
46 COMMUNICATIONS OF THE ACM | JUNE 2021 | VOL. 64 | NO. 6

practice

DEV ELOPER PRODUCTIVITY IS complex and nuanced,
with important implications for software development
teams. A clear understanding of defining, measuring,
and predicting developer productivity could provide
organizations, managers, and developers with the
ability to make higher-quality software—and make it
more efficiently.

Developer productivity has been studied
extensively. Unfortunately, after decades of research
and practical development experience, knowing how
to measure productivity or even define developer
productivity has remained elusive, while myths
about the topic are common. Far too often teams or
managers attempt to measure developer productivity
with simple metrics, attempting to capture it all with
“one metric that matters.”

One important measure of productivity is personal
perception;1 this may resonate with those who claim to
be in “a flow” on productive days.

There is also agreement that devel-
oper productivity is necessary not just to
improve engineering outcomes, but also
to ensure the well-being and satisfaction
of developers, as productivity and satis-
faction are intricately connected.12,20

Ensuring the efficient development
of software systems and the well-being
of developers has never been more im-
portant as the Covid-19 pandemic has
forced the majority of software devel-
opers worldwide to work from home,17
disconnecting developers and manag-
ers from their usual workplaces and
teams. Although this was unexpected
and unfortunate, this change consti-
tutes a rare “natural experiment” that
statisticians can capitalize upon to
study, compare, and understand de-
veloper productivity across many dif-
ferent contexts. This forced disruption
and the future transition to hybrid
remote/colocated work expedites the
need to understand developer produc-
tivity and well-being, with wide agree-
ment that doing so in an efficient and
fair way is critical.

This article explicates several com-
mon myths and misconceptions about
developer productivity. The most impor-
tant takeaway from exposing these myths
is that productivity cannot be reduced to
a single dimension (or metric!). The prev-
alence of these myths and the need to
bust them motivated our work to de-
velop a practical multidimensional
framework, because only by examining
a constellation of metrics in tension
can we understand and influence de-
veloper productivity. This framework,
called SPACE, captures the most im-
portant dimensions of developer pro-
ductivity: satisfaction and well-being;
performance; activity; communica-
tion and collaboration; and efficiency
and flow. By recognizing and measur-
ing productivity with more than just a
single dimension, teams and organiza-
tions can better understand how peo-
ple and teams work, and they can make
better decisions.

The article demonstrates how this
framework can be used to understand
productivity in practice and why using

The SPACE
of Developer
Productivity

DOI:10.1145/3453928

	� Article development led by
queue.acm.org

There’s more to it than you think.

BY NICOLE FORSGREN, MARGARET-ANNE STOREY,
CHANDRA MADDILA, THOMAS ZIMMERMANN,
BRIAN HOUCK, AND JENNA BUTLER

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3453928&domain=pdf&date_stamp=2021-05-24

JUNE 2021 | VOL. 64 | NO. 6 | COMMUNICATIONS OF THE ACM 47

I
M

A
G

E
 B

Y
 N

A
T

T
A

K
O

R
N

 M
A

N
E

E
R

A
T

it will help teams better understand de-
veloper productivity, create better mea-
sures to inform their work and teams,
and may positively impact engineering
outcomes and developer well-being.

Myths and Misconceptions
About Developer Productivity
A number of myths about developer
productivity have accumulated over
the years. Awareness of these miscon-
ceptions leads to a better understand-
ing of measuring productivity.

Myth: Productivity is all about de-
veloper activity. This is one of the most
common myths, and it can cause un-
desirable outcomes and developer
dissatisfaction. Sometimes, higher
volumes of activity appear for various
reasons: working longer hours may
signal developers having to “brute-
force” work to overcome bad systems
or poor planning to meet a predefined
release schedule. On the other hand,

increased activity may reflect better en-
gineering systems, providing develop-
ers with the tools they need to do their
jobs effectively, or better collaboration
and communication with team mem-
bers in unblocking their changes and
code reviews.

Activity metrics alone do not re-
veal which of these is the case, so they
should never be used in isolation ei-
ther to reward or to penalize develop-
ers. Even straightforward metrics such
as number of pull requests, commits,
or code reviews are prone to errors be-
cause of gaps in data and measurement
errors, and systems that report these
metrics will miss the benefits of collab-
oration seen in peer programming or
brainstorming. Finally, developers of-
ten flex their hours to meet deadlines,
making certain activity measures diffi-
cult to rely on in assessing productivity.

Myth: Productivity is only about in-
dividual performance. While individual

performance is important, contribut-
ing to the success of the team is also
critical to measuring productivity. Mea-
sures of performance that balance the
developer, team, and organization are
important. Similar to team sports, suc-
cess is judged both by a player’s person-
al performance as well as the success of
their team. A developer who optimizes
only for their own personal productivity
may hurt the productivity of the team.
More team-focused activities such as
code reviews, on-call rotations, and
developing and managing engineering
systems help maintain the quality of
the code base and the product/service.
Finding the right balance in optimizing
for individual, team, and organization-
al productivity, as well as understand-
ing possible trade-offs, is key.

Myth: One productivity metric can
tell us everything. One common myth
about developer productivity is that it
produces a universal metric, and that

48 COMMUNICATIONS OF THE ACM | JUNE 2021 | VOL. 64 | NO. 6

practice

whether they would recommend their
team to others.

	˲ Developer efficacy. Whether devel-
opers have the tools and resources they
need to get their work done.

	˲ Burnout. Exhaustion caused by
excessive and prolonged workplace
stress.

Performance is the outcome of a
system or process. The performance of
software developers is hard to quantify,
because it can be difficult to tie individ-
ual contributions directly to product
outcomes. A developer who produces
a large amount of code may not be
producing high-quality code. High-
quality code may not deliver customer
value. Features that delight customers
may not always result in positive busi-
ness outcomes. Even if a particular
developer’s contribution can be tied
to business outcomes, it is not always
a reflection of performance since the
developer may have been assigned a
less impactful task, instead of having
agency to choose more impactful work.
Furthermore, software is often the sum
of many developers’ contributions, ex-
acerbating the difficulty in evaluating
the performance of any individual de-
veloper. In many companies and orga-
nizations, software is written by teams,
not individuals.

For these reasons, performance is of-
ten best evaluated as outcomes instead
of output. The most simplified view of
software developer performance could
be, Did the code written by the devel-
oper reliably do what it was supposed
to do? Example metrics to capture the
performance dimension include:

	˲ Quality. Reliability, absence of
bugs, ongoing service health.

	˲ Impact. Customer satisfaction,
customer adoption and retention, fea-
ture usage, cost reduction.

Activity is a count of actions or out-
puts completed in the course of per-
forming work. Developer activity, if
measured correctly, can provide valu-
able but limited insights about devel-
oper productivity, engineering sys-
tems, and team efficiency. Because of
the complex and diverse activities that
developers perform, their activity is not
easy to measure or quantify. In fact, it
is almost impossible to comprehensively
measure and quantify all the facets of
developer activity across engineering sys-
tems and environments. A well-designed

this “one metric that matters” can be
used to score teams on their overall
work and to compare teams across
an organization and even an industry.
This isn’t true. Productivity represents
several important dimensions of work
and is greatly influenced by the context
in which the work is done.

Myth: Productivity measures are
useful only for managers. Developers
often say that productivity measures
aren’t useful. This may come from the
misuse of measures by leaders or man-
agers, and it’s true that when produc-
tivity is poorly measured and imple-
mented, it can lead to inappropriate
usage in organizations. It’s disappoint-
ing that productivity has been co-opted
this way, but it’s important to note that
developers have found value in track-
ing their own productivity—both for
personal reasons and for communicat-
ing with others.

By remembering that developer pro-
ductivity is personal,7 developers can
leverage it to gain insights into their
work so they can take control of their
time, energy, and days. For example, re-
search has shown that high productivity
is highly correlated with feeling satisfied
and happy with work.12,20 Finding ways to
improve productivity is also about find-
ing ways to introduce more joy, and de-
crease frustration, in a developer’s day.

Myth: Productivity is only about en-
gineering systems and developer tools.
While developer tools and workflows
have a large impact on developer pro-
ductivity, human factors such as envi-
ronment and work culture have sub-
stantial impact too. Often the critical
work needed to keep the environment
and culture healthy can be “invisible”
to many members of the organization
or to metrics traditionally used for
measuring productivity. Work such
as morale building, mentoring, and
knowledge sharing are all critical to
supporting a productive work environ-
ment and yet are often not measured.
The “invisible” work that benefits the
overall productivity of the team is just
as important as other more commonly
measured dimensions.21

SPACE: A Framework
for Understanding
Developer Productivity
Productivity is about more than the in-
dividual or the engineering systems; it

cannot be measured by a single metric
or activity data alone; and it isn’t some-
thing that only managers care about.
The SPACE framework was developed
to capture different dimensions of pro-
ductivity because without it, the myths
just presented will persist. The frame-
work provides a way to think rationally
about productivity in a much bigger
space and to choose metrics carefully
in a way that reveals not only what
those metrics mean, but also what
their limitations are if used alone or in
the wrong context.

Satisfaction and well-being. Sat-
isfaction is how fulfilled developers
feel with their work, team, tools, or
culture; well-being is how healthy and
happy they are, and how their work
impacts it. Measuring satisfaction
and well-being can be beneficial for
understanding productivity20 and per-
haps even for predicting it.15 For ex-
ample, productivity and satisfaction
are correlated, and it is possible that
satisfaction could serve as a leading
indicator for productivity; a decline
in satisfaction and engagement could
signal upcoming burnout and re-
duced productivity.13

For example, when many places
shifted to mandatory work from home
during the pandemic, an uptick oc-
curred in some measures of produc-
tivity (for example, code commits
and speed to merge pull requests).8
Qualitative data, however, has shown
that some people were struggling with
their well-being.3 This highlights the
importance of balanced measures
that capture several aspects of produc-
tivity: While some activity measures
looked positive, additional measures
of satisfaction painted a more holistic
picture, showing that productivity is
personal, and some developers were
approaching burnout. To combat this,
some software groups in large organi-
zations implemented “mental health”
days—essentially, free days off to help
people avoid burnout and improve
well-being.

It is clear that satisfaction and well-
being are important dimensions of
productivity. These qualities are often
best captured with surveys. To assess
the satisfaction dimension, you might
measure the following:

	˲ Employee satisfaction. The degree
of satisfaction among employees, and

JUNE 2021 | VOL. 64 | NO. 6 | COMMUNICATIONS OF THE ACM 49

practice

engineering system, however, will help
in capturing activity metrics along dif-
ferent phases of the software develop-
ment life cycle and quantify developer
activity at scale. Some of the developer
activities that can be measured and
quantified relatively easily are:

	˲ Design and coding. Volume or count
of design documents and specs, work
items, pull requests, commits, and
code reviews.

	˲ Continuous integration and deploy-
ment. Count of build, test, deployment/
release, and infrastructure utilization.

	˲ Operational activity. Count or vol-
ume of incidents/issues and distribu-
tion based on their severities, on-call
participation, and incident mitigation.

These metrics can be used as way-
points to measure some tractable de-
veloper activities, but they should never
be used in isolation to make decisions
about individual or team productiv-
ity because of their known limitations.
They serve as templates to start with
and should be customized based on or-
ganizational needs and development
environments. As mentioned earlier,
many activities that are essential to de-
veloping software are intractable (such
as attending team meetings, partici-
pating in brainstorming, helping other
team members when they encounter
issues, and providing architectural
guidance, to name a few).

Communication and collaboration.
Communication and collaboration capture
how people and teams communicate
and work together. Software develop-
ment is a collaborative and creative task
that relies on extensive and effective
communication, coordination, and col-
laboration within and between teams.11
Effective teams that successfully con-
tribute to and integrate each other’s
work efficiently rely on high transpar-
ency5 and awareness6 of team member
activities and task priorities. In addi-
tion, how information flows within and
across teams impacts the availability
and discoverability of documentation
that is needed for the effective align-
ment and integration of work. Teams
that are diverse and inclusive are high-
er performing.22 More effective teams
work on the right problems, are more
likely to be successful at brainstorming
new ideas and will choose better solu-
tions from all the alternatives.

Work that contributes to a team’s

outcomes or supports another team
member’s productivity may come at
the expense of an individual’s produc-
tivity and their own ability to get into
a state of flow, potentially reducing
motivation and satisfaction. Effec-
tive collaboration, however, can drive
down the need for some individual
activities (for example, unnecessary
code reviews and rework), improve sys-
tem performance (faster pull request
merges may improve quality by avoid-
ing bugs), and help sustain productiv-
ity and avoid (or conversely, if not done
right, increase) burnout.

Understanding and measuring
team productivity and team member
expectations are, however, complicat-
ed because of items that are difficult
to measure such as invisible work21
and articulation work for coordinating
and planning team tasks.18 That said,
the following are examples of metrics
that may be used as proxies to measure
communication, collaboration, and
coordination:

	˲ Discoverability of documentation
and expertise.

	˲ How quickly work is integrated.
	˲ Quality of reviews of work contrib-

uted by team members.
	˲ Network metrics that show who is

connected to whom and how.
	˲ Onboarding time for and experi-

ence of new members.
Efficiency and flow. Finally, effi-

ciency and flow capture the ability to
complete work or make progress on
it with minimal interruptions or de-
lays, whether individually or through
a system. This can include how well
activities within and across teams are
orchestrated and whether continuous
progress is being made.

Some research associates produc-
tivity with the ability to get complex
tasks done with minimal distractions
or interruptions.2 This conceptualiza-
tion of productivity is echoed by many
developers when they talk about “getting
into the flow” when doing their work—or
the difficulty in finding and optimiz-
ing for it, with many books and dis-
cussions addressing how this positive
state can be achieved in a controlled
way.4 For individual efficiency (flow),
it’s important to set boundaries to get
productive and stay productive—for
example, by blocking off time for a fo-
cus period. Individual efficiency is of-

Productivity
and satisfaction
are correlated,
and it is possible
that satisfaction
could serve as
a leading indicator
for productivity.

50 COMMUNICATIONS OF THE ACM | JUNE 2021 | VOL. 64 | NO. 6

practice

measures. Three brief discussions
about these metrics follow: First, an
example set of metrics concerning
code review is shown to cover all di-
mensions of the SPACE framework,
depending on how they are defined
and proxied. Next, additional exam-
ples are provided for two select di-
mensions of the framework: activity,
and efficiency and flow. The section
closes with a discussion of how to use
the framework: combining metrics for
a holistic understanding of developer
productivity, as well as cautions. The
accompanying sidebar shows how
the framework can be used for un-
derstanding productivity in incident
management.

Let’s begin with code review as an
example scenario that presents a set of
metrics that can cover all five dimen-
sions of the SPACE framework, de-
pending on how it is framed and which
metric is used:

	˲ Satisfaction. Perceptual measures
about code reviews can reveal whether
developers view the work in a good or
bad light—for example if they pres-
ent learning, mentorship, or oppor-
tunities to shape the codebase. This
is important, because the number of
code reviews per developer may sig-
nal dissatisfaction if some developers
feel they are consistently assigned a
disproportionate amount of code re-

ten measured by uninterrupted focus
time or the time within value-creating
apps (for example, the time a developer
spends in the integrated development
environment is likely to be considered
“productive” time).

At the team and system level, effi-
ciency is related to value-stream map-
ping, which captures the steps needed
to take software from idea and creation
to delivering it to the end customer. To
optimize the flow in the value stream,
it is important to minimize delays and
handoffs. The DORA (DevOps Research
and Assessment) framework intro-
duced several metrics to monitor flow
within teams9—for example, deploy-
ment frequency measures how often
an organization successfully releases to
production, and lead time for changes
measures the amount of time it takes a
commit to get into production.

In addition to the flow of changes
through the system, the flow of knowl-
edge and information is important.
Certain aspects of efficiency and flow
may be difficult to measure, but it is of-
ten possible to spot and remove ineffi-
ciencies in the value stream. Activities
that produce no value for the customer
or user are often referred to as software
development waste19—for example,
duplicated work, rework because the
work was not done correctly, or time-
consuming rote activities.

Some example metrics to capture
the efficiency and flow dimension are:

	˲ Number of handoffs in a process;
number of handoffs across different
teams in a process.

	˲ Perceived ability to stay in flow and
complete work.

	˲ Interruptions: quantity, timing,
how spaced, impact on development
work and flow.

	˲ Time measures through a system:
total time, value-added time, wait time.

Efficiency is related to all the
SPACE dimensions. Efficiency at the
individual, team, and system levels
has been found to be positively as-
sociated with increased satisfaction.
Higher efficiency, however, may also
negatively affect other factors. For
example, maximizing flow and speed
may decrease the quality of the system
and increase the number of bugs vis-
ible to customers (performance). Op-
timizing for individual efficiency by
reducing interruptions may decrease
the ability to collaborate, block oth-
ers’ work, and reduce the ability of the
team to brainstorm.

Framework in Action
To illustrate the SPACE framework,
Figure 1 lists concrete metrics that fall
into each of the five dimensions. The
figure provides examples of individu-
al-, team- or group-, and system-level

Example metrics.

Level

Satisfaction
and well-being
How fulfilled, happy, and
healthy one is

Performance
An outcome of a process

Activity
The count of actions or
outputs

Communication
and collaboration
How people talk and work
together

Efficiency and flow
Doing work with minimal
 delays or interruptions

Individual
One person

• � Developer satisfaction
• � Retention†
• � Satisfaction with code

reviews assigned
• � Perception of code

reviews

• � Code
review velocity

• � Number of code reviews
completed

• � �Coding time
• � # Commits
• � Lines of code†

• � Code review
score (quality or
thoughtfulness)

• � PR merge times
• � Quality of meetings†
• � Knowledge sharing,

discoverability (quality
of documentation)

• � Code review timing
• � Produc-tivity

perception
• � Lack of inter-ruptions

Team or Group
People that
work together

• � Developer satisfaction
• � Retention†

• � Code
review velocity

• � Story points shipped†

• � # Story points
completed†

• � PR merge times
• � Quality of meetings†
• � Knowledge sharing or

discoverability (quality
of documentation)

• � Code review timing
• � �Handoffs

System
End-to-end work
through a system
(like a development
pipeline)

• � Satisfaction with
engineering system
(e.g., CI/CD pipeline)

• � Code review velocity
• � Code review

(acceptance rate)
• � Customer satisfaction
• � Reliability (uptime)

• � Frequency of deploy-
ments

• � Knowledge sharing,
discoverability (quality
of documentation)

• � Code review timing
• � Velocity/ flow through

the system

† Use these metrics with (even more) caution — they can proxy more things.

JUNE 2021 | VOL. 64 | NO. 6 | COMMUNICATIONS OF THE ACM 51

practice

views, leaving them with less time for
other work.

	˲ Performance. Code-review velocity
captures the speed of reviews; because
this can reflect both how quickly an
individual completes a review and the
constraints of the team, it is both an in-
dividual- and a team-level metric. (For
example, an individual could complete
a review within an hour of being as-
signed, but a team could have a policy
of leaving all reviews open for 24 hours
to allow all team members to see the
proposed changes.)

	˲ Activity. Number of code reviews
completed is an individual metric cap-
turing how many reviews have been
completed in a given time frame and
contributes to the final product.

	˲ Communication and collaboration.
Code reviews themselves are a way that
developers collaborate through code,
and a measure or score of the quality
or thoughtfulness of code reviews is a
great qualitative measure of collabora-
tion and communication.

	˲ Efficiency and flow. Code review
is important but can cause challeng-
es if it interrupts workflow or if de-
lays cause constraints in the system.
Similarly, having to wait for a code
review can delay a developer’s abil-
ity to continue working. Batching up
code reviews so they don’t interrupt
a developer’s coding time (which
would impact individual measures),
while also not causing delays in the
throughput of the system (which im-
pacts system measures), allows teams
to deliver code efficiently (team-level
measures). Therefore, measuring the
effects of code-review timing on the
efficiency and flow of individuals,
teams, and the system is important—
this can be done through perceptual
or telemetry measures that capture
the time to complete reviews and the
characteristics of interruptions (such
as timing and frequency).

Let’s examine the SPACE frame-
work in more depth by looking fur-
ther at the dimensions of activity and
efficiency and flow. In this example,
the activity measures are individual-
level metrics: number of commits,
coding time (total time spent or times
of day), and number of code reviews
completed. These best describe work
that directly contributes to the final
product, understanding that work

patterns and behaviors are influenced
by the teams and environments in
which developers work.

Efficiency and flow have a broader
mix of metrics. Self-reported measures
of productivity are best captured at the
individual level: asking a developer
whether the team is productive is sub-
ject to blind spots, while asking if that

member felt productive or was able to
complete work with minimal distrac-
tions is a useful signal. You can also
measure the flow of work—whether
code, documents, or other items—
through a system, and capture metrics
such as the time it takes or the num-
ber of handoffs, delays, and errors in
the software delivery pipeline. These

The SPACE framework is relevant for SREs (site reliability engineers) and their work
in IM (incident management). An incident occurs when a service is not available or
is not performing as defined in the SLA (service-level agreement). An incident can be
caused by network issues, infrastructure problems, hardware failures, code bugs, or
configuration issues, to name a few.

Based on the magnitude of the impact caused by an incident, it is typically assigned
a severity level (sev-1 being the highest). An outage to the entire organization’s
customer-facing systems is treated differently than a small subset of internal users
experiencing a delay in their email delivery.

Here are some of the common myths associated with IM:
	˲ MYTH: Number of incidents resolved by an individual is all that matters. Like a lot

of other activities in the SDLC (software development life cycle), IM is a team activity. A
service that causes a lot of outages and takes more hours to restore reflects badly on the
entire team that develops and maintains the service. More team-focused activities such
as knowledge sharing, preparing troubleshooting guides to aid other team members,
mentoring juniors and new members of the team, doing proper handoffs and assign-
ment/re-assignments are important aspects of IM.

	˲ MYTH: Looking at one metric in isolation will tell you everything. It is important
to understand the metrics in context: the number of incidents, how long they took to
resolve—the volume and resolution times of sev-1 incidents compared with sev-4, and
other factors relevant to understanding incidents and how to improve both the system
and the team’s response. So, there is no “one metric that matters.”

	˲ MYTH: Only management cares about incident volume and meeting SLAs. With
the rise of DevOps, developers are also doing operations now. IM (a part of operations)
can take away a significant chunk of developers’ time and energy if the volume and se-
verity of the incidents are high. As important as it is to management and executives to
guarantee SLAs and reduce incident volume and resolution times, it is equally important
to the individual developers who are part of the IM process.

	˲ MYTH: Effective IM is just about improving systems and tools. Better monitoring
systems, ticketing systems, case-routing systems, log-analysis systems, etc. will help
make developers productive. While tools, guides, and workflows have a large impact on
productivity, the human factors of the environment and work culture have substantial
impact too. Mentoring new members of the team and morale building are important.
If developers are constantly being paged in the night for sev-1 incidents while working
from home during COVID-19, these “invisible” factors are especially helpful to make
them more productive.

Incident management is a complex process that involves various stakeholders
performing several individual and team activities, and it requires support from
different tools and systems, so it is critical to identify metrics that can capture various
dimensions of productivity:

	˲ Satisfaction: How satisfied SREs are with the IM process, escalation and routing,
and on-call rotations are key metrics to capture, especially since burnout is a significant
issue among SREs.

	˲ Performance: These measures focus on system reliability; monitoring systems’ abil-
ity to detect and flag issues faster, before they hit the customer and become an incident.
MTTR (mean time to repair) overall, and by severity.

	˲ Activity: Number of issues caught by the monitoring systems, number of incidents
created, number of incidents resolved—and their severity distribution.

	˲ Communication and collaboration: People included in resolving the incident, how
many teams those people came from, and how they communicate during an incident.
Incident resolution documentation outlines the steps involved in resolving incidents;
this can be measured by completeness (to check if any resolution data was entered) or
quick quality scores (for example, thumbs up/down). Teams may also include a metric
that measures the percentage of incidents resolved that reference these guides and doc-
umentation.

	˲ Efficiency and flow: Incident handoffs, incident assignment/reassignment, num-
ber of hops an incident has to take before it is assigned to the right individual or team.

SPACE and SRE: The Framework
in Incident Management

52 COMMUNICATIONS OF THE ACM | JUNE 2021 | VOL. 64 | NO. 6

practice

three dimensions; these can prompt a
holistic view, and they can be sufficient
to evoke improvement.

Any measurement paradigm should
be used carefully because no metric
can ever be a perfect proxy. Some met-
rics are poor measures because they
are noisy approximations (some ex-
amples are noted in Figure 1). Reten-
tion is often used to measure employee
satisfaction; however, this can capture
much more than satisfaction—it can
reflect compensation, promotion op-
portunities, issues with a team, or even
a partner’s move. At the team level,
some managers may block transfers
to protect their own retention ratings.
Even if retention did reflect satisfac-
tion, it is a lagging measure, and teams
don’t see shifts until it is too late to do
anything about it. We have written else-
where about the limitations inherent
in the use of story points,9 which could
give teams incentive to focus on their
own work at the expense of collaborat-
ing on important projects.

Teams and organizations should
be cognizant of developer privacy and
report only anonymized, aggregate
results at the team or group level. (In
some countries, reporting on individ-
ual productivity isn’t legal.) Individual-
level productivity analysis, however,
may be insightful for developers. For
example, previous research shows that
typical developer work shifts depend
on the phase of development, and de-
velopers may have more productive
times of day.14 Developers can opt in to
these types of analyses, gaining valu-
able insights to optimize their days and
manage their energy.

Finally, any measurement paradigm
should check for biases and norms.
These are external influences that may
shift or influence the measures. Some
examples are included here, but they
aren’t exhaustive, so all teams are en-
couraged to look for and think about
external influences that may be pres-
ent in their data:

	˲ Peer review and gender. Research
shows that women are more likely to
receive negative comments and less
likely to receive positive comments in
their code reviews.16 Any analysis of
satisfaction with the review process
should check for this in your environ-
ment. Understand that developers are
likely influenced by the broader tech

would constitute system-level metrics,
because their values would capture the
journey of the work item through the
entire workflow, or system.

How To Use the Framework
To measure developer productivity,
teams and leaders (and even individu-
als) should capture several metrics
across multiple dimensions of the
framework—at least three are rec-
ommended. For example, if you are
already measuring commits (an ac-
tivity measure), don’t simply add the
number of pull requests and coding
time to your metrics dashboard, as
these are both activity metrics. Add-
ing these can help round out the way
you capture the activity dimension of
productivity, but to really understand
productivity, add at least one metric
from two different dimensions: per-
haps perception of productivity and
pull request merge time.

Another recommendation is that at
least one of the metrics include percep-
tual measures such as survey data. By
including perceptions about people’s
lived experiences, a more complete pic-
ture of productivity can be constructed.
Many times, perceptual data may pro-
vide more accurate and complete infor-
mation than what can be observed from
instrumenting system behavior alone.10

Including metrics from multiple di-
mensions and types of measurements
often creates metrics in tension; this is
by design, because a balanced view pro-
vides a truer picture of what is happen-
ing in your work and systems. This more
balanced view should help to reinforce
smarter decisions and trade-offs among
team members, who may otherwise un-
derstandably focus on one aspect of work
to the detriment of the whole system.

One example is story points, a met-
ric commonly used in Agile develop-
ment processes to assess team-level
progress. If a team is rated only on
story points, members will focus on
optimizing their own points, to the
detriment of completing potentially
invisible work that is important to
other developers’ progress and to the
company if that means collaborating
with other teams or onboarding future
developers. And if leaders measured
progress using story points without
asking developers about their ability to
work quickly, they wouldn’t be able to

identify if something wasn’t working
and the team was doing workarounds
and burning out, or if a new innova-
tion was working particularly well and
could be used to help other teams that
may be struggling.

This leads to an important point
about metrics and their effect on teams
and organizations: They signal what is
important. One way to see indirectly
what is important in an organization is
to see what is measured, because that
often communicates what is valued
and influences the way people behave
and react. For example, companies
that care about employee health, well-
being, and retention will likely include
the satisfaction and well-being dimen-
sion in their productivity measures. As
a corollary, adding to or removing met-
rics can nudge behavior, because that
also communicates what is important.

For example, a team where “pro-
ductivity = lines of code” alone is very
different from a team where “produc-
tivity = lines of code AND code review
quality AND customer satisfaction.”
In this case, you have kept a (problem-
atic, but probably embedded) metric
about productivity and output, but
nudged perceptions about productiv-
ity in a direction that also values both
teamwork (by valuing thoughtful code
reviews) and the end user (by valuing
customer satisfaction).

Metrics shape behavior, so by add-
ing and valuing just two metrics, you’ve
helped shape a change in your team
and organization. This is why it’s so
important to be sure to pull from mul-
tiple dimensions of the framework:
it will lead to much better outcomes
at both the team and system levels. In
this example, as the teams continue
to improve and iterate, they could ex-
change the activity metric lines of code
for something like number of commits.

What to Watch For
Having too many metrics may also lead
to confusion and lower motivation; not
all dimensions need to be included
for the framework to be helpful. For
example, if developers and teams are
presented with an extensive list of met-
rics and improvement targets, meet-
ing them may feel like an unattainable
goal. With this in mind, note that a
good measure of productivity consists
of a handful of metrics across at least

JUNE 2021 | VOL. 64 | NO. 6 | COMMUNICATIONS OF THE ACM 53

practice

industry even if the patterns are not in
your organization or team. Take these
effects into account.

	˲ Normalizing measures across time.
Teams should be careful about any
methods used to normalize time, espe-
cially across long periods. For example,
looking at metrics over a year would
bias against those taking parental leave.

	˲ Perceptual measures. Teams and
organizations should be mindful of
cultural norms—and embrace these.
Some cultures naturally report higher,
while some report lower. It doesn’t
mean perceptual measures can’t be
trusted; it just means measures from
these different cultures will have a dif-
ferent baseline and shouldn’t be com-
pared with each other.

Why This Matters Now
Developer productivity is about more
than an individual’s activity levels or
the efficiency of the engineering sys-
tems relied on to ship software, and it
cannot be measured by a single metric
or dimension. We developed the SPACE
framework to capture different dimen-
sions of productivity, because without
it, pervasive and potentially harmful
myths about productivity may persist.

The SPACE framework provides
a way to logically and systematically
think about productivity in a much
bigger space and to carefully choose
balanced metrics linked to goals—
and how they may be limited if used
alone or in the wrong context. The
framework helps illuminate trade-
offs that may not be immediately obvi-
ous and to account for invisible work
and knock-on effects of changes such
as increased work if activity is mea-
sured at the expense of unfulfilled de-
velopers or disruptions to overall flow
and efficiency.

The need to understand and mea-
sure productivity holistically has never
been greater. As the Covid-19 pan-
demic disrupted work and brought a
sudden switch to working from home,
many questioned its impact on pro-
ductivity and posed questions around
how to understand and measure this
change. As the world slowly returns to
a “new normal,” the SPACE framework
captures the dimensions of produc-
tivity that are important to consider
as future changes are proposed and
made. The framework is meant to help

individuals, teams, and organizations
identify pertinent metrics that present
a holistic picture of productivity; this
will lead to more thoughtful discus-
sions about productivity and to the de-
sign of more impactful solutions.

Acknowledgments. We are grateful
for the thoughtful review and insight-
ful comments from our reviewers and
are confident that incorporating their
notes and responses has strengthened
the article.	

 Related articles
 on queue.acm.org

Getting What You Measure
Eric Bouwers, Joost Visser,
and Arie van Deursen
https://queue.acm.org/detail.cfm?id=2229115

DevOps Metrics
Nicole Forsgren and Mik Kersten
https://queue.acm.org/detail.cfm?id=3182626

Beyond the “Fix-it” Treadmill
J. Paul Reed
https://queue.acm.org/detail.cfm?id=3380780

People and Process
James Champy
https://queue.acm.org/detail.cfm?id=1122687

References
1.	 Beller, M., Orgovan, V., Buja, S., Zimmermann, T. Mind

the gap: on the relationship between automatically
measured and self-reported productivity. IEEE
Software (2020); https://arxiv.org/abs/2012.07428.

2.	 Brumby, D. P., Janssen, C. P., Mark, G. How do
interruptions affect productivity? Rethinking
Productivity in Software Engineering. C. Sadowski
and T. Zimmermann, eds. Apress, Berkeley,
CA, 2019, 85–107; https://link.springer.com/
chapter/10.1007/978-1-4842-4221-6_9.

3.	 Butler, J.L., Jaffe, S. Challenges and gratitude: a diary
study of software engineers working from home
during Covid-19 pandemic (Aug. 2020). Microsoft;
https://www.microsoft.com/en-us/research/
publication/challenges-and-gratitude-a-diary-study-
of-software-engineers-working-from-home-during-
covid-19-pandemic/.

4.	 Csikszentmihalyi, M. Flow: The Psychology of Optimal
Experience. Harper Perennial Modern Classics, 2008.

5.	 Dabbish, L., Stuart, C., Tsay, J., Herbsleb, J. Social
coding in GitHub: Transparency and collaboration in
an open software repository. In Proceedings of the
ACM 2012 Conf. Computer-supported Cooperative
Work (Feb. 2012), 1277–1286; https://dl.acm.org/
doi/10.1145/2145204.2145396.

6.	 Dourish, P., Bellotti, V. Awareness and coordination
in shared workspaces. In Proceedings of the 1992
ACM Conf. Computer-supported Cooperative
Work (Dec. 1992), 107–114; https://dl.acm.org/
doi/10.1145/143457.143468.

7.	 Ford, D. et al. A tale of two cities: software developers
working from home during the Covid-19 pandemic,
2020; https://arxiv.org/abs/2008.11147.

8.	 Forsgren, N. Finding balance between work and play.
The 2020 State of the Octoverse. GitHub; https://
octoverse.github.com/static/github-octoverse-2020-
productivity-report.pdf.

9.	 Forsgren, N., Humble, J. Kim, G. Accelerate: The
Science of Lean Software and DevOps: Building and
Scaling High Performing Technology Organizations. IT
Revolution Press, 2018.

10.	 Forsgren, N., Kersten, M. DevOps metrics. Commun.
ACM 61, 4 (2018), 44–48; https://dl.acm.org/
doi/10.1145/3159169.

11.	 Fuks, H., Raposo, A., Gerosa, M. A., Pimental,
M. The 3C collaboration model. Encyclopedia

of E-Collaboration. Ned Kock, ed. IGI Global,
2008, 637–644. https://www.researchgate.net/
publication/292220266_The_3C_collaboration_model.

12.	 Graziotin, D., Fagerholm, F. Happiness and the
productivity of software engineers. Rethinking
Productivity in Software Engineering. C. Sadowski
and T. Zimmermann, eds. Apress, Berkeley,
CA, 2019, 109–124; https://link.springer.com/
chapter/10.1007/978-1-4842-4221-6_10.

13.	 Maslach, C., Leiter, M.P. Early predictors of job burnout
and engagement. J. Applied Psychology 93, 3 (2008),
498–512; https://doi.apa.org/doiLanding?doi=10.1037
%2F0021-9010.93.3.498.

14.	 Meyer, A. N., Barton, L. E., Murphy, G. C.,
Zimmermann, T., Fritz, T. The work life of developers:
activities, switches and perceived productivity.
IEEE Trans. Software Engineering 43, 12 (2017),
1178-–1193; https://dl.acm.org/doi/10.1109/
TSE.2017.2656886.

15.	 Murphy-Hill, E. et al. What predicts software
developers’ productivity? IEEE Trans. Software
Engineering, 2019; https://ieeexplore.ieee.org/
document/8643844/.

16.	 Paul, R., Bosu, A., Sultana, K.Z. Expressions of
sentiments during code reviews: male vs. female. In
IEEE 26th Intern. Conf. Software Analysis, Evolution
and Reengineering, 2019, 26–37; https://ieeexplore.
ieee.org/document/8667987.

17.	 Ralph, P. et al. Pandemic programming: How
Covid-19 affects software developers and how
their organizations can help. Empirical Software
Engineering 25, 6 (2020), 4927–4961; https://www.
researchgate.net/publication/344342621_Pandemic_
programming_How_COVID-19_affects_software_
developers_and_how_their_organizations_can_help.

18.	 Schmidt, K., Bannon, L. Taking CSCW seriously:
Supporting articulation work. Computer Supported
Cooperative Work 1, 1 (1992), 7–40; https://link.
springer.com/article/10.1007/BF00752449.

19.	 Sedano, T., Ralph, P., Péraire, C. Software development
waste. In Proceedings of the 39th Inter. Conf. Software
Engineering, 2017, 130–140; https://dl.acm.org/
doi/10.1109/ICSE.2017.20.

20.	 Storey, M. A., Zimmermann, T., Bird, C., Czerwonka,
J., Murphy, B., Kalliamvakou, E. Towards a theory of
software developer job satisfaction and perceived
productivity. IEEE Trans. Software Engineering, 2019;
https://ieeexplore.ieee.org/document/8851296.

21.	 Suchman, L. Making work visible. Commun. ACM
38, 9 (Sept. 1995), 56–64; https://dl.acm.org/
doi/10.1145/223248.223263.

22.	 Vasilescu, B.et al., Filkov, V. Gender and tenure
diversity in GitHub teams. In Proceedings of the 33rd
Annual ACM Conf. Human Factors in Computing
Systems (Apr. 2015), 3789-3798; https://dl.acm.org/
doi/abs/10.1145/2702123.2702549.

Nicole Forsgren is the VP of Research & Strategy at
GitHub. She is an expert in DevOps and the author of
the Shingo Publication Award-winning book Accelerate:
The Science of Lean Software and DevOps. Her work on
technical practices and development is used to guide
organizational transformations around the world.

Margaret-Anne Storey is a professor of computer science
at the University of Victoria and a Canada Research Chair
in Human and Social Aspects of Software Engineering.
She consults with Microsoft to improve developer
productivity.

Chandra Maddila is a Senior Research Engineer at
Microsoft Research. He developed tools and techniques
that are used organization-wide at Microsoft.

Thomas Zimmermann is a Senior Principal Researcher
at Microsoft Research. He is best known for his work on
mining software repositories and data science in software
engineering.

Brian Houck is a Principal Program Manager in the Azure
Engineering Systems at Microsoft. His work focuses on
improving developer productivity and satisfaction for
engineers within the Azure organization.

Jenna Butler is an adjunct professor at Bellevue College
in the Radiation Therapy department and is a senior
software engineer at Microsoft. She is currently working
with MSR’s Productivity & Intelligence team to study
alignment and decision making; working in the services;
and the impact of remote work during this time.

Copyright held by authors/owners..

