 2 integer points (x, y, z) on the cubic surface. Therefore we may
bound h3(−d) by estimating the number of solutions (x, y) to this congruence
with x and y in the specified ranges. While studying the surface (6.2) in the
form of the congruence (6.3) loses the information that z2 is indeed a square,
for now we will make this reduction.1

1In Chapter 7 we avoid this by counting the number of squares of the form 4x3 − dz2.
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As in Chapter 5, let

N ′
d(L,M) = #{x ≤ L, y ≤M : x3 ≡ y2 (mod d)}.

Let d̄ = d if d is odd and d̄ = d/2 if d is even. Then

h3(−d) � dεN ′
d̄(L

′,M ′),

where L′ = 4L, M ′ = 4M . Since d̄ is odd and square-free, we may apply Theo-
rems 5.3 and 5.4. (Note that the trivial bound N ′

d̄
(L′,M ′) = O(dε min(L′,M ′))

gives the trivial bound h3(−d) � d1/2+ε.)
It is at this point that we observe that it is crucial to our methods that

we consider imaginary, not real, quadratic fields. For suppose that we were to
perform the same analysis for the real quadratic field Q(

√
d), for d a positive

square-free integer. We would then desire to bound the number of integer points
on the cubic surface

4x3 = y2 − dz2

with x ≤ L. However, in this case restricting the size of x does not restrict the
sizes of y and z, so we are not able to consider only a bounded region.

Nevertheless, having obtained a bound for 3-part of class numbers of imagi-
nary quadratic fields, an equivalent bound holds for the 3-part of class numbers
of real quadratic fields, since the Scholz reflection principle [58] states that
log3 h3(−d) and log3 h3(+3d) differ by at most one.

It might appear that one could apply the quite general bounds obtained in
Chapter 5 in a similar manner to give a bound for the g-part hg(−d) for any
g ≥ 3. One would reduce the problem to counting the number of integer points
on the variety

4xg = y2 + dz2,

with the ranges x� d1/2, y � dg/4 and z � dg/4−1/2. Thus one would require
an upper bound for the number of solutions to the congruence

xg ≡ y2 (mod d)

with x � d1/2 and y � dg/4. However, neither Theorem 5.3 nor Theorem 5.4
may be applied for g ≥ 5, since then the range of y is greater than the modulus
d.2 Thus the methods presented here are only applicable to bounding the 3-part
of class numbers of quadratic fields.

6.3 Proof of Theorem 6.1

We first prove Theorem 6.1. By Theorem 5.3,

N ′
d̄(L

′,M ′) � d1/2+ε logL+ d−1+εLM + d−1/2+εL.

2For g = 4, we would examine the congruence xa ≡ yb (mod d) with a = 4, b = 2. In this

case we can apply neither Theorem 5.3, since (a, b) 6= 1, nor Theorem 5.4, since a/b ∈ Z+.
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With L� d1/2 and M � d3/4, this gives

h3(−d) � d1/2+ε.

Thus when applied directly, Theorem 5.3 gives only the trivial bound. However,
if we assume that d has a divisor d0 of appropriate size, we may apply Theo-
rem 5.3 to obtain a nontrivial result. The assumption of a divisor is the most
innovative aspect of Theorem 6.1.

For any divisor d0|d, let d̄0 = d0 if d0 is odd and d̄0 = d0/2 if d0 is even, so
that d̄0|d̄. Then trivially,

N ′
d̄(L

′,M ′) ≤ N ′
d̄0

(L′,M ′).

If d̄0 � d3/4 then L,M � d0 so that by Theorem 5.3,

h3(−d) � dεN ′
d̄0

(L′,M ′) � d
1/2+ε
0 + d−1

0 d5/4+ε + d
−1/2
0 d1/2+ε.

If d0 � d3/4 then even the trivial bound

h3(−d) � d1/2+ε

is sufficient to obtain the result of Theorem 6.1. By the Scholz reflection princi-
ple, we also obtain an equivalent bound for h3(+3d). This completes the proof
of Theorem 6.1.

6.4 Proof of Theorem 6.2

Theorem 6.2 is a direct corollary of Theorem 5.4. Note that L and M satisfy the
requirements L ≤ (d̄ )

k+1
2k and M ≤ d̄/2 for sufficiently large d. Thus Theorem

5.4 states that for any integer k ≥ 1,

N ′
d̄(L

′,M ′) �M
1
2kL

k
k+1 d(d)

τk
2k (log d)

1
2k ,

where τk and the implied constant depend only on k. Thus

N ′
d̄(L

′,M ′) � d
4k2+3k+3
8k(k+1) +ε.

Choosing k = 6 or k = 7 so as to minimise the exponent gives the result

N ′
d̄(L

′,M ′) � d
55
112+ε,

for any ε > 0, where the implied constant depends only upon ε. Thus

h3(−d) � d
55
112+ε,

for any ε > 0. Again by the Scholz reflection principle, an equivalent bound
holds for h3(+3d). This completes the proof of Theorem 6.2.



Chapter 7

The square sieve: a third

bound for the 3-part of class

numbers

7.1 Introduction

In this chapter we prove a third nontrivial bound for the 3-part of class numbers
of quadratic fields by employing the square sieve and the q-analogue of van der
Corput’s method. Once again we prove a bound for the 3-part h3(−d) of an
imaginary quadratic field Q(

√
−d), where d is a square-free positive integer, and

we obtain an equivalent result for real quadratic fields by the Scholz reflection
principle.

In Chapter 6 we reduced the problem of bounding h3(−d) for a square-free
positive integer d to counting the number of integer points within a bounded
region on the cubic surface

4x3 = y2 + dz2.

The methods we developed in Chapter 6 treated this equation as a congruence
modulo d, losing the information that z2 is in fact a square. In this chapter we
count integer points on the cubic surface directly.

As in Chapter 6, let L,M,N describe the ranges of integer solutions (x, y, z)
we consider on the cubic surface, i.e.

L = (4/π)d1/2

M = (16/π3/2)d3/4

N = (16/π3/2)d1/4.
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We could use the square sieve to count multiples of squares, dz2, of the form

4x3 − y2, (7.1)

or to count squares, y2, of the form

4x3 − dz2. (7.2)

We choose the latter approach, using the q-analogue of van der Corput’s method
to bound exponential sums resulting from the square sieve, as well as several key
estimates resulting from Weil’s proof of the Riemann hypothesis for curves over
finite fields, and Deligne’s results [13] for exponential sums in several variables.

The resulting theorem is as follows:

Theorem 7.1. Let D be a square-free integer. Consider h3(D), the 3-part of
the class number of the quadratic field Q(

√
D). Then

h3(D) � |D|27/56+ε

for any ε > 0, where the implied constant depends only upon ε.

Note that this gives a savings over the trivial bound of exactly twice that of
Theorem 6.2; however, this appears to be no more than coincidence.

7.2 The square sieve

The square sieve was introduced by Heath-Brown in [31] as a method for de-
termining the number of squares in a given sequence of integers using only
information about the distribution of those integers with respect to a set of
moduli. Specifically, consider the sequence (ω(n)) where ω is a non-negative
integer-valued function defined for each integer n, with

∑
ω(n) < ∞. Heath-

Brown proves the following result:

Lemma 7.1 (The Square Sieve). Let P be a set of P primes. Suppose that
ω(n) = 0 for n = 0 and for |n| ≥ eP . Then

∑
n

ω(n2) � P−1
∑

n

ω(n) + P−2
∑

p6=q∈P

∣∣∣∣∣∑
n

ω(n)
(
n

pq

)∣∣∣∣∣ ,
where the sums are over all positive integers n and

(
n
pq

)
is the Jacobi symbol.

We prove the following variant of the square sieve for a set A of positive
integers that are products of two primes.
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Lemma 7.2 (Square Sieve Variant). Let A = {uv : u ∈ U , v ∈ V} where
U and V are disjoint sets of primes. Let A = #A, U = #U , and V = #V.
Suppose that ω(n) = 0 for n = 0 and for |n| ≥ exp(min(U, V )). Then

∑
n

ω(n2) � A−1
∑

n

ω(n) +A−2
∑
f 6=g∈A
(f,g)=1

∣∣∣∣∣∑
n

ω(n)
(
n

fg

)∣∣∣∣∣
+ V A−2

∑
u 6=u′∈U

∣∣∣∣∣∑
n

ω(n)
( n

uu′

)∣∣∣∣∣+A−2|E(U)|

+ UA−2
∑

v 6=v′∈V

∣∣∣∣∣∑
n

ω(n)
( n

vv′

)∣∣∣∣∣+A−2|E(V)|.

The error terms E(U) and E(V) are defined by

E(U) =
∑
v∈V

∑
u 6=u′∈U

∑
n
v|n

ω(n)
( n

uu′

)
,

E(V) =
∑
u∈U

∑
v 6=v′∈V

∑
n
u|n

ω(n)
( n

vv′

)
.

Proof. Let

Σ =
∑

n

ω(n)

∑
f∈A

(
n

f

)2

.

Each n is summed with non-negative weight. In particular, if n = m2 then∑
f∈A

(
n

f

)
=
∑
f∈A

(
m2

f

)
=

∑
f∈A

(f,m)=1

1 ≥ A−
∑
f∈A

(f,m)6=1

1 � A,

where the last inequality holds as long as∑
f∈A

(f,m)6=1

1 = o(A). (7.3)

We may bound the sum in (7.3) by∑
f∈A

(f,m)6=1

1 ≤ V#{u ∈ U : u|m} � V
logm

log logm
,

or alternatively, by U(logm/ log logm). Thus (7.3) holds as long as w(n) = 0
for |n| ≥ exp(min(U, V )).

Then
Σ � A2

∑
n

ω(n2). (7.4)
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But also

Σ =
∑

f,g∈A

∑
n

ω(n)
(
n

fg

)

=
∑
f∈A

∑
n

ω(n)
(
n

f2

)
+
∑
f 6=g∈A
(f,g)=1

∑
n

ω(n)
(
n

fg

)

+
∑
f 6=g∈A
(f,g)6=1

∑
n

ω(n)
(
n

fg

)
. (7.5)

For f = uv and g = u′v′, if f 6= g and (f, g) 6= 1 then either (f, g) = u or
(f, g) = v. Thus the last term in (7.5) may be broken into two sums

S(U) + S(V) =
∑
v∈V

∑
u 6=u′∈U

∑
n
v-n

ω(n)
( n

uu′

)
+
∑
u∈U

∑
v 6=v′∈V

∑
n
u-n

ω(n)
( n

vv′

)
.

The sum S(U) may be written as a main term M(U), summing over all positive
integers n, minus a correction term E(U):

S(U) = M(U)−E(U) = V
∑

u 6=u′∈U

∑
n

ω(n)
( n

uu′

)
−
∑
v∈V

∑
u 6=u′∈U

∑
n
v|n

ω(n)
( n

uu′

)
.

Analogously, we may write S(V) = M(V)− E(V). Then in (7.5),

Σ � A
∑

n

ω(n) +
∑
f 6=g∈A
(f,g)=1

∣∣∣∣∣∑
n

ω(n)
(
n

fg

)∣∣∣∣∣
+ V

∑
u 6=u′∈U

∣∣∣∣∣∑
n

ω(n)
( n

uu′

)∣∣∣∣∣+ |E(U)|

+ U
∑

v 6=v′∈V

∣∣∣∣∣∑
n

ω(n)
( n

vv′

)∣∣∣∣∣+ |E(V)|.

The result then follows by comparison with (7.4).

Definition 7.1. Let

ω(n) = #{x, z ∈ N : n = 4x3 − dz2 : x ≤ L, z ≤ N},

and
T (d) = {x, y, z ∈ N : y2 = 4x3 − dz2 : x ≤ L, y ≤M, z ≤ N}.

Then
h3(−d) � dεT (d). (7.6)

Furthermore,

T (d) =
∞∑

n=1

ω(n2).
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We proceed to bound T (d) using the variant of the square sieve we derived in
Lemma 7.2.

We first define the set A over which we will sieve. Let Q be a parameter
that we will fix later; for now think of c log d ≤ Q ≤ d for some constant c. Let
α, β be two positive real numbers with α+ β = 1.

Definition 7.2. Let U ,V,A be sets of sizes U, V,A, respectively, defined by

U = {primes u - d : c0Qα < u ≤ 2c0Qα}

V = {primes v - d : c1Qβ < v ≤ 2c1Qβ}

A = {uv : u ∈ U , v ∈ V}.

We will choose the constants c0, c1 later so that the sets U and V are disjoint;
we may further assume that U and V contain only odd primes. The number of
primes in the range c0Qα < u ≤ 2c0Qα is O(Qα(logQ)−1), and of these primes,
O(log d/ log log d) divide d. Assuming that Q ≥ c log d for some constant c,
then U � Qα(logQ)−1 and similarly V � Qβ(logQ)−1. Thus the set A is of
cardinality A = UV � Q(logQ)−2.

Definition 7.3. For positive integers a, b with (a, b) = 1, let

C(d, a, b) =
∑

n

ω(n)
( n
ab

)
.

Applying Lemma 7.2 with the sets A,U ,V as defined above, we obtain

T (d) � A−1
∑

n

ω(n) +A−2
∑
f 6=g∈A
(f,g)=1

|C(d, f, g)|

+ V A−2
∑

u 6=u′∈U

|C(d, u, u′)|+A−2|E(U)|

+ UA−2
∑

v 6=v′∈V

|C(d, v, v′)|+A−2|E(V)|. (7.7)

We will refer to the sum over f 6= g ∈ A with (f, g) = 1 as the main sieve, and
to the sums over u 6= u′ ∈ U and v 6= v′ ∈ V as the prime sieves over the sets
U and V, respectively. The main sieve will dominate the contributions of both
the prime sieves and the error terms.

The first term in (7.7), to which we will refer as the leading term, is bounded
trivially by

A−1
∑

n

ω(n) � A−1LN � d3/4Q−1(logQ)2. (7.8)

Thus it is clear that in order to attain a nontrivial bound T (d) � dθ, with
θ < 1/2, we must have at least Q = d1/4+δ for some δ > 0. We will choose the
parameters Q and α, β so as to balance the contributions of the leading term
and the main sieve.
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It is at this point that we may see that an application of the original square
sieve as stated in Lemma 7.1 results in only the trivial bound for h3(−d). In
this case, the square sieve method would only give a savings over the trivial
bound if both the ranges under consideration were greater than the square-root
of the modulus (as the method relies on extending both ranges to a full set of
residues). In the case of Lemma 7.1, the modulus is of size

√
pq ≈ Q. The

leading term in Lemma 7.1 is the same as in (7.7), therefore we would again
have to choose Q to be at least of size d1/4+δ for some δ > 0. In our case, only
the range L� d1/2 would satisfy L ≥ √pq; the range N � d1/4 is too small.1

Sieving over products of primes, as in the square sieve variant of Lemma 7.2,
is the critical innovation of our methods. We choose the sets U and V so that
each element in A is the product of a “large” prime and a “small” prime. The
q-analogue of van der Corput’s method then allows us to reduce the effective
modulus of certain exponential sums from the full modulus of an element in
A to the comparatively smaller modulus of the larger prime. We choose the
parameters Q and α, β so that even the smallest range N � d1/4 is larger than
the square-root of this new effective modulus.

7.2.1 The general term C(d, a, b)

Our main goal is to estimate the term C(d, a, b). First note that

C(d, a, b) =
∑
x≤L
z≤N

(
4x3 − dz2

ab

)
,

where
(

n
ab

)
is the Jacobi symbol. One approach to bounding this sum would be

to extend the ranges of both x and z to complete sets of residues modulo ab.
However, it is only advantageous to extend to a complete set of residues modulo
ab if the initial range of the variable is at least

√
ab. If a, b are elements f, g ∈ A,

the range L� d1/2 satisfies L ≥
√
fg, while N � d1/4 does not. Therefore, at

this stage we only extend the range of x.
Write

C(d, a, b) =
∑
z≤N

ab∑
α=1

(
4α3 − dz2

ab

) ∑
x≤L

x≡α (mod ab)

1

=
∑
z≤N

ab∑
α=1

(
4α3 − dz2

ab

)
1
ab

∑
x≤L

ab∑
k=1

eab(k(α− x)).

1We may also see that it is advantageous to count squares of the form (7.2) rather than

counting multiplies of squares, dz2, of the form (7.1) with x ≤ L and y ≤ M . In this case the

leading term in (7.7) would be of size A−1LM ≈ d5/4Q−1(log Q)2, which would force Q to

be at least of size d3/4+δ for some δ > 0. Then not even the largest range M � d3/4 would

satisfy M ≥ √
pq.
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For an odd positive integer r - d, let

S(d, r; k, z) =
r∑

α=1

(
4α3 − dz2

r

)
er(kα)

and let
S(d, r; k,N) =

∑
z≤N

S(d, r; k, z).

As before, let
A(ab;L,−k) =

∑
x≤L

eab(−kx),

so that
|A(ab;L,−k)| ≤ min(L, ‖k/ab‖−1).

Then

|C(d, a, b)| ≤ 1
ab

ab∑
k=1

|S(d, ab; k,N)||A(ab;L,−k)|. (7.9)

Thus the main problem is to bound sums of the form S(d, r; k,N). We achieve
a nontrivial bound for the sum S(d, r; k,N) by employing the q-analogue of van
der Corput’s method, which allows us to extend the sum over z to a complete
set of residues modulo r0, for a divisor r0|r. This gives the critical savings in
the bound for C(d, a, b).

In order to bound the term C(d, f, g) occurring in the main sieve, we consider
S(d, r; k,N) in the case where r = fg = uu′vv′ is a product of four primes. To
bound C(d, u, u′) and C(d, v, v′) in the prime sieves, we consider the slightly
easier case when r = uu′, or equivalently r = vv′, is a product of two primes.

In Section 7.3 we introduce the q-analogue of van der Corput’s method. In
Section 7.4 we estimate the contribution of the main sieve, and then in Section
7.5 we are able to estimate the contributions of the prime sieves quite quickly,
using the main results of Section 7.4. The estimates for the main sieve and the
prime sieves use both Weil’s bound for certain exponential sums and Deligne’s
results [13] for exponential sums in several variables. In Section 7.6 we then
choose Q and the parameters α and β so as to balance the contributions of the
leading term and the main sieve. We are then able to bound the error terms in
Section 7.7 using simpler arguments, involving the Weil bounds for exponential
sums, but not requiring the q-analogue of van der Corput’s method. Finally, in
Section 7.8 we present the final bound for T (d).

Before proceeding to the main body of the proof, we note that the methods
we present here do not give a nontrivial bound for the g-part hg(−d) for g > 3.
The corresponding problem is to bound

Tg(d) = {x, y, z ∈ N : y2 = 4xg − dz2 : x ≤ Lg, y ≤Mg, z ≤ Ng},
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where Lg = (4/π)d1/2 as before, but Mg � dg/4 and Ng � dg/4−1/2. Applying
the variant of the square sieve as above, we obtain a bound for Tg(d) equivalent
to (7.7), and we may even carry through the technical analysis of the term
corresponding to C(d, a, b). But the range Ng is too large. In order for the
leading term in (7.7), which in the general case is of size Q−1LgNg(logQ)2, to
be less than the trivial bound d1/2+ε, we would need to choose Q to be at least
of size dg/4−1/2+δ, for some δ > 0. As we will see in the following analysis,
the main sieve cannot accommodate such a large value for Q and still give a
nontrivial answer, if g > 3. Thus these methods give a nontrivial bound only
for h3(−d).

7.3 The q-analogue of van der Corput’s method

The simplest version of van der Corput’s method for bounding exponential sums
is based on the idea that in order to bound a sum of the form

S =
∑

A<n≤B

e(f(n))

for some real valued function f(n), one may instead study the quantity

HS =
H∑

h=1

∑
A−h<n≤B−h

e(f(n+ h)),

for an arbitrary positive integer H. Applying Cauchy’s inequality, one then
obtains

H2|S|2 ≤ (B −A+H)
∑
|h|<H

(H − |h|)
∑
n∈Ih

e(f(n+ h)e(f(n)), (7.10)

where Ih = {n : A < n, n+ h ≤ B}. In many cases the differenced function

e(f(n+ h)− f(n))

is simpler to handle than the original function e(f(n)); for example, if f(n) is a
polynomial, then f(n+ h)− f(n) has lower degree than f(n) itself. (For a full
exposition of the method, see [21].)

The q-analogue of van der Corput’s method was introduced by Heath-Brown
in [29], [32] to handle exponential sums involving not e(f(n)) but the periodic
function eq(f(n)). This method uses an inequality similar to (7.10), of the form

H2|S|2 ≤ (B −A+H)
∑
|h|<H

(H − |h|)
∑
n∈Ih

eq(f(n+ hq0))eq(f(n)),

where q0 is a divisor of q and Ih = {n : A < n, n + hq0 ≤ B}. This serves not
only to average over h but also to reduce the effective period of the function
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in the summand from q to q/q0, thus sharpening the bound. We will see that
this method is sufficient to attain a nontrivial bound for the main sieve and the
prime sieve terms.

7.4 The main sieve

We now apply the q-analogue of van der Corput’s method to the term S(d, r; k,N)
appearing in the main sieve. To fix notation, elements f 6= g ∈ A with (f, g) = 1
will be written as f = uv and g = u′v′, where u 6= u′ ∈ U , v 6= v′ ∈ V. We
further set r = fg, with the factorisation r = r0r1, where r0 = uu′ and r1 = vv′,
so that r0 ≈ Q2α and r1 ≈ Q2β .

First note that by Lemma 3.11 the sum S(d, r; k, z) is multiplicative in the
sense that

S(d, r0r1; k, z) = S(d, r0; kr1, z)S(d, r1; kr0, z), (7.11)

for (r0, r1) = 1, where r0r0 ≡ 1 (mod r1) and r1r1 ≡ 1 (mod r0).
Temporarily define

A(z) =

S(d, r; k, z) if 1 ≤ z ≤ N

0 otherwise.

Similarly define A0(z) to be equal to S(d, r0; kr1, z) if 1 ≤ z ≤ N and zero
otherwise, and A1(z) to be equal to S(d, r1; kr0, z) if 1 ≤ z ≤ N and zero
otherwise.

Then for a positive integer H, which we will choose later,

HS(d, r; k,N) =
H∑

h=1

∑
z

A(z + hr1)

=
∑

1−Hr1≤z≤N−r1

H∑
h=1

A0(z + hr1)A1(z + hr1)

=
∑

1−Hr1≤z≤N−r1

S(d, r1; kr0, z)
H∑

h=1

A0(z + hr1),

since S(d, r1; kr0, z+hr1) = S(d, r1; kr0, z) for all values of h. Thus by Cauchy’s
inequality,

H2|S(d, r; k,N)|2 ≤ Σ1Σ2,

where

Σ1 =
∑

1−Hr1≤z≤N−r1

|S(d, r1; kr0, z)|2 ,

Σ2 =
∑

z

∣∣∣∣∣
H∑

h=1

A0(z + hr1)

∣∣∣∣∣
2

.
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(Unless otherwise noted, the sum over z is taken to be over all integers; the
characteristic function A0 effectively restricts the sum to the appropriate range.)
We will further separate the sum Σ2 into two parts. Observe that

Σ2 =
H∑

h1=1

H∑
h2=1

∑
z

A0(z + h1r1)A0(z + h2r1)

=
H∑

h1=1

H∑
h2=1

∑
z

A0(z + (h1 − h2)r1)A0(z)

=
∑
|h|<H

(H − |h|)
∑

z

A0(z + hr1)A0(z).

Thus in absolute value,

|Σ2| ≤ 2H
H−1∑
h=0

∣∣∣∣∣∑
z

A0(z + hr1)A0(z)

∣∣∣∣∣ .
Let

Σ2A = H
∑

z

|A0(z)|2 ,

Σ2B = H

H−1∑
h=1

∣∣∣∣∣∑
z

A0(z + hr1)A0(z)

∣∣∣∣∣ .
Then

H2|S(d, r; k,N)|2 � Σ1 (Σ2A + Σ2B) . (7.12)

In Section 7.4.1 we bound Σ1 and Σ2A, and in Section 7.4.2 we bound Σ2B .

7.4.1 Bounding the sums Σ1 and Σ2A

By definition,
Σ1 =

∑
1−Hr1≤z≤N−r1

|S(d, r1; kr0, z)|2 .

Consider

S(d, r1; kr0, z) =
r1∑

α=1

(
4α3 − dz2

r1

)
er1(kr0α).

Since r1 = vv′ with primes v 6= v′, this further factorises as

S(d, vv′; kr0, z) = S(d, v; kr0v′, z)S(d, v′; kr0v, z),

where vv ≡ 1 (mod v′) and v′v′ ≡ 1 (mod v).
Similarly, for

Σ2A = H
∑

1≤z≤N

|S(d, r0; kr1, z)|2 ,
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where r0 = uu′ with primes u 6= u′, we have the factorisation

S(d, uu′; kr1, z) = S(d, u; kr1u′, z)S(d, u′; kr1u, z).

Thus it suffices to bound the sum

S(d, p; t, z) =
p∑

α=1

(
4α3 − dz2

p

)
ep(tα),

for any odd prime p - d and positive integers t, z.

Lemma 7.3. Let p be any odd prime p - d. Then

|S(d, p; t, z)| ≤ 3p1/2.

Proof. First assume that p > 3. In the case that p - z and p - t, the Weil bound
for hybrid sums of a multiplicative and an additive character modulo p, given
as Lemma 3.8, shows that

|S(d, p; t, z)| ≤ 3p1/2.

If p - z but p|t then

p+ S(d, p; t, z) =
p∑

α=1

[
1 +

(
4α3 − dz2

p

)]
= #{α, β (mod p) : β2 ≡ 4α3 − dz2 (mod p)}

= p+ ap,

where ap is the usual quantity associated with counting points on elliptic curves
over finite fields, with |ap| ≤ 2p1/2. (Note that we do not count the point at
infinity.) It follows that

|S(d, p; t, z)| ≤ 2p1/2.

If p|z but p - t, then

S(d, p; t, z) =
p∑

α=1

(
α

p

)
ep(tα),

so that
|S(d, p; t, z)| ≤ √p.

If p|z and p|t, then

S(d, p; t, z) =
p∑

α=1

(
4α3

p

)
=

p∑
α=1

(
α

p

)
= 0.

For p = 3 we simply use the trivial bound

|S(d, p; t, z)| = 3.
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Thus in all cases,
|S(d, p; t, z)| ≤ 3p1/2.

This immediately gives the following lemma:

Lemma 7.4.

Σ1 � (N +Hr1)r1,

Σ2A � HNr0.

7.4.2 Bounding the sum Σ2B

Define
T (d, r0;h,N) =

∑
z

A0(z + hr1)A0(z),

so that

Σ2B = H
H−1∑
h=1

|T (d, r0;h,N)|. (7.13)

By definition,

T (d, r0;h,N) =
∑

1≤z≤N−hr1

S(d, r0; kr1, z + hr1)S(d, r0; kr1, z).

It is at this point that we extend the range of the sum over z to a complete set
of residues. While extending the range to the full modulus r ≈ Q2 would be
too great a loss, our hope is that we will be able to choose the parameters Q
and α so that extending the range to the modulus r0, where r0 ≈ Q2α, is not.
Therefore we write

T (d, r0;h,N) =
r0∑

l=1

S(d, r0; kr1, l + hr1)S(d, r0; kr1, l)

·
∑

1≤z≤N−hr1

1
r0

r0∑
m=1

er0(m(l − z)).

Thus

|T (d, r0;h,N)| ≤ 1
r0

r0∑
m=1

|W (d, r0;h,m, kr1)| |A(r0;N,−m)| , (7.14)

where A(r0;N,−m) is as before and

W (d, r0;h,m, kr1) (7.15)

=
∑
l,α,β

(mod r0)

(
4α3 − d(l + hr1)2

r0

)(
4β3 − dl2

r0

)
er0(kr1α− kr1β +ml).
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A simple computation similar to that of Lemma 3.11 shows thatW (d, r0;h,m, kr1)
is multiplicative in the sense that for r0 = uu′ with (u, u′) = 1,

W (d, r0;h,m, kr1) = W (d, u;h,mu′, kr1u′)W (d, u′;h,mu, kr1u),

where uu ≡ 1 (mod u′) and u′u′ ≡ 1 (mod u). Thus it is sufficient to bound the
sum

W (d, p;h, s, t) =
∑
l,α,β

(mod p)

(
4α3 − d(l + hr1)2

p

)(
4β3 − dl2

p

)
ep(tα− tβ + sl)

for any odd prime p with p - d and p - r1.
The following key estimate, due to Katz [43], uses Deligne’s estimates for

exponential sums in several variables [13].

Lemma 7.5. Let p > 3 be a prime with p - d and p - r1. If p - h or p - s, then

|W (d, p;h, s, t)| ≤ 24p3/2.

We make the following simpler estimates in the cases when p divides both h
and s.

Lemma 7.6. Let p > 3 be a prime with p - d and p - r1. If p|h and p|s, but
p - t, then

|W (d, p;h, s, t)| ≤ 9p2.

Proof. In this case

W (d, p;h, s, t) =
∑
l,α,β

(mod p)

(
4α3 − dl2

p

)(
4β3 − dl2

p

)
ep(tα− tβ),

so that

|W (d, p;h, s, t)| ≤
∑

l (mod p)

∣∣∣∣∣∣
∑

α (mod p)

(
4α3 − dl2

p

)
ep(tα)

∣∣∣∣∣∣
2

.

We may bound the inner sum using the Weil bound for hybrid sums of a mul-
tiplicative and an additive character modulo p (Lemma 3.8), obtaining

|W (d, p;h, s, t)| ≤ 9p2.

Lemma 7.7. Let p > 3 be a prime with p - d and p - r1. If p|h, p|s, and p|t,
then:

|W (d, p;h, s, t)| = 0 if p ≡ 2 (mod 3)

|W (d, p;h, s, t)| ≤ 4p2 if p ≡ 1 (mod 3).
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Proof. In this case

W (d, p;h, s, t) =
∑
l,α,β

(mod p)

(
4α3 − dl2

p

)(
4β3 − dl2

p

)
,

so that

|W (d, p;h, s, t)| ≤
∑

l (mod p)

∣∣∣∣∣∣
∑

α (mod p)

(
4α3 − dl2

p

)∣∣∣∣∣∣
2

.

If p ≡ 2 (mod 3), then 4α3 − dl2 (for fixed l) ranges over a complete set of
residues as α does, so that the inner sum is∑

α (mod p)

(
4α3 − dl2

p

)
=

∑
β (mod p)

(
β

p

)
= 0.

Thus
|W (d, p;h, s, t)| = 0.

If p ≡ 1 (mod 3) we may argue, as in Lemma 7.3, that

p+
∑

α (mod p)

(
4α3 − dl2

p

)

is the number of points on the elliptic curve β2 = 4α3−dl2 over Fp, not counting
the point at infinity, and hence is equal to p+ ap, where |ap| ≤ 2p1/2. Thus∣∣∣∣∣∣

∑
α (mod p)

(
4α3 − dl2

p

)∣∣∣∣∣∣ ≤ 2p1/2,

so that in total
|W (d, p;h, s, t)| ≤ 4p2.

For the prime p = 3 we may simply use the trivial bound

|W (d, p;h, s, t)| ≤ 3.

We summarise all these results in the following lemma:

Lemma 7.8. Let p be an odd prime with p - d and p - r1. Then

|W (d, p;h, s, t)| ≤ 24p3/2(p, h, s)1/2.

Since the prime u does not divide r1, u′, and similarly u′ does not divide
r1, u, it follows immediately that

|W (d, u;h,mu′, kr1u′)| ≤ 24u3/2(u, h,m)1/2

|W (d, u′;h,mu, kr1u)| ≤ 24u′3/2(u′, h,m)1/2,
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so that
|W (d, r0;h,m, kr1)| � r

3/2
0 (r0, h,m)1/2.

Thus in (7.14),

|T (d, r0;h,N)| � r
1/2
0

r0∑
m=1

(r0, h,m)1/2 min(N, ‖m/r0‖−1).

By (7.13) we then have

Σ2B � Hr
1/2
0

H−1∑
h=1

r0∑
m=1

(r0, h,m)1/2 min(N, ‖m/r0‖−1)

= NHr
1/2
0

H−1∑
h=1

(h, r0)1/2 (7.16)

+ Hr
1/2
0

H−1∑
h=1

r0−1∑
m=1

‖m/r0‖−1(r0, h,m)1/2. (7.17)

Bounds for the sums (7.16) and (7.17) are given in Lemmas 5.4 and 5.3, respec-
tively, of Section 5.3.2. It follows that:

Lemma 7.9.

Σ2B � H2Nr
1/2
0 d(r0) +H2r

3/2
0 d(r0) log r0.

7.4.3 Bounding the sum S(d, r; k, N)

Assembling the results of Lemmas 7.4 and 7.9 in (7.12), it follows that

H2|S(d, r; k,N)|2 � HN(N +Hr1)r0r1

+ (N +Hr1)r1
[
H2Nr

1/2
0 d(r0) +H2r

3/2
0 d(r0) log r0

]
.

Hence

|S(d, r; k,N)|2 � H−1N(N +Hr1)r0r1 (7.18)

+ (N +Hr1)r1
[
Nr

1/2
0 d(r0) + r

3/2
0 d(r0) log r0

]
.

7.4.4 Choosing H

Suppose that Hr1 ≥ N . Then the right hand side of (7.18) is of the form

Nr0r
2
1 +HNr

1/2
0 r21d(r0) +Hr

3/2
0 r21d(r0) log r0.

This is increasing in H, so we choose H to be as small as possible, namely
H = [N/r1]. Next suppose that Hr1 ≤ N . Then the right hand side of (7.18)
is of the form

H−1N2r0r1 +N2r
1/2
0 r1d(r0) +Nr

3/2
0 r1d(r0) log r0.
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This is decreasing in H, so we choose H to be as large as possible, namely
H = [N/r1]. Thus in either case we choose H = [N/r1] and (7.18) becomes

|S(d, r; k,N)|2 � Nr0r
2
1 +N2r

1/2
0 r1d(r0) +Nr

3/2
0 r1d(r0) log r0.

Thus we finally obtain:

Proposition 7.1.

|S(d, r; k,N)| � Nr
1/4
0 r

1/2
1 (d(r0))1/2+N1/2r

1/2
0 r1+N1/2r

3/4
0 r

1/2
1 (d(r0))1/2(log r0)1/2.

7.4.5 Bounding C(d, f, g)

We may now achieve a bound for the term C(d, f, g) in the main sieve.

Proposition 7.2. For any f 6= g ∈ A with (f, g) = 1,

|C(d, f, g)| ≤
[
Q−2L+ logQ

] [
NQr

−1/4+ε
0 +N1/2Q2r

−1/2
0 +N1/2Qr

1/4+ε
0

]
.

Proof. By (7.9),

|C(d, f, g)| ≤ 1
fg

fg∑
k=1

|S(d, fg; k,N)||A(fg;L,−k)|.

Recalling that r = fg = r0r1, and noting that the bound given for |S(d, r; k,N)|
in Proposition 7.1 is independent of k,

|C(d, f, g)| ≤ 1
fg

max
k
|S(d, r; k,N)|

[
L+

fg−1∑
k=1

‖k/fg‖−1

]

� 1
fg

max
k
|S(d, r; k,N)|

L+ fg
∑

1≤k≤fg/2

k−1


� max

k
|S(d, r; k,N)|

[
Q−2L+ logQ

]
.

Recalling that r1r0 ≈ Q2, the result then follows from Proposition 7.1.

This completes our estimate for the main sieve.

7.5 The prime sieves

We now consider briefly the term S(d, r; k,N) in the case of the prime sieves,
when r is a product of two distinct primes. This merely requires using the
machinery already developed for the main sieve, and is in fact simpler as we
need only factorise the exponential sums under consideration once. The case
where r = uu′ is the product of two distinct primes in the set U is analogous to
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the case where r = vv′ is the product of two distinct primes in the set V, so we
will outline the argument only for the set U .

Recall from (7.11) that S(d, uu′; k, z) is multiplicative in the sense that

S(d, uu′; k, z) = S(d, u; ku′, z)S(d, u′; ku, z),

for primes u 6= u′ ∈ U . Define

A(z) =

S(d, uu′; k, z) if 1 ≤ z ≤ N

0 otherwise.

Similarly define A0(z) to be equal to S(d, u; ku′, z) if 1 ≤ z ≤ N and zero
otherwise, and A1(z) to be equal to S(d, u′; ku, z) if 1 ≤ z ≤ N and zero
otherwise.

Let HU be a positive integer, which we will specify later. Applying the q-
analogue of van der Corput’s method exactly as in Section 7.4, we obtain a
bound equivalent to that of equation (7.12), namely

H2
U |S(d, uu′; k,N)|2 � Σ1 (Σ2A + Σ2B) , (7.19)

where

Σ1 =
∑

1−HUu′≤z≤N−u′

|S(d, u′; ku, z)|2 ,

Σ2A = HU

∑
z

|A0(z)|2 ,

Σ2B = HU

HU−1∑
h=1

∣∣∣∣∣∑
z

A0(z + hu′)A0(z)

∣∣∣∣∣ .
By Lemma 7.3 it follows immediately that:

Lemma 7.10.

Σ1 � (N +HUu
′)u′,

Σ2A � HUNu.

Again let
T (d, u;h,N) =

∑
z

A0(z + hu′)A0(z),

so that

Σ2B = HU

HU−1∑
h=1

|T (d, u;h,N)|. (7.20)

Define W (d, u;h,m, ku′) as in (7.15), so that

|T (d, u;h,N)| ≤ 1
u

u∑
m=1

∣∣W (d, u;h,m, ku′)
∣∣ |A(u;N,−m)| . (7.21)
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It follows immediately from Lemma 7.8 that

|T (d, u;h,N)| � u1/2
u∑

m=1

(u, h,m)1/2 min(N, ‖m/u‖−1),

so that from (7.20) we have

Σ2B � HUu
1/2

HU−1∑
h=1

u∑
m=1

(u, h,m)1/2 min(N, ‖m/u‖−1).

Thus:

Lemma 7.11.

Σ2B � H2
UNu

1/2d(u) +H2
Uu

3/2d(u) log u.

Assembling the bounds for Σ1,Σ2A,Σ2B , it then follows from (7.19) that

H2
U |S(d, uu′; k,N)|2 � HUN(N +HUu

′)uu′

+ (N +HUu
′)u′

[
H2
UNu

1/2d(u) +H2
Uu

3/2d(u) log u
]
.

Thus

|S(d, uu′; k,N)|2 � H−1
U N(N+HUu

′)uu′+(N+HUu
′)u′

[
Nu1/2d(u) + u3/2d(u) log u

]
.

Choosing HU = [N/u′] analogously to H, we then finally obtain

|S(d, r; k,N)| � Nu1/4u′1/2(d(u))1/2+N1/2u1/2u′+N1/2u3/4u′1/2(d(u))1/2(log u)1/2.

As in Section 7.4.5, we then obtain a bound for C(d, u, u′), which we may write
in terms of Q, using the fact that u, u′ ≈ Qα. For reference we state the
corresponding result for C(d, v, v′) as well:

Proposition 7.3. For any u 6= u′ ∈ U and v 6= v′ ∈ V ,

|C(d, u, u′)| ≤
[
Q−2αL+ logQ

] [
NQ(3/4)α+ε +N1/2Q(3/2)α +N1/2Q(5/4)α+ε

]
,

|C(d, v, v′)| ≤
[
Q−2βL+ logQ

] [
NQ(3/4)β+ε +N1/2Q(3/2)β +N1/2Q(5/4)β+ε

]
.

This completes our bounds for the prime sieve terms.

7.6 Choosing the parameters Q, α, β

Recall from equation (7.7) that

T (d) � A−1LN +A−2
∑
f 6=g∈A
(f,g)=1

|C(d, f, g)|

+ V A−2
∑

u 6=u′∈U

|C(d, u, u′)|+A−2|E(U)|

+ UA−2
∑

v 6=v′∈V

|C(d, v, v′)|+A−2|E(V)|.
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Note that in each case the bounds we have proved for |C(d, f, g)|, |C(d, u, u′)|
and |C(d, v, v′)| are independent of the specific elements chosen from the sets
A,U or V. Therefore we need only estimate the number of terms in each sum.
There are � A2 terms in the sum over f 6= g ∈ A with (f, g) = 1, since for each
f = uv, of which there are UV choices, there are (U − 1)(V − 1) choices for
g = u′v′ with u′ 6= u, v′ 6= v. There are � U2 terms in the sum over u 6= u′ ∈ U ,
and � V 2 terms in the sum over v 6= v′ ∈ V. Therefore, applying the bounds
of Propositions 7.2 and 7.3, we obtain

T (d) � Q−1LN(logQ)2

+
[
Q−2L+ logQ

] [
NQr

−1/4+ε
0 +N1/2Q2r

−1/2
0 +N1/2Qr

1/4+ε
0

]
+ V −1

[
Q−2αL+ logQ

] [
NQ(3/4)α+ε +N1/2Q(3/2)α +N1/2Q(5/4)α+ε

]
+ U−1

[
Q−2βL+ logQ

] [
NQ(3/4)β+ε +N1/2Q(3/2)β +N1/2Q(5/4)β+ε

]
+ A−2|E(U)|+A−2|E(V)|.

We choose Q so as to balance the contributions of the leading term and
the main sieve. For simplicity, consider temporarily the following expression,
disregarding factors of size Qε:

T ′(d) = Q−1LN +
[
Q−2L+ logQ

] [
NQr

−1/4
0 +N1/2Q2r

−1/2
0 +N1/2Qr

1/4
0

]
.

With L� d1/2 and N � d1/4, this gives

T ′(d) � d3/4Q−1+
[
d1/2Q−2 + logQ

] [
d1/4Qr

−1/4
0 + d1/8Q2r

−1/2
0 + d1/8Qr

1/4
0

]
.

We see from the leading term that in order to obtain a nontrivial bound, we
must have at least Q = d1/4+δ with δ > 0. Then d1/2Q−2 = d−2δ � logQ, so
it is sufficient to consider the expression

T ′′(d) � d3/4Q−1 + d1/4Qr
−1/4
0 + d1/8Q2r

−1/2
0 + d1/8Qr

1/4
0 .

Taking r0 = Q4/3 therefore gives

T ′′(d) � d1/2−δ + d5/12+(2/3)δ + d11/24+(4/3)δ.

It is optimal to choose
δ = 1/56.

Then
T ′(d) � dεT ′′(d) � d1/2−1/56+ε ≈ d0.48214...+ε.

With the choices Q = d1/4+1/56 and r0 = Q4/3, we then see that α = 2/3 and
β = 1/3. Note that we may now choose the constants c0, c1 in the definition
of the sets U and V so that U and V are disjoint; it is sufficient to choose
c0 = 2, c1 = 1.
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The prime sieve over the set U is bounded by

d3/56+ε
[
NQ1/2+ε +N1/2Q+N1/2Q5/6+ε

]
� d25/56+ε ≈ d0.44642...+ε,

and the prime sieve over the set V is bounded by

d1/7+ε
[
NQ1/4+ε +N1/2Q1/2 +N1/2Q5/12+ε

]
� d103/224+ε ≈ d0.45982...+ε.

Thus it is clear that the prime sieves are dominated by the leading term and the
main sieve. Assuming that the error terms are also dominated by the leading
term (as we show in the following section), we have the final bound

T (d) � d1/2−1/56+ε. (7.22)

7.7 The error terms

It remains to estimate the contributions of the error terms E(U) and E(V) in the
square sieve. The choices of Q and α, β made in the previous section determine
the cardinalities U and V of the sets U and V; while we could have estimated
the error terms without this knowledge, it is convenient to know how sharp an
estimate is required. We will see that it is sufficient to bound E(V) with a trivial
estimate, but E(U) requires that we take advantage of cancellation in certain
exponential sums.

Recall that the error terms E(U) and E(V) are defined by

E(U) =
∑
v∈V

∑
u 6=u′∈U

∑
n
v|n

ω(n)
( n

uu′

)
,

E(V) =
∑
u∈U

∑
v 6=v′∈V

∑
n
u|n

ω(n)
( n

vv′

)
.

7.7.1 The trivial bound

We may estimate E(U) trivially by

|E(U)| ≤
∑
v∈V

∑
u 6=u′∈U

∑
n
v|n

ω(n)

�
∑

u 6=u′∈U

∑
n

ω(n)
log n

log log n

� U2 min(U, V )LN,

where the last step may be seen using Abel summation and noting that ω(n) is
zero for |n| ≥ exp(min(U, V )). Thus since A = UV ,

A−2|E(U)| � V −2 min(U, V )LN. (7.23)
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With U and V as chosen in the previous section, (7.23) is on the order of
V −1LN � d37/56+ε, so this trivial bound is not sufficient. However, the equiv-
alent bound for E(V) gives

A−2|E(V)| � U−2 min(U, V )LN � U−2V LN,

which is on the order of d27/56+ε. Thus the trivial bound is sufficient for the
error term E(V) (although a sharper bound analogous to the one we derive for
E(U) in the following section also applies).

7.7.2 Estimating E(U)

We will estimate E(U) more precisely as follows. We may write

E(U) =
∑

u 6=u′∈U

∑
v∈V

∑
z≤N

∑
x≤L

4x3≡dz2 (mod v)

(
4x3 − dz2

uu′

)
.

For a fixed odd prime v ∈ V and a fixed value z ≤ N , there are δ = 0, 1, or 3
solutions x modulo v to

4x3 ≡ dz2 (mod v).

Thus we may divide the set of x ≤ L with 4x3 ≡ dz2 (mod v) into sets {x ≤ L :
x ≡ x0 (mod v)} for δ values x0. Let

K = LV −1 ≈ d1/2−5/56+ε.

Writing x = x0 + vt where t ≤ K, we then have

E(U) =
∑

u 6=u′∈U

∑
v∈V

∑
z≤N

∑
x0

∑
t≤K

(
4(x0 + vt)3 − dz2

uu′

)
.

Define

D(d, uu′; v, x0, z,K) =
∑
t≤K

(
4(x0 + vt)3 − dz2

uu′

)
,

so that
E(U) � U2V N max |D(d, uu′; v, x0, z,K)|, (7.24)

where the maximum is taken over all appropriate pairs u, u′ and v, x0, z.

7.7.3 Bounding D(d, uu′; v, x0, z, K)

We may write D(d, uu′; v, x0, z,K) as a sum over a complete set of residues
modulo uu′,

D(d, uu′; v, x0, z,K) =
uu′∑
α=1

(
4(x0 + vα)3 − dz2

uu′

) ∑
t≤K

t≡α (mod uu′)

1

=
1
uu′

uu′∑
h=1

uu′∑
α=1

(
4(x0 + vα)3 − dz2

uu′

)
euu′(hα)A(uu′;K,−h),
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where |A(uu′;K,−h)| ≤ min(K, ‖h/uu′‖−1) as usual.
Define

T (d, uu′; v, x0, z, h) =
uu′∑
α=1

(
4(x0 + vα)3 − dz2

uu′

)
euu′(hα),

so that

|D(d, uu′; v, x0,K)| ≤ 1
uu′

uu′∑
h=1

|T (d, uu′; v, x0, z, h)||A(uu′;K,−h)|. (7.25)

A simple computation similar to that of Lemma 3.11 shows that we have the
factorisation

T (d, uu′; v, x0, z, h) = T (d, u; v, x0, z, hu′)T (d, u′; v, x0, z, hu),

for (u, u′) = 1, with uu ≡ 1 (mod u′) and u′u′ ≡ 1 (mod u). Thus it is sufficient
to bound T (d, p; v, x0, z, h) for an odd prime p with p - d, p - v.

Lemma 7.12. For an odd prime p with p - d, p - v,

|T (d, p; v, x0, z, h)| ≤ 3p1/2.

Proof. First suppose that p > 3. If p - z, p - h, then applying the Weil bound
for hybrid sums given as Lemma 3.8,

|T (d, p; v, x0, z, h)| ≤ 3p1/2.

If p - z but p|h, then

T (d, p; v, x0, z, h) =
p∑

α=1

(
4(x0 + vα)3 − dz2

p

)
.

Arguing as in Lemma 7.3, we note that p + T (d, p; v, x0, z, h) is the number of
points on the elliptic curve β2 = 4(x0 + vα)3 − dz2 over the finite field Fp (not
counting the point at infinity), so that

|T (d, p; v, x0, z, h)| ≤ 2p1/2.

If p|z then

T (d, p; v, x0, z, h) =
p∑

α=1

(
4(x0 + vα)3

p

)
ep(hα) =

p∑
α=1

(
x0 + vα

p

)
ep(hα).

Since p - v we may make the change of variables α 7→ α− vx0 so that

T (d, p; v, x0, z, h) =
(
v

p

)
ep(−hvx0)

p∑
α=1

(
α

p

)
ep(hα).
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Then if p - h, the classical bound for character sums (or Lemma 3.5) shows that

|T (d, p; v, x0, z, h)| ≤ p1/2.

If furthermore p|h, then

T (d, p; v, x0, z, h) =
(
v

p

) p∑
α=1

(
a

p

)
= 0.

For p = 3 we simply use the trivial bound

|T (d, p; v, x0, z, h)| ≤ 3.

This completes the proof.

It follows immediately from Lemma 7.12 that

|T (d, uu′; v, x0, z, h)| ≤ 9u1/2u′1/2.

Applying this to (7.25),

|D(d, uu′; v, x0, z,K)| � u−1/2u′−1/2
uu′∑
h=1

min(K, ‖h/uu′‖−1)

� u−1/2u′−1/2K + u1/2u′1/2
∑

1≤h≤uu′/2

h−1

� u−1/2u′−1/2K + u1/2u′1/2 logU.

Therefore by (7.24),

|E(U)| � U2V N(U−1K + U logU) � ULN + U3V N logU,

since K = LV −1. Thus

A−2|E(U)| � V −1(A−1LN) + UV −1N logU.

Both of these terms are smaller than the leading term (7.8), the first by a factor
of V −1 ≈ d−5/56+ε and the second by a factor of L−1U2 logU ≈ d−1/7+ε. Thus
this estimate for the error term E(U) is sufficiently sharp.

The analogous bound for E(V) gives

A−2|E(V)| � U−1(A−1LN) + V U−1N log V,

where the first of these terms is smaller than the leading term by a factor of
d−5/28+ε and the second by a factor of d−9/28+ε.
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7.8 The final bound

We have thus shown that for Q and α, β as chosen in Section 7.6, the prime
sieves and the error terms are dominated by the leading term and the main
sieve. Thus the final bound for T (d) is given by (7.22):

T (d) � d27/56+ε.

Therefore by (7.6),
h3(−d) � d27/56+ε

for any ε > 0, where the implied constant depends only on ε. By the Scholz
reflection principle, an equivalent bound also holds for h3(+3d). Thus we obtain
the final result that for any square-free integer D,

h3(D) � |D|27/56+ε,

for any ε > 0. This completes the proof of Theorem 7.1.



Chapter 8

Elliptic curves with fixed

conductor

8.1 Introduction

The 3-part of class numbers of quadratic fields is intimately related to the num-
ber of elliptic curves over Q with fixed conductor. This was first noted by
Brumer and Silverman in [5], in which they show that the number of elliptic
curves over Q with conductorN , which we will denote by C(Q, N), isO(N1/2+ε).
Their proof proceeds by bounding the number of integer points on certain ellip-
tic curves in terms of the 3-part of the class number of an associated quadratic
field. At the time of Brumer and Silverman’s original paper, only the trivial
bound h3(D) ≤ h(D) � |D|1/2+ε was known, hence the resulting exponent of
1/2 + ε in the bound for C(Q, N). Any improvement to the bound for h3(D)
gives a corresponding improvement to the bound for C(Q, N). In particular,
the conjectured bound h3(D) � |D|ε would show that C(Q, N) is O(N ε), for
any ε > 0.

In Section 8.2 we review the argument of Brumer and Silverman and prove
two improved bounds for C(Q, N) resulting from our bounds for h3(D):

Theorem 8.1. Let C(Q, N) denote the number of elliptic curves over Q with
conductor N . Then

C(Q, N) � N27/56+ε,

for any ε > 0. If the conductor N has a divisor N0 ≈ N5/6, then

C(Q, N) � N5/12+ε,

for any ε > 0, where each implied constant depends only on ε.
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In Section 8.3, we briefly examine a conditional bound for C(Q, N) as well as
a resulting conditional bound for h3(D) of Wong [69] and a conditional bound
for h3(D) of Soundararajan [61].

Work of Helfgott and Venkatesh [36] simultaneous with that of this thesis
gives an improved method for counting integral points on elliptic curves, based
on a result for sphere packings. Their methods refine Brumer and Silverman’s
bound for C(Q, N), showing that C(Q, N) is O(N0.22377...). In Section 8.4, we
summarise the methods of Helfgott and Venkatesh. We further show that if N
has a divisor N0 of approximate size N0 ≈ N5/6, then Theorem 6.1, combined
with the methods of Helfgott and Venkatesh, yields the best known bound for
C(Q, N):

Theorem 8.2. If the conductor N has a divisor N0 ≈ N5/6, then

C(Q, N) � Nλ+ε,

where λ = 0.21105... and the implied constant depends only on ε > 0.

8.2 Improving the bound of Brumer and Silver-

man

More generally, in [5] Brumer and Silverman bound the number of elliptic curves
over Q with good reduction outside a given set of primes S. This immediately
gives the result for elliptic curves with conductor N , as a curve with conductor
N has good reduction outside the primes dividingN . Their method is as follows:
let S be a finite set of rational primes (containing 2 and 3) and let M be the
product of the primes in S. For E/Q an elliptic curve with good reduction
outside of S and with minimal Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

let

b2 = a2
1 + 4a1

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

and compute

c4 = b22 − 24b4

c6 = b32 + 36b2b4 − 216b6

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.
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Then c34 − c26 = 1728∆ ∈ Z∗S (where Z∗S denotes the set of integers composed
of primes in S). Moreover c4 and c6 determine E up to isomorphism over Q.
Writing −1728∆ = AD6 with A being 6-th power free, consider the elliptic
curve

EA : y2 = x3 +A.

In particular (c4/D2, c6/D
3) is an S-integral point on EA.

Brumer and Silverman proceed to bound the number of elliptic curves over
Q with good reduction outside of S by showing that each elliptic curve E/Q
corresponds to an integer A and an S-integral point on EA such that: first,
the number of possible values for A is � 6log M/ log log M ; second, the number
of S-integral points on each curve EA is � M1/2+ε; and third, the number of
(c4, c6) pairs associated to each S-integral point P of EA (and hence the number
of curves E/Q associated to each S-integral point) is � 2log M/ log log M .

The first bound is simple: A is positive or negative, 6-th power free, and
composed only of primes in S, so that there are 2 · 6#S possibilities for A; it is
an elementary result that

#S = ν(M) � logM
log logM

.

The third bound, for the number of (c4, c6) pairs associated to each S-integral
point P of EA may be seen as follows. Write P in lowest terms as (a/δ2, b/δ3),
so that if P = (c4/D2, c6/D

3), then δ|D. Writing D = δD0, then c4 = D2
0a

and c6 = D3
0b, so that the point P , along with D0, determines c4, c6. Thus we

need only count the number of possible values D0. Since (c34, c
2
6) is divisible by

D0, and it is known that (c34, c
2
6) divides 212 · 36 ·M11 (see [5]), it follows that

D0|212 · 36 ·M11. Since M is square-free by definition, it follows that D0|12M ,
so that there are no more than 2#S+3 � 2log M/ log log M possible values D0.

It is in bounding the number of S-integral points on the curve EA that the
3-part of the class number appears. Let κ3(Q(

√
−A)) denote the 3-rank of the

class group of Q(
√
−A), so that

h3(−A) = 3κ3(Q(
√
−A)).

(Note that here A can be positive or negative.) Brumer and Silverman use
a result of Evertse and Silverman [16] on uniform bounds for the number of
solutions to an equation of the form Xn = F (Y ) with n = 3 to show that

#EA(ZS) ≤ 2 · 1714+2#S · 34#S+κ3(Q(
√
−A)), (8.1)

so that
#EA(ZS) ≤ 2 · 1714+2#S · 34#Sh3(Q(

√
−A)). (8.2)

Using the trivial bound h3(−A) ≤ h(−A), Brumer and Silverman then find that

#EA(ZS) ≤ h(−A)|A|ε � |Disc(Q(
√
−A))|1/2|A|ε.
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SinceA is 6-th power free and is divisible only by primes in S, then |Disc(Q(
√
−A))|

is at most 4M , and |A| ≤M5. Hence

#EA(ZS) �M1/2+ε.

A nontrivial bound of the form h3(−A) � |Disc(Q(
√
−A))|θ with θ < 1/2

thus immediately improves this bound for #EA(ZS), and as a consequence, the
bound for the number of elliptic curves with good reduction outside of S, to
O(Mθ+ε). Thus in particular the result of Theorem 7.1, namely

h3(−A) � |Disc(Q(
√
−A))|27/56+ε,

gives the bound
C(Q, N) � N27/56+ε.

Theorem 6.1 sharpens this bound in the case that the conductor N has a
divisor N0 ≈ N5/6. To see this, we must examine more closely the values of A
that define the curves EA in the argument of Brumer and Silverman. Let S be
the set of primes dividing N (and including 2 and 3). Then A, which is divisible
only by primes in S and is 6-th power free, may take any value in the set

A = {±
∏
p∈S

pαp : 0 ≤ αp ≤ 5}.

Lemma 8.1. If N has a divisor N0 ≈ N5/6 then

h3(−A) � N5/12+ε

for any A ∈ A.

Proof. For each value A ∈ A, let Ā be the square-free kernel,

Ā = ±
∏
p∈S

pap

where ap ≡ αp (mod 2), with ap = 0, 1. Set A0 = |Ā|. First suppose that
a prime p divides N with p ≈ N5/6. Then for each value A, if p|A0 then by
Theorem 6.1,

h3(−A) = h3(−Ā) � p1/2+ε + p−1A
5/4+ε
0 + p−1/2A

1/2+ε
0

� N5/12+ε.

If p - A0 then A0 � N1/6 so that even applying the trivial bound we obtain

h3(−A) = h3(−Ā) � A
1/2+ε
0 � N1/12+ε.
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Next suppose that N has a divisor N0 ≈ N5/6, not necessarily prime. Let
d0 = (N0, A0). Then by Theorem 6.1,

h3(−A) = h3(−Ā) � d
1/2+ε
0 + d−1

0 A
5/4+ε
0 + d

−1/2
0 A

1/2+ε
0

� N5/12+ε +
A

5/4+ε
0

(N0, A0)
+

A
1/2+ε
0

(N0, A0)1/2
. (8.3)

Note that A0/(N0, A0) divides N/N0. (It suffices to show that A0N0|N(N0, A0).
But N(N0, A0) = (NN0, NA0), and since A0|N then A0N0|NN0, and since
N0|N , then A0N0|NA0.) Thus in (8.3),

A
5/4
0

(N0, A0)
≤ A

1/4
0

(
N

N0

)
≤ N5/4

N0
≤ N5/12,

and
A

1/2
0

(N0, A0)1/2
≤ N1/2

N
1/2
0

≤ N1/12.

Thus in conclusion, if N0|N with N0 ≈ N5/6, then

h3(−A) = h3(−Ā) � N5/12+ε.

Thus we may apply the result of Theorem 6.1 for h3(
√
−A) in (8.2) to give

#EA(ZS) � N5/12+ε

and hence
C(Q, N) � N5/12+ε

when N has a divisor of size N0 ≈ N5/6. This completes the discussion of
Theorem 8.1.

8.3 Conditional bounds

Brumer and Silverman also note the following conditional bound for C(Q, N),
which, as we will see, may be used to derive a conditional bound for h3(D).

8.3.1 A conditional bound for C(Q, N)

Let L(EA, s) denote the L-series of the curve EA. Suppose that for all nonzero
integers A, L(EA, s) satisfies the generalised Riemann hypothesis, and that the
order of vanishing of L(EA, s) at s = 1 is greater than or equal to that of the
rank of EA(Q). Then Brumer and Silverman show (Theorem 4 of [5]) that

C(Q, N) � N ε (8.4)
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for any ε > 0, where the implied constant depends only upon ε.
This follows by the same method as the proof of the unconditional bound

given in the previous section, but with a different bound for the number of S-
integral points on each curve EA. A result of Silverman (Theorem A of [60])
states that for each curve EA,

#EA(ZS) ≤ c
1+#S+rank EA(Q)
1 , (8.5)

for some constant c1. (All constants ci used below are absolute.) A bound of
Mestre [46] states that

rank EA(Q) ≤ c2
log(cond EA)

log log(cond EA)
, (8.6)

under the assumptions that L(EA, s) satisfies the generalised Riemann hypoth-
esis and that the order of vanishing of L(EA, s) at s = 1 is greater than or equal
to rank EA(Q). The conductor cond EA is at most 1728M2, where M is the
product of primes in the set S, as before. Therefore (8.6) gives

rank EA(Q) ≤ c3
logM

log logM
.

Since #S � logM/ log logM also, (8.5) becomes

#EA(ZS) ≤ c
log M/ log log M
4 .

Using this in place of (8.1), and proceeding as in the proof of the unconditional
bound, we obtain (8.4).

8.3.2 Conditional bounds for h3(D)

Wong [69] uses the conditional estimate (8.4) for C(Q, N) to derive a conditional
bound for the 3-part h3(D) as follows. A result of Hasse [26] states that the
3-part of the class number of a quadratic field with discriminant D is 1/6th the
number of non-Galois cubic fields of discriminant D whose Galois closure con-
tains Q(

√
D). Wong notes that a cubic field of discriminant D can be generated

by a polynomial f of discriminant |Disc(f)| ≤ 2|D|3/2. Define FD to be the set
of monic, cubic, irreducible polynomials f ∈ Z[x] such that |Disc(f)| = |D|N2

for an integer N with 1 ≤ N ≤
√

2|D|1/4, and let two polynomials in FD be
equivalent if they define isomorphic extensions of Q. Then it follows that the 3-
part of the class number of Q(

√
D) is bounded by the number MD of equivalence

classes of polynomials in FD.
For each f ∈ FD, regard y2 = f(x) as the Weierstrass equation of an elliptic

curve with discriminant 1728Disc(f), and with conductor dividing 1728Disc(f).
The equivalence classes in FD correspond to different elliptic curves, as the
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2-division fields of the curves are distinct. Thus by (8.4),

MD ≤
∑

1≤N≤
√

2|D|1/4
C(Q, N)

�
∑

1≤N≤
√

2|D|1/4
(1728|D|N2)ε

� |D|ε
∑

1≤N≤
√

2|D|1/4
N2ε

� |D|1/4+ε′ ,

where the implied constant depends only on ε′ = 3ε/2 > 0. Therefore, under
the assumptions given above,

h3(D) � |D|1/4+ε

for any ε > 0, where the implied constant depends only on ε.
In fact, one may obtain a nontrivial bound for h3(D) by assuming the Rie-

mann hypothesis for only a single L-function, as noted by Soundararajan in
[61]. The proof, as communicated in [36], is as follows. Let χd be the quadratic
Dirichlet character associated to K = Q(

√
−d) for a positive integer d. Let

CL3(−d) = {[a] ∈ CL(−d) : [a]3 = 1}, so that h3(−d) = #CL3(−d). Assuming
d ≡ 1 (mod 4) for simplicity, let σ be the Galois automorphism of K. Assuming
the Riemann hypothesis for the L-function L(χd, s), there are � d1/6−ε primes
p with p < d1/6 and χd(p) = 1, and hence � d1/6−ε prime ideals p of OK with
N(p) < d1/6 and N(p) prime. If p1, p2 are two distinct such ideals that represent
the same ideal class in CL(−d)/CL3(−d), then pσ

1p2 ∈ CL3(−d) so that

4N(pσ
1p2)3 = y2 + dz2

for some y, z ∈ N, by the same argument leading to (6.1). However, since
N(pσ

1p2)3 < d, we must have z = 0, leading to a contradiction. Therefore
#CL(−d)/CL3(−d) � d1/6−ε, so that

h3(−d) = #CL3(−d) � d1/3+ε,

where the implied constant depends only on ε. Again, by the Scholz reflection
principle, an equivalent bound holds for h3(+3d), so that we obtain

h3(D) � |D|1/3+ε

for any discriminant D, under the assumptions given above.

8.4 The work of Helfgott and Venkatesh

In [36], Helfgott and Venkatesh present a method for bounding the number of in-
tegral points on elliptic curves that yields the bounds h3(D) = O(|D|0.44178...+ε)
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and C(Q, N) = O(N0.22377...+ε) (Theorems 4.2 and 4.5 of [36]). Their methods
are based on the idea that integer points on an elliptic curve that are v-adically
close to one another tend to repel each other. This enables them to define a type
of quasi-orthogonality, and thus state the problem of bounding the number of
integral points on an elliptic curve as a problem of sphere-packings. It is quite
interesting that this method also gives a nontrivial bound for h3(D). Before
we discuss Helfgott and Venkatesh’s result for C(Q, N), we therefore briefly
examine their result for h3(D).

As before, let EA represent the curve

EA : y2 = x3 +A

for any nonzero integer A. As we do in Section 6.2, Helfgott and Venkatesh
consider the case of an imaginary quadratic field Q(

√
−d) where d is a square-

free positive integer and reduce the problem of bounding h3(−d) to counting
the number of integer points on the surface

x3 = y2 + dz2

with 2x, 2y, 2z ∈ Z and x� d1/2, y � d3/4, z � d1/4. They then deduce that

h3(−d) � d1/4+ε max
z�d1/4

#{(x, y) ∈ E−dz2(Q, {∞}) : x� d1/2, y � d3/4}.

The general bound they obtain for the number of S-integer points on a curve
of the form EA is as follows (Corollary 3.9 of [36]). Let K be a number field
and let S be a finite set of s places of K, including all infinite places and all
places at which EA has bad reduction. Let R ≥ max(1, rank ZEA(Q)), where
rank ZEA(Q) denotes the rank of EA(Q) as a Z-lattice. For each h0 ≥ 1, the
number of S-integer points of EA with canonical height (as defined in [36])
satisfying ĥ(P ) ≤ h0 is at most

Oε,[K:Q]

(
Csε−2(s+[K:Q])s[K:Q](1 + log h0)e

R·
“

α
“
h0[K:Q]

R

”
+ε

”)
, (8.7)

for every sufficiently small ε > 0. Here C is an absolute constant and α(x) is a
computable function for which we refer the reader to [36].

A result of Fouvry (Proposition 2 of [17]) states that

rank ZEA(Q) ≤ a+ bν(A) + 2 log3 h3(−A) (8.8)

for absolute constants a, b. Defining

γ = lim sup
d→∞

log h3(−d)
log d

,

it follows from (8.8) that for any z � d1/4,

rank ZE−dz2(Q) ≤ R = log d
(

2γ
log 3

+ o(1)
)
.
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Defining the set S = {p : p|6dz2} ∪ {∞} and setting h0 = (log d)/4 + O(1) in
(8.7), Helfgott and Venkatesh then obtain

#{P ∈ E−dz2 : ĥ(P ) ≤ h0} � d(
2γ

log 3 )(α( log 3
8γ )+ε),

for any ε > 0, where the implied constant depends only upon ε. Thus

γ ≤ 1
4

+
2γ

log 3
α

(
log 3
8γ

)
.

Solving for γ computationally, with γ < 1/2, then gives the exponent

h3(−d) � dλ+ε

with λ = 0.44178.... The Scholz reflection principle gives an equivalent result
for h3(+3d).

Helfgott and Venkatesh’s bound for C(Q, N) is more immediate, as one need
only apply (8.7) to curves EA with A being 6-th power free and divisible only by
primes in S, where S is the set of primes dividing N (and including 2 and 3).
Employing an upper bound for the height of S-integers on EA and assembling
this with (8.7), with canonical height ĥ(P ) ≤ h0 = cN c′ν(N), for some constants
c, c′, It is a result of Corollary 3.11 of [36] that

#EA(ZS) � N ε exp[rank Z(EA(Q))(β + ε)],

where β is the numerical constant 0.278236.... Using (8.8) to bound the rank of
EA(Q), this becomes

#EA(ZS) � N ε exp[2 log3(h3(−A))(β + ε)].

Thus a nontrivial bound h3(−A) � |N |θ gives a bound

#EA(ZS) � N2βθ/ log 3+ε,

and hence
C(Q, N) � N2βθ/ log 3+ε. (8.9)

By Theorem 7.1 we may take θ = 27/56 + ε in (8.9), so that we obtain

C(Q, N) � N0.24422...+ε.

Note that this is slightly weaker than the bound of Helfgott and Venkatesh,
namely C(Q, N) = O(Nλ+ε) with λ = 0.22377....

However, if N has a divisor of size N0 = N5/6, by Theorem 6.1 and Lemma
8.1, we may take θ = 5/12 + ε in (8.9), obtaining

C(Q, N) � N0.21105...+ε.

This is the best known bound for C(Q, N). This concludes the discussion of
Theorem 8.2.



Appendix A

Table A.1 gives the class numbers h of the real quadratic fields Q(
√
D) for

square-free integers 2 ≤ D < 100. Table A.2 gives the class numbers h of
the imaginary quadratic fields Q(

√
−D) for square-free integers 0 < D < 500.

(Reference: [54].)

Table A.1: Real quadratic fields
D h D h

2 1 51 2

3 1 53 1

5 1 55 2

6 1 57 1

7 1 58 2

10 2 59 1

11 1 61 1

13 1 62 1

14 1 65 2

15 2 66 2

17 1 67 1

19 1 69 1

21 1 70 2

22 1 71 1

23 1 73 1

26 2 74 2

29 1 77 1

30 2 78 2

31 1 79 3

33 1 82 4

34 2 83 1

35 2 85 2

37 1 86 1

38 1 87 2

39 2 89 1

41 1 91 2

42 2 93 1

43 1 94 1

46 1 95 2

47 1 97 1



Table A.2: Imaginary quadratic fields
D h D h D h D h D h D h D

1 1 71 7 143 10 215 14 287 14 365 20 434 24

2 1 73 4 145 8 217 8 290 20 366 12 435 4

3 1 74 10 146 16 218 10 291 4 367 9 437 20

5 2 77 8 149 14 219 4 293 18 370 12 438 8

6 2 78 4 151 7 221 16 295 8 371 8 439 15

7 1 79 5 154 8 222 12 298 6 373 10 442 8

10 2 82 4 155 4 223 7 299 8 374 28 443 5

11 1 83 3 157 6 226 8 301 8 377 16 445 8

13 2 85 4 158 8 227 5 302 12 379 3 446 32

14 4 86 10 159 10 229 10 303 10 381 20 447 14

15 2 87 6 161 16 230 20 305 16 382 8 449 20

17 4 89 12 163 1 231 12 307 3 383 17 451 6

19 1 91 2 165 8 233 12 309 12 385 8 453 12

21 4 93 4 166 10 235 2 310 8 386 20 454 14

22 2 94 8 167 11 237 12 311 19 389 22 455 20

23 3 95 8 170 12 238 8 313 8 390 16 457 8

26 6 97 4 173 14 239 15 314 26 391 14 458 26

29 6 101 14 174 12 241 12 317 10 393 12 461 30

30 4 102 4 177 4 246 12 318 12 394 10 462 8

31 3 103 5 178 8 247 6 319 10 395 8 463 7

33 4 105 8 179 5 249 12 321 20 397 6 465 16

34 4 106 6 181 10 251 7 322 8 398 20 466 8

35 2 107 3 182 12 253 4 323 4 399 16 467 7

37 2 109 6 183 8 254 16 326 22 401 20 469 16

38 6 110 12 185 16 255 12 327 12 402 16 470 20

39 4 111 8 186 12 257 16 329 24 403 2 471 16

41 8 113 8 187 2 258 8 330 8 406 16 473 12

42 4 114 8 190 4 259 4 331 3 407 16 474 20

43 1 115 2 191 13 262 6 334 12 409 16 478 8

46 4 118 6 193 4 263 13 335 18 410 16 479 25

47 5 119 10 194 20 265 8 337 8 411 6 481 16

51 2 122 10 195 4 266 20 339 6 413 20 482 20

53 6 123 2 197 10 267 2 341 28 415 10 483 4

55 4 127 5 199 9 269 22 345 8 417 12 485 20

57 4 129 12 201 12 271 11 346 10 418 8 487 7

58 2 130 4 202 6 273 8 347 5 419 9 489 20

59 3 131 5 203 4 274 12 349 14 421 10 491 9

61 6 133 4 205 8 277 6 353 16 422 10 493 12

62 8 134 14 206 20 278 14 354 16 426 24 494 28

65 8 137 8 209 20 281 20 355 4 427 2 497 24

66 8 138 8 210 8 282 8 357 8 429 16 498 8

67 1 139 3 211 3 283 3 358 6 430 12 499 3

69 8 141 8 213 8 285 16 359 19 431 21

70 4 142 4 214 6 286 12 362 18 433 12
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x3 + k,’ Séminaire de Théorie des Nombres, Paris, 1990-91, Progr. Math.,
61-84. Boston: Birkhäuser Boston (1993).
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