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G I T H U B ,  A  C O D E - H O S T I N G  website built atop the Git 
version-control system, hosts hundreds of millions 
of repositories of code uploaded by more than 65 
million developers. The Semantic Code team at 
GitHub builds and operates a suite of technologies 
that power symbolic code navigation on github.com. 
Symbolic code navigation lets developers click on a 
named identifier in source code to navigate to the 
definition of that entity, as well as the reverse: given 
an identifier, they can list all the uses of that identifier 
within the project.

This system is backed by a cloud object-storage 
service, having migrated from a multi-terabyte sharded 
relational database, and serves more than 40,000 
requests per minute, across both read and write 
operations. The static analysis stage itself is built 
on an open source parsing toolkit called Tree-sitter, 
implements some well-known computer science 
research, and integrates with the github.com 

infrastructure in order to extract name-
binding information from source code.

The system supports nine popular 
programming languages across six mil-
lion repositories. Scaling even the most 
trivial of program analyses to this level 
entailed significant engineering effort, 
which is recounted here in the hope that 
it will serve as a useful guide for those 
scaling static analysis to large and rap-
idly changing codebases.

Motiviation: Seeing the Forest 
for the (Parse) Trees
Navigating code is a fundamental part 
of reading, writing, and understanding 
programs. Unix tools such as grep(1) 
allow developers to search for patterns 
of text, but programmers’ needs are 
larger in scope: What the are most inter-
ested in is how the pieces of a program 
stitch together—given a function, where 
is it invoked, and where is it defined? 
Quick and quality answers to these que-
ries allow a programmer to build up a 
mental model of a program’s structure; 
that, in turn, allows effective modifica-
tion or troubleshooting. Tools such as 
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grep that are restricted to text match-
ing and have no knowledge of program 
structure often provide too little or too 
much information.

Fluent code navigation is also an in-
valuable tool for researching bugs. The 
stack trace in an error-reporting system 
starts a journey of trying to understand 
the state of the program that caused 
that error; navigating code symbolically 
eases the burden of understanding code 
in context. As such, most integrated de-
velopment environments (IDEs) have ex-
tensive support for code navigation and 
other such static analyses that ease the 
user’s burden.

The Semantic Code team wanted to 
bring this IDE-style symbolic code navi-
gation to the Web on github.com. The 
team was inspired by single-purpose 
sites such as source.dot.net, Mozilla, 
and Chromium Code Search that pro-
vide comprehensive in-browser code-
navigation. The question was how to do 
that at scale: GitHub serves more than 
65 million developers contributing to 
over 200 million repositories across 370 
programming languages. In the last 12 

months alone, there were 2.2 billion 
contributions on github.com. That’s a 
lot of code and a lot of changes.

Philosophy: To Tree or Not to Tree
The Semantic Code team’s approach to 
implementing code navigation centers 
around the following core ideas.

1. Zero configuration. The end user 
doesn’t have to do any setup or configu-
ration to take advantage of code naviga-
tion, beyond pushing code to GitHub. 
There are no settings or customizations 
or opt-in features—if a repository’s lan-
guage is supported, it should just work. 
This is critical for this particular use 
case, since if you view a source-code file 
on GitHub in a supported language, 
the expectation is that code navigation 
should just work. If every open source 
project had to do even a little extra work 
to configure its repo or set up a build to 
publish this information, the experience 
of browsing code on GitHub would vary 
dramatically from project to project, and 
the time between push and being able to 
use code navigation might depend on 
slow and complex build processes.

It’s not sufficient to require that de-
velopers clone and spin up their own 
IDEs (or wait for an in-browser IDE such 
as GitHub Codespaces to load); develop-
ers are expected to be able to read and 
browse code quickly without having to 
download that code and its associated 
tooling. For this feature to scale and 
serve all of GitHub, it has to be available 
everywhere and in every project. The 
goal is for developers to focus on their 
programs and the problems they are try-
ing to solve, not on configuring GitHub 
to work properly with their projects or 
convincing another project owner to get 
the settings right.

2. Incrementality. For each change 
pushed to a repository, the back-end 
processing should have to do work only 
on the files that changed. This is differ-
ent from instituting a continuous-inte-
gration workflow, in which a user might 
specifically want a fresh environment 
for repeatable builds. It also hints that 
results will be available more quickly af-
ter push—on the order of seconds, not 
minutes. Waiting an entire build cycle 
for code-navigation data to show up isn’t 
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is called a tag analysis. A tag analysis 
looks at the definitions and the usages 
of functions, variables, and data types, 
collating them into a format suitable for 
viewing the definition of a given entity, 
as well as querying the codebase in full 
to determine all the places where that 
entity is used.

This analysis was introduced by a 
program named ctags, developed by 
Ken Arnold and released in 1979 as part 
of BSD Unix 3.0. As its name indicates, 
ctags supported only the C program-
ming language; despite this, it was an 
immediate success, eventually incorpo-
rated into the Single Unix Specification. 
Further descendants of ctags added 
support for more programming lan-
guages, and the vast majority of text edi-
tors and IDEs now provide ctags inte-
gration. Though a tag analysis is trivial, 
relevant to the state of the art in static 
program analysis, implementing such 
an analysis at GitHub scale and within 
GitHub’s distributed architecture was 
not.

Tree-sitter. The first step in any sort of 
static analysis is to parse textual source 
code into a machine-readable data 
structure. This is done by producing 
concrete syntax trees with Tree-sitter, a 
parser generator tool and incremental 
parsing library.

Tree-sitter enables specifying a gram-
mar for a programming language and 
then generating a parser, which is a de-
pendency-free C program. Given a pars-
er and some source code, the system 
yields a syntax tree of that source code. 
The act of tagging that code entails walk-
ing the tree and performing a filter map 
operation. Using an s-expression-like 
DSL (domain-specific language), Tree-
sitter provides tree queries that allow 
specifying which nodes to match in the 
syntax tree (for example, an identifier 
that represents the name of a function). 
The tooling in the Tree-sitter ecosystem 
allows fast iteration for grammar devel-
opment and tree matching, making it 
possible to support new language syntax 
quickly or identify new constructs for 
code navigation.

Tree-sitter pulls from several areas of 
academic research, but the most promi-
nent is generalized LR (GLR) parsing. An 
extension of the well-known LR (left-to-
right derivation) parsing algorithm, the 
GLR algorithm can handle ambiguous 
or nondeterministic grammars, which 

tenable for the desired user experience; 
developers expect the navigation feature 
to keep pace with their changes.

3. Language agnosticism. The same 
back-end processing code should be run 
and operated regardless of the language 
under analysis. Consequently, the team 
decided not to run language-specific 
tooling, such as the Roslyn project for 
C# or Jedi for Python, as that would re-
quire operating a different technology 
stack for each language (and sometimes 
for each version of a language).

Though this means the language 
grammars may accept a superset of a 
given language, this philosophy yields 
the ability to scale and deliver results 
much faster. The infrastructure can run 
a single code stack, there’s no manage-
ment of multiple containers and associ-
ated resource costs, there’s no cold start 
time for bringing up tooling, and there’s 
no attempt to detect a project’s struc-
ture, configuration, or target language 
version.

This also means that major aspects 
of analysis can be implemented in one 
place, providing abstractions such as 
machine-readable grammars and a tree 
query language. Only certain things 
unique to a programming language 
must be developed before that language 

can be enabled in the rest of the technol-
ogy stack.

4. Progressive fidelity. Results that are 
good enough should never wait for ones 
that are perfect. The system has been 
designed so that over time the results 
it yields can be refined and improved. 
Instead of trying to build and reveal the 
perfect system for all languages across 
all of GitHub, the team has chosen to 
ship incremental improvements: add-
ing languages one by one and improving 
navigation results with further technol-
ogy investment.

5. Human partnering. Great software 
tools augment and complement human 
abilities. In this case, GitHub’s Semantic 
Code team wants to facilitate the process 
of reading, writing, and understanding 
software and to do so in such a way that 
developers can contribute to the tool-
ing in the languages they care about the 
most. The system should, to the greatest 
extent possible, avoid the walled-garden 
model of software development, as lan-
guage communities are often ready and 
willing to fix bugs and oversights with re-
spect to their language of choice.

Methodology: Tagging the ASTs
The static analysis that the GitHub 
code-navigation feature is built upon 

Every programming language must have a parser to convert its textual representation 
to one that can be executed by a machine. Instead of employing the canonical parsers 
for the supported languages, however, the Semantic Code team reimplemented these 
parsers atop Tree-sitter. This provides a number of advantages over using a language’s 
built-in tooling:

 ˲ There are many versions of common programming languages with various levels 
of syntactic compatibility. There is often no information that distinguishes a Python 2 
file from a Python 3 file, so using a language’s built-in parser would require heuristics 
or guesswork to find which parser is appropriate. 

 ˲ Some language tooling requires external information or project-level 
configuration not present in the code itself. To fully analyze projects of this nature, 
the analysis must, in essence, run a build of the software. GitHub provides build 
infrastructure with GitHub Actions and post-build analysis with CodeQL, but users 
must opt into this functionality, and results are generally available in minutes, not the 
seconds that code navigation relies upon.

 ˲ Running individual language-specific tools is too complex to be operationally 
feasible. Not only do you end up with mixed-platform VMs (C# tooling would have to 
run on Windows, Swift on macOS, most other languages would require a Unix system), 
you would need a way to switch between various versions of the language and its core 
components. GitHub Actions tackles this out of necessity for the CI (continuous 
integration) space, but it requires effort from both users and implementers to select the 
right versions of languages, frameworks, compilers, and operating systems.

By developing a common parsing framework, the Semantic Code team created 
standard machine-readable grammars that parse a superset of all versions of a 
language. This has interesting consequences such as being able to easily support the 
Embedded Ruby templating languages by composing the HTML and Ruby grammars. 
Additionally, this work yielded the ability to support multiple languages through one 
tool. Tree-sitter parsers are zero-dependency C libraries, making them easy to embed 
and bind to other languages.

Building Parsers
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are common in modern programming 
languages. Real-world languages use 
many different parsing algorithms: Py-
thon uses the LL(1) algorithm, Ruby uses 
LALR, and GCC (GNU Compiler Col-
lection) projects use custom recursive 
descent parsers. The GLR algorithm, 
introduced in 1974 by Bernard Lang and 
implemented in 1984 by Masaru Tomi-
ta, is flexible enough to parse all these 
languages; relying on a less sophisticat-
ed algorithm such as LR(1) would be too 
restrictive, given that such parsers are 
limited to looking ahead only one token 
in the input (see sidebar for more infor-
mation).

Tagging the trees. The next challenge 
is to do some basic analysis of the parse 
trees. To start, the team decided to pro-
vide naive name-binding information 
based just on identifiers for known syn-
tactic constructs. This was originally 
designed as a prototype, but it worked 
so well it was shipped while work was be-
ginning on further refinements.

The basic idea is to:
1. Parse a source file.
2. Walk the parse tree, capturing 

identifiers for certain syntactic construc-
tions such as function definitions.

3. Keep a database table of these tags, 
along with information such as the line/
col where they appear in the original 
source code and whether the identifier 
is the definition of something or a refer-
ence (for example, a function call would 
be a reference).

It turns out that for many languages, 
this name-binding information alone 
provides a compelling product experi-
ence. It’s not perfect, but it’s such an 
improvement over not having any in-
formation at all, that the team used this 
prototype to flesh out the production-
scale system, while simultaneously re-
searching how to refine the precision of 
the results.

To walk the parse tree, it suffices to 
use Tree-sitter’s support for queries. 
By specifying the structure, using an s-
expression syntax, of the types of syntax 
nodes that contain useful identifier in-
formation, a walk of the parse tree can 
yield only the nodes specified. As shown 
in Figure 1, given the use case of identify-
ing method definitions in Ruby, a small 
snippet of Ruby code is parsed that de-
fines a method add.

In more complex situations, the Tree-
sitter tree queries can maintain custom 

state during the query’s operation. This 
is important for a language such as 
Ruby, which makes no syntactic distinc-
tion between variables and functions 
called without arguments. To yield use-
ful results, you must record the names of 
any local variables in a given Ruby scope, 
which allows that syntactic ambiguity to 
be eliminated.

Implementation: Architecture
GitHub’s code-navigation pipeline is 
built atop open source software and 
standards:

 ˲ Apache Kafka. A platform for han-
dling high-throughput streams of data 
such as commits to repositories. An in-
dividual datum in a stream is a message.

 ˲ Git. A distributed version-control 
system. Programmers upload changes to 
repositories of code hosted on GitHub. 
Each change affects one or more files—
called blobs—in that repository. A unit 
of change to one or more blobs is called 
a commit, and the act of uploading one 
or more commits is a push. Once com-
mits are pushed, other programmers 
can see and incorporate those commits 
into the copy of the repository present 
on their computers. Programmers can 
upload their code without affecting oth-
ers by targeting a branch, a named col-
lection of commits. Git projects start 
out with a single branch, usually called 
“main,” which is then changed either by 

pushing commits directly or by review-
ing and integrating others’ changes (pull 
requests). Entities in a Git repository are 
given a unique tag based on the SHA-1 
hashing algorithm.

 ˲ Kubernetes. An orchestration system 
for the deployment and operation of ap-
plication services, Kubernetes provides 
pods, isolated units of computation on 
which one or many copies of a given ap-
plication can be deployed.

 ˲ Semantic. An open source program-
analysis tool from GitHub.

 ˲ Tree-sitter. This parsing toolkit, built 
atop the GLR algorithm, generates code 
that efficiently parses source code: The 
act of parsing transforms a human-read-
able, textual representation of source 
code into a tree data structure, usually 
referred to as a syntax tree, suitable for 
consumption and analysis by machines.

 ˲ Twirp. An RPC (remote-procedure 
call) standard, Twirp defines the man-
ner in which entities in the system can 
communicate.

The system is made up of three in-
dependent services deployed on Ku-
bernetes that integrate with the main 
github.com Ruby on Rails application 
(affectionately called “the monolith” 
because of its size and complexity): The 
indexer consumes Kafka messages for 
git pushes and orchestrates the pro-
cesses of parsing, tagging, and saving 
the results for a particular repository at 

Figure 1. An example of parsing and tagging Ruby code.

# test.rb
def add(a, b)
  a + b
end

Using Tree-sitter, the parse tree looks like this, in s-expression form, containing  
the node name and the line/column/span information associated with that node:

> tree-sitter parse test.rb
(program [0, 0] - [3, 0]
  (method [0, 0] - [2, 3]
    name: (identifier [0, 4] - [0, 7])
    parameters: (method_parameters [0, 7] - [0, 13]
      (identifier [0, 8] - [0, 9])
      (identifier [0, 11] - [0, 12]))
    (binary [1, 2] - [1, 7]
      left: (identifier [1, 2] - [1, 3])
      right: (identifier [1, 6] - [1, 7]))))

A tagging operation for Ruby methods such as add is encoded with the Tree-sitter query syntax:

(method
      name: (_) @name) @definition.method

The @ captures and tags parts of the tree that match, whereas the _ means  
we don’t care about the structure of the tree beyond this point.  
Tree-sitter can now use this query to provide the desired match:

> tree-sitter tags test.rb
        add | method   def (0, 4) - (0, 7) 'def add(a, b)'
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on Kafka. This means that in the case 
of capacity overload, the indexer will 
not attempt to consume too many mes-
sages, providing resiliency and elastic-
ity in the system.

When processing a push, the indexer 
does a shallow clone of the repository to 
a temporary directory. The aggregation 
stage means a single download can be 
reused in future indexes.

Indexing involves determining which 
git blobs in the repository at the change 
under analysis have not been indexed. 
The OID (object identifier) of a blob is 
a SHA-1 hash of its contents; this iden-
tifier can easily be used to keep track of 
files that need to be processed. Blobs 
that haven’t changed are shared be-
tween commits and require no addi-
tional work, though the set of paths and 
blobs reachable in a particular commit 
is recorded.

For the blobs that do require parsing 
and tagging, the indexer calls out to a 
separate service running on another set 
of pods. The reason for this separation is 
that not every push represents the same 
amount of parsing work. There could be 
anywhere between one and 20,000 files 
to process. The indexer workload is pri-
marily I/O-bound: waiting on sockets 
(for Kafka, the datastore, repo cloning) 
and reading/writing to the file system. 
Parsing, however, is primarily compute-
bound, so having a separate pool of pods 
across which requests are load-balanced 
means resources can be appropriately 
scaled, and the system won’t run into 
the case where a single indexer pod gets 
hot as a result of processing a large or ac-
tive repository.

The system is deployed up to dozens 
of times a day, and it handles those de-
ployments gracefully by stopping the 
consumption of any new Kafka mes-
sages, allowing inflight indexes a 30-sec-
ond window to complete processing, 
and aborting and re-queueing any index 
that can’t finish in that window. Since 
processing is incremental for each git 
blob, the new pod that picks up that 
message will have to parse and tag only 
those blobs that didn’t finish during the 
original run.

Querying. When tag results have been 
fully processed, they are stored in a data-
base, along with enough information to 
serve future queries: For repository X at 
commit Y where is foo defined? The sys-
tem provides a few Twirp RPC (remote 

a commit SHA; the tagger is a service that 
accepts raw source-code content, parses 
and tags this code, and returns the re-
sults; the query service provides a Twirp 
RPC interface to the symbols database, 
allowing github.com’s front end to look 
up definitions and references.

Figure 2 shows the relationships 
among the various indexer sequence 
components.

Indexing. Developers upload code to 
GitHub via pushing through Git or as a 
result of editing a file through the web-
site’s interface. Upon receiving a new 
push, GitHub servers send a message 
to Kafka describing metadata (project 
location, change author, target branch) 
about the push. The system runs a pool 
of Kubernetes pods, spread across mul-
tiple clusters and physical data centers, 
that listen to these messages. Because 
messages are distributed across the 

pool of pods according to a repository’s 
unique identifier, a given pod typically 
consumes messages for the same re-
positories over and over again, allowing 
effective local caching in the indexing 
pipelines.

As messages are consumed, the in-
dexer process aggregates them, ensur-
ing that pushes to the same repository 
within a time window are processed as 
one request. It subsequently filters out 
invalid messages; because of reasons 
of scale, pushes are indexed only to the 
default branch; they must involve only 
programming languages that the sys-
tem supports. It then throttles the rate 
of indexing, so that initial indexes are 
allowed to complete fully before subse-
quent pushes are processed. Kafka re-
cords when a given message is passed 
off for processing, and a cap on simul-
taneous processing puts backpressure 

Figure 2. Indexer sequence.
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procedure call) endpoints that allow the 
github.com front end user interface to 
look up definitions and references based 
on the user’s interaction and context. In 
the past, the team’s database of choice 
was a large MySQL instance, partitioned 
across multiple machines by Vitess (a 
MySQL sharding technology). As of this 
writing, tag data is stored in Microsoft 
Azure Blob Storage, a cloud storage sys-
tem that supports uploading files.

Figure 3 shows the relationships 
among the various query sequence com-
ponents.

Operational Journey
The first prototype of this system used 
the ctags command-line tool directly: 
An invocation of ctags dumped the 
yielded tags into the Git storage associ-
ated with the tagged repository, and fur-
thermore attempted to do this on every 
push to that repository. This was great 
for a demo, but infeasible to run at scale: 
CPU resources are at a premium on the 
Git storage servers; multiple pushes to 
multiple refs made managing the tags 
file challenging; and handling lookup 
requests on those servers wasn’t ideal. 
Ctags didn’t have the API needed to 
take advantage of Git’s data structures, 
and it’s not easy to use command-line 
programs in such a way that their opera-
tions can be served by Web services.

Enter Tree-sitter. When the Seman-
tic Code team picked up the project, 
the next iteration used Tree-sitter in-
stead of ctags but most of the indexing 
logic was still implemented in the main 
github.com Ruby on Rails application. 
Queued on push, indexing jobs written 
in Ruby served to fetch Git content over 
an internal RPC, detect the language of 
a source file, filter out irrelevant con-
tent (for example, binary files, code in 
languages not supported), call out to a 
service for parsing/tagging, and save the 
resulting tags. A dedicated MySQL data-
base was used for storing and retrieving 
tag data and the query path was essen-
tially direct to this database from the 
Rails controllers.

This solved a certain set of problems 
and proved that the Tree-sitter parsers 
and initial name-binding analyses could 
provide parsing/tagging as a service, 
with easy iteration on grammars and 
easy horizontal scaling of the parsing 
compute workload. Most importantly, 
this prototype convinced leadership that 

this was a valuable set of features to build 
and that it enhanced the GitHub experi-
ence in a meaningful way. It also showed 
that we had a plan for scaling, support-
ing all the repositories on GitHub, and 
supporting new languages.

Out of the monolith. The next itera-
tion moved further out of the github.
com Ruby on Rails application, for sev-
eral reasons:

 ˲ The job architecture in GitHub 
wasn’t overly resilient and had “try once, 
best effort” semantics, which led to un-
reliability. Additionally, these operations 
entailed significant resource contention 
on the job workers shared with myriad 
background jobs being processed at 
GitHub, such as webhooks, delivering 
emails, and updating pull requests.

 ˲ As more repositories, users, and 
languages were added, the growth of 
the tags database impaired the ability 
to scale. This quickly became one of the 
largest MySQL instances at GitHub.

From an engineering organization 
perspective, working in the main Ruby 
on Rails application codebase was slow 
and came with a number of restrictions. 

Many parts of GitHub’s main deploy-
ment pipeline are streamlined today, 
but at the time deploying a single pull 
request could take more than a day. To 
address these challenges, additional ser-
vices were implemented:

 ˲ A rewrite of the parsing/tagging 
service, using GitHub’s open source 
Semantic language toolkit.

 ˲ The indexer service, which con-
sumes push information from Kafka, 
clones and parses repositories, and in-
serts results into a dedicated MySQL da-
tabase.

 ˲ The query service that performs da-
tabase lookups and returns results to the 
Ruby on Rails application.

These patterns served the system well 
for a significant period of time, allowing 
rapid growth, the release of several new 
languages for the code-navigation fea-
ture, and streamlined development and 
deployment.

Scaling MySQL. The next iteration 
required migrating the database from 
a single MySQL instance to a horizon-
tally distributed cluster of partitioned 
MySQL instances, powered by the open-

Figure 3. Query sequence.
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in the system stayed the same: Just 
swap the box that says “MySQL” with 
a different box that says “Azure”—that 
was the idea, at least.

In practice, this involved significant 
work. Not only did the team have to 
maintain the legacy MySQL and new 
Azure systems side by side, but it also had 
to design an Azure-compatible schema 
for tags data that would allow incremen-
tal indexing of repositories and querying 
of tags with roughly the same perfor-
mance characteristics as the MySQL-
based system. This meant optimizing for 
space and time and costs. (Storage costs 
money, but so does each operation: for 
example, read operations are less expen-
sive than writes, which are less expensive 
than list-query operations.)

Datastore design. The storage struc-
ture the team ended up with is the 
following, expressed in a file-system-
like form. The overall path structure 
includes a <version> prefix to al-
low major structural and formatting 
changes of the datastore. The data for 
each repository is then prefixed with its 
id (see Figure 4).

This in-database file hierarchy pro-
vides access to all the different data 
required to provide useful code-naviga-
tion information. During indexing, the 
appropriate files are uploaded to blob 
storage for the repo under analysis. At 
query time, the repository, a commit 
SHA, and the symbol name provide 
enough information to fetch the appro-
priate files and compute the results. All 
files are immutable.

The symbol names by hash prefix 
file (Figure 5) contains all symbol names 
in the commit that share a two-character 
SHA1 hash prefix stored as TSV. This pre-
fix allows speeding up database queries 
by filtering based on this two-character 
prefix. This is the first file read when do-
ing a symbol lookup in order to get a list 
of blob SHAs where a symbol is defined 
(D) or referenced (R).

 The index blobs for a commit file 
(Figure 6) denotes that a commit has 
been indexed and holds a map of all 
blob SHAs in the commit, along with 
paths for those blobs. This file is read, 
and intersecting the blob SHAs with 
those from the previous step gives a list 
of blobs to fetch in a later step.

This file contains a header and two 
TSV content sections. The header gives 
the byte offset (from the start of the 

source project Vitess. Moving to Vitess 
entailed engineering complexity: The 
team needed to write new schemas, 
choose new sharding strategies, and de-
ploy both primary and secondary MySQL 
instances within this cluster. During this 
time, the team migrated from a Seman-
tic-based tagging service to one that op-
erated entirely with (newly developed) 
Tree-sitter queries. Though Semantic 
performed well, using the Tree-sitter 
query language allowed faster iteration 
and avoided the operational overhead of 
a program-analysis framework.

Moving to blob storage. The most re-
cent iteration, and the one deployed to 
github.com as of this writing, entailed 
a dramatic change in database formats. 
While the Vitess-sharded MySQL data-
base provided, in theory, significant run-
way for horizontal scaling (just add more 
shards), several new constraints became 
apparent:

 ˲ Money. With the Vitess cluster, 
there was technically no limit to hori-
zontally scaling MySQL, but sufficiently 
powerful hardware entailed significant 
upfront and maintenance costs. While 
these costs were constrained by index-
ing only a repository’s primary branch, 
projections for the costs of parsing all 
branches for all code on all of GitHub 
were simply prohibitive.

 ˲ Not all the features of MySQL could 
be used, especially given that SQL’s ca-
pacities were limited by the constraints 
imposed by Vitess in order to shard the 
database correctly.

 ˲ The number of writes to the data-
base was overwhelming MySQL: In or-
der to keep MySQL and Vitess running 
smoothly, traffic had to pass through a 
throttling service, which entailed a sig-
nificant bottleneck in indexer perfor-
mance. Writes to MySQL are throttled 
based on replication lag. When the lag 
(time between a write to a primary be-
ing applied to a replica) exceeds some 
threshold, the indexer processes back 
off inserts. Usually these are temporary 
blips caused by unhealthy hardware, 
configuration differences, or just pat-
terns of data (for example, developers 
are extra busy on Monday mornings and 
in January after the holidays).

Though this migration was primar-
ily about cost structure, the change in 
data storage resulted in a few interest-
ing performance benefits along the 
way. Architecturally though, everything 

From  
an engineering 
organization 
perspective, 
working in  
the main Ruby  
on Rails application 
codebase was  
slow and came  
with a number  
of restrictions.
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file) of the start of each section. Each 
section contains one line for each path 
that was indexed. The first section con-
tains <path>\t<blob_sha> fields and 
is sorted by path. This allows a binary 
search for a particular path to find its 
blob SHA in the commit. The lines in the 
second section contain a single <byte_
offset> field that is the offset (from the 
start of the file) of one of the lines in sec-
tion 1. The section in Figure 6 is sorted 
by blob SHA and allows a binary search 
for a set of blob SHAs to find the paths 
where they appear in the commit.

All definitions and references for a 
particular git blob (Figure 7) is the fi-
nal step in symbol lookup, providing 
the information to return to the front 
end. Many definition lookups result in 

a single file read at this step. Since ref-
erences can be spread out across multi-
ple files, reads are done in parallel with 
an upper limit.

Definitions are stored first, so that 
find operations can return early once 
the first reference is reached. Note that 
since this is the SHA1 hash of the blob 
contents, once a blob is parsed, it never 
needs to be parsed again and can be 
shared across any commit that includes 
that blob.

The other files are used to quick-
ly tell if a particular branch or tag 
has been indexed or not. refs/
(heads|tags)/<branch_name>.tsv 
contains the single commit SHA for the 
tip of the branch that has been indexed. 
DEFAULT.tsv contains a commit SHA 

and ref of the default branch.
Each iteration of the system and even 

the migration of the datastore happened 
under the full production load with 
minimal to no impact on end users. The 
blob storage change resulted in signifi-
cant cost savings, an increase in index-
ing throughput, and a slight decrease in 
query request times.

Conclusion
The resulting code-navigation system 
processes and indexes more than 1,000 
pushes per minute and generates more 
than two million new identifier names 
per minute. The p99 (99th percentile; 
that is, the time it takes for the slowest 
1% of indexes) for the first-time index of 
a repository is ~60 seconds (the 50th per-
centile is ~1.1 seconds). The p99 for an 
incremental index is ~10 seconds (p50 is 
~1.3 seconds). The system serves 30,000 
requests per minute for symbol lookup, 
with p99 request times on the order of 90 
milliseconds. It supports nine languag-
es: C#, CodeQL, Go, Java, JavaScript, 
PHP, Python, Ruby, and TypeScript, with 
grammars for many others under devel-
opment.

We learned, though, that scale—as 
much as being about large numbers 
of users and repositories and HTTP re-
quests and the daunting size of the cor-
pus of code hosted on GitHub—is about 
adoption, user behavior, incremental 
improvement, and utility. Static analy-
sis in particular is difficult to scale with 
respect to human behavior; we often 
think of complex analysis tools work-
ing to find potentially problematic pat-
terns in code and then trying to convince 
the humans to fix them. Our approach 
took a different tack: use basic analysis 
techniques to quickly put information 
that augments our ability to understand 
programs in front of everyone reading 
code on GitHub with zero configuration 
required and almost immediate avail-
ability after code changes. The result is 
a delightful experience of reading, navi-
gating, sharing, and comprehending 
code on GitHub. 
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Figure 6. Indexing blobs for a commit.

#Filename pattern: commits/<commit_sha>/index.tsv.gz 

# content start:    <byte offset of start of content>
# oid index start:  <byte offset of start of secondary index>
# columns: filepath blob_sha
#################################################

<path>  <blob_sha>
...

<byte_offset of blob_sha>
...

Figure 4. Datastore file system layout.

/<version>/<repo_id>/
  blobs/
    <blob_sha>.tsv.gz
    ...    
  commits/
    <commit_sha>/
      index.tsv.gz
      symbols/
        <hash_prefix>.tsv.gz (see figure 4.)
        ...
    ...
  refs/
    DEFAULT.tsv
    heads/
      <branch_name>.tsv
      ...
    tags/
      ...

Figure 5. Symbol names by hash prefix.

# Filename pattern: commits/<commit_sha>/symbols/<hash_prefix>.tsv

blob _ sha <D|R> <symbol _ name> 

Figure 7. All definitions and references for a blob. 

# Filename pattern: blobs/<blob_sha>.tsv.gz 
     
<symbol _ name> <D|R> <syntax _ type> <row> <col> <end _ col> <line of source code> 




