
44 COMMUNICATIONS OF THE ACM | FEBRUARY 2022 | VOL. 65 | NO. 2

practice

G I T H U B , A C O D E - H O S T I N G website built atop the Git
version-control system, hosts hundreds of millions
of repositories of code uploaded by more than 65
million developers. The Semantic Code team at
GitHub builds and operates a suite of technologies
that power symbolic code navigation on github.com.
Symbolic code navigation lets developers click on a
named identifier in source code to navigate to the
definition of that entity, as well as the reverse: given
an identifier, they can list all the uses of that identifier
within the project.

This system is backed by a cloud object-storage
service, having migrated from a multi-terabyte sharded
relational database, and serves more than 40,000
requests per minute, across both read and write
operations. The static analysis stage itself is built
on an open source parsing toolkit called Tree-sitter,
implements some well-known computer science
research, and integrates with the github.com

infrastructure in order to extract name-
binding information from source code.

The system supports nine popular
programming languages across six mil-
lion repositories. Scaling even the most
trivial of program analyses to this level
entailed significant engineering effort,
which is recounted here in the hope that
it will serve as a useful guide for those
scaling static analysis to large and rap-
idly changing codebases.

Motiviation: Seeing the Forest
for the (Parse) Trees
Navigating code is a fundamental part
of reading, writing, and understanding
programs. Unix tools such as grep(1)
allow developers to search for patterns
of text, but programmers’ needs are
larger in scope: What the are most inter-
ested in is how the pieces of a program
stitch together—given a function, where
is it invoked, and where is it defined?
Quick and quality answers to these que-
ries allow a programmer to build up a
mental model of a program’s structure;
that, in turn, allows effective modifica-
tion or troubleshooting. Tools such as

Static
Analysis
at GitHub

DOI:10.1145/3486594

 Article development led by
queue.acm.org

An experience report.

BY TIMOTHY CLEM AND PATRICK THOMSON

http://dx.doi.org/10.1145/3486594
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3486594&domain=pdf&date_stamp=2022-01-24

FEBRUARY 2022 | VOL. 65 | NO. 2 | COMMUNICATIONS OF THE ACM 45

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

;
G

I
T

 L
O

G
O

 C
O

U
R

T
E

S
Y

 O
F

 G
I

T
-S

C
M

.C
O

M
 (

C
C

 B
Y

 3
.0

)

grep that are restricted to text match-
ing and have no knowledge of program
structure often provide too little or too
much information.

Fluent code navigation is also an in-
valuable tool for researching bugs. The
stack trace in an error-reporting system
starts a journey of trying to understand
the state of the program that caused
that error; navigating code symbolically
eases the burden of understanding code
in context. As such, most integrated de-
velopment environments (IDEs) have ex-
tensive support for code navigation and
other such static analyses that ease the
user’s burden.

The Semantic Code team wanted to
bring this IDE-style symbolic code navi-
gation to the Web on github.com. The
team was inspired by single-purpose
sites such as source.dot.net, Mozilla,
and Chromium Code Search that pro-
vide comprehensive in-browser code-
navigation. The question was how to do
that at scale: GitHub serves more than
65 million developers contributing to
over 200 million repositories across 370
programming languages. In the last 12

months alone, there were 2.2 billion
contributions on github.com. That’s a
lot of code and a lot of changes.

Philosophy: To Tree or Not to Tree
The Semantic Code team’s approach to
implementing code navigation centers
around the following core ideas.

1. Zero configuration. The end user
doesn’t have to do any setup or configu-
ration to take advantage of code naviga-
tion, beyond pushing code to GitHub.
There are no settings or customizations
or opt-in features—if a repository’s lan-
guage is supported, it should just work.
This is critical for this particular use
case, since if you view a source-code file
on GitHub in a supported language,
the expectation is that code navigation
should just work. If every open source
project had to do even a little extra work
to configure its repo or set up a build to
publish this information, the experience
of browsing code on GitHub would vary
dramatically from project to project, and
the time between push and being able to
use code navigation might depend on
slow and complex build processes.

It’s not sufficient to require that de-
velopers clone and spin up their own
IDEs (or wait for an in-browser IDE such
as GitHub Codespaces to load); develop-
ers are expected to be able to read and
browse code quickly without having to
download that code and its associated
tooling. For this feature to scale and
serve all of GitHub, it has to be available
everywhere and in every project. The
goal is for developers to focus on their
programs and the problems they are try-
ing to solve, not on configuring GitHub
to work properly with their projects or
convincing another project owner to get
the settings right.

2. Incrementality. For each change
pushed to a repository, the back-end
processing should have to do work only
on the files that changed. This is differ-
ent from instituting a continuous-inte-
gration workflow, in which a user might
specifically want a fresh environment
for repeatable builds. It also hints that
results will be available more quickly af-
ter push—on the order of seconds, not
minutes. Waiting an entire build cycle
for code-navigation data to show up isn’t

46 COMMUNICATIONS OF THE ACM | FEBRUARY 2022 | VOL. 65 | NO. 2

practice

is called a tag analysis. A tag analysis
looks at the definitions and the usages
of functions, variables, and data types,
collating them into a format suitable for
viewing the definition of a given entity,
as well as querying the codebase in full
to determine all the places where that
entity is used.

This analysis was introduced by a
program named ctags, developed by
Ken Arnold and released in 1979 as part
of BSD Unix 3.0. As its name indicates,
ctags supported only the C program-
ming language; despite this, it was an
immediate success, eventually incorpo-
rated into the Single Unix Specification.
Further descendants of ctags added
support for more programming lan-
guages, and the vast majority of text edi-
tors and IDEs now provide ctags inte-
gration. Though a tag analysis is trivial,
relevant to the state of the art in static
program analysis, implementing such
an analysis at GitHub scale and within
GitHub’s distributed architecture was
not.

Tree-sitter. The first step in any sort of
static analysis is to parse textual source
code into a machine-readable data
structure. This is done by producing
concrete syntax trees with Tree-sitter, a
parser generator tool and incremental
parsing library.

Tree-sitter enables specifying a gram-
mar for a programming language and
then generating a parser, which is a de-
pendency-free C program. Given a pars-
er and some source code, the system
yields a syntax tree of that source code.
The act of tagging that code entails walk-
ing the tree and performing a filter map
operation. Using an s-expression-like
DSL (domain-specific language), Tree-
sitter provides tree queries that allow
specifying which nodes to match in the
syntax tree (for example, an identifier
that represents the name of a function).
The tooling in the Tree-sitter ecosystem
allows fast iteration for grammar devel-
opment and tree matching, making it
possible to support new language syntax
quickly or identify new constructs for
code navigation.

Tree-sitter pulls from several areas of
academic research, but the most promi-
nent is generalized LR (GLR) parsing. An
extension of the well-known LR (left-to-
right derivation) parsing algorithm, the
GLR algorithm can handle ambiguous
or nondeterministic grammars, which

tenable for the desired user experience;
developers expect the navigation feature
to keep pace with their changes.

3. Language agnosticism. The same
back-end processing code should be run
and operated regardless of the language
under analysis. Consequently, the team
decided not to run language-specific
tooling, such as the Roslyn project for
C# or Jedi for Python, as that would re-
quire operating a different technology
stack for each language (and sometimes
for each version of a language).

Though this means the language
grammars may accept a superset of a
given language, this philosophy yields
the ability to scale and deliver results
much faster. The infrastructure can run
a single code stack, there’s no manage-
ment of multiple containers and associ-
ated resource costs, there’s no cold start
time for bringing up tooling, and there’s
no attempt to detect a project’s struc-
ture, configuration, or target language
version.

This also means that major aspects
of analysis can be implemented in one
place, providing abstractions such as
machine-readable grammars and a tree
query language. Only certain things
unique to a programming language
must be developed before that language

can be enabled in the rest of the technol-
ogy stack.

4. Progressive fidelity. Results that are
good enough should never wait for ones
that are perfect. The system has been
designed so that over time the results
it yields can be refined and improved.
Instead of trying to build and reveal the
perfect system for all languages across
all of GitHub, the team has chosen to
ship incremental improvements: add-
ing languages one by one and improving
navigation results with further technol-
ogy investment.

5. Human partnering. Great software
tools augment and complement human
abilities. In this case, GitHub’s Semantic
Code team wants to facilitate the process
of reading, writing, and understanding
software and to do so in such a way that
developers can contribute to the tool-
ing in the languages they care about the
most. The system should, to the greatest
extent possible, avoid the walled-garden
model of software development, as lan-
guage communities are often ready and
willing to fix bugs and oversights with re-
spect to their language of choice.

Methodology: Tagging the ASTs
The static analysis that the GitHub
code-navigation feature is built upon

Every programming language must have a parser to convert its textual representation
to one that can be executed by a machine. Instead of employing the canonical parsers
for the supported languages, however, the Semantic Code team reimplemented these
parsers atop Tree-sitter. This provides a number of advantages over using a language’s
built-in tooling:

 ˲ There are many versions of common programming languages with various levels
of syntactic compatibility. There is often no information that distinguishes a Python 2
file from a Python 3 file, so using a language’s built-in parser would require heuristics
or guesswork to find which parser is appropriate.

 ˲ Some language tooling requires external information or project-level
configuration not present in the code itself. To fully analyze projects of this nature,
the analysis must, in essence, run a build of the software. GitHub provides build
infrastructure with GitHub Actions and post-build analysis with CodeQL, but users
must opt into this functionality, and results are generally available in minutes, not the
seconds that code navigation relies upon.

 ˲ Running individual language-specific tools is too complex to be operationally
feasible. Not only do you end up with mixed-platform VMs (C# tooling would have to
run on Windows, Swift on macOS, most other languages would require a Unix system),
you would need a way to switch between various versions of the language and its core
components. GitHub Actions tackles this out of necessity for the CI (continuous
integration) space, but it requires effort from both users and implementers to select the
right versions of languages, frameworks, compilers, and operating systems.

By developing a common parsing framework, the Semantic Code team created
standard machine-readable grammars that parse a superset of all versions of a
language. This has interesting consequences such as being able to easily support the
Embedded Ruby templating languages by composing the HTML and Ruby grammars.
Additionally, this work yielded the ability to support multiple languages through one
tool. Tree-sitter parsers are zero-dependency C libraries, making them easy to embed
and bind to other languages.

Building Parsers

FEBRUARY 2022 | VOL. 65 | NO. 2 | COMMUNICATIONS OF THE ACM 47

practice

are common in modern programming
languages. Real-world languages use
many different parsing algorithms: Py-
thon uses the LL(1) algorithm, Ruby uses
LALR, and GCC (GNU Compiler Col-
lection) projects use custom recursive
descent parsers. The GLR algorithm,
introduced in 1974 by Bernard Lang and
implemented in 1984 by Masaru Tomi-
ta, is flexible enough to parse all these
languages; relying on a less sophisticat-
ed algorithm such as LR(1) would be too
restrictive, given that such parsers are
limited to looking ahead only one token
in the input (see sidebar for more infor-
mation).

Tagging the trees. The next challenge
is to do some basic analysis of the parse
trees. To start, the team decided to pro-
vide naive name-binding information
based just on identifiers for known syn-
tactic constructs. This was originally
designed as a prototype, but it worked
so well it was shipped while work was be-
ginning on further refinements.

The basic idea is to:
1. Parse a source file.
2. Walk the parse tree, capturing

identifiers for certain syntactic construc-
tions such as function definitions.

3. Keep a database table of these tags,
along with information such as the line/
col where they appear in the original
source code and whether the identifier
is the definition of something or a refer-
ence (for example, a function call would
be a reference).

It turns out that for many languages,
this name-binding information alone
provides a compelling product experi-
ence. It’s not perfect, but it’s such an
improvement over not having any in-
formation at all, that the team used this
prototype to flesh out the production-
scale system, while simultaneously re-
searching how to refine the precision of
the results.

To walk the parse tree, it suffices to
use Tree-sitter’s support for queries.
By specifying the structure, using an s-
expression syntax, of the types of syntax
nodes that contain useful identifier in-
formation, a walk of the parse tree can
yield only the nodes specified. As shown
in Figure 1, given the use case of identify-
ing method definitions in Ruby, a small
snippet of Ruby code is parsed that de-
fines a method add.

In more complex situations, the Tree-
sitter tree queries can maintain custom

state during the query’s operation. This
is important for a language such as
Ruby, which makes no syntactic distinc-
tion between variables and functions
called without arguments. To yield use-
ful results, you must record the names of
any local variables in a given Ruby scope,
which allows that syntactic ambiguity to
be eliminated.

Implementation: Architecture
GitHub’s code-navigation pipeline is
built atop open source software and
standards:

 ˲ Apache Kafka. A platform for han-
dling high-throughput streams of data
such as commits to repositories. An in-
dividual datum in a stream is a message.

 ˲ Git. A distributed version-control
system. Programmers upload changes to
repositories of code hosted on GitHub.
Each change affects one or more files—
called blobs—in that repository. A unit
of change to one or more blobs is called
a commit, and the act of uploading one
or more commits is a push. Once com-
mits are pushed, other programmers
can see and incorporate those commits
into the copy of the repository present
on their computers. Programmers can
upload their code without affecting oth-
ers by targeting a branch, a named col-
lection of commits. Git projects start
out with a single branch, usually called
“main,” which is then changed either by

pushing commits directly or by review-
ing and integrating others’ changes (pull
requests). Entities in a Git repository are
given a unique tag based on the SHA-1
hashing algorithm.

 ˲ Kubernetes. An orchestration system
for the deployment and operation of ap-
plication services, Kubernetes provides
pods, isolated units of computation on
which one or many copies of a given ap-
plication can be deployed.

 ˲ Semantic. An open source program-
analysis tool from GitHub.

 ˲ Tree-sitter. This parsing toolkit, built
atop the GLR algorithm, generates code
that efficiently parses source code: The
act of parsing transforms a human-read-
able, textual representation of source
code into a tree data structure, usually
referred to as a syntax tree, suitable for
consumption and analysis by machines.

 ˲ Twirp. An RPC (remote-procedure
call) standard, Twirp defines the man-
ner in which entities in the system can
communicate.

The system is made up of three in-
dependent services deployed on Ku-
bernetes that integrate with the main
github.com Ruby on Rails application
(affectionately called “the monolith”
because of its size and complexity): The
indexer consumes Kafka messages for
git pushes and orchestrates the pro-
cesses of parsing, tagging, and saving
the results for a particular repository at

Figure 1. An example of parsing and tagging Ruby code.

test.rb
def add(a, b)
 a + b
end

Using Tree-sitter, the parse tree looks like this, in s-expression form, containing
the node name and the line/column/span information associated with that node:

> tree-sitter parse test.rb
(program [0, 0] - [3, 0]
 (method [0, 0] - [2, 3]
 name: (identifier [0, 4] - [0, 7])
 parameters: (method_parameters [0, 7] - [0, 13]
 (identifier [0, 8] - [0, 9])
 (identifier [0, 11] - [0, 12]))
 (binary [1, 2] - [1, 7]
 left: (identifier [1, 2] - [1, 3])
 right: (identifier [1, 6] - [1, 7]))))

A tagging operation for Ruby methods such as add is encoded with the Tree-sitter query syntax:

(method
 name: (_) @name) @definition.method

The @ captures and tags parts of the tree that match, whereas the _ means
we don’t care about the structure of the tree beyond this point.
Tree-sitter can now use this query to provide the desired match:

> tree-sitter tags test.rb
 add | method def (0, 4) - (0, 7) 'def add(a, b)'

48 COMMUNICATIONS OF THE ACM | FEBRUARY 2022 | VOL. 65 | NO. 2

practice

on Kafka. This means that in the case
of capacity overload, the indexer will
not attempt to consume too many mes-
sages, providing resiliency and elastic-
ity in the system.

When processing a push, the indexer
does a shallow clone of the repository to
a temporary directory. The aggregation
stage means a single download can be
reused in future indexes.

Indexing involves determining which
git blobs in the repository at the change
under analysis have not been indexed.
The OID (object identifier) of a blob is
a SHA-1 hash of its contents; this iden-
tifier can easily be used to keep track of
files that need to be processed. Blobs
that haven’t changed are shared be-
tween commits and require no addi-
tional work, though the set of paths and
blobs reachable in a particular commit
is recorded.

For the blobs that do require parsing
and tagging, the indexer calls out to a
separate service running on another set
of pods. The reason for this separation is
that not every push represents the same
amount of parsing work. There could be
anywhere between one and 20,000 files
to process. The indexer workload is pri-
marily I/O-bound: waiting on sockets
(for Kafka, the datastore, repo cloning)
and reading/writing to the file system.
Parsing, however, is primarily compute-
bound, so having a separate pool of pods
across which requests are load-balanced
means resources can be appropriately
scaled, and the system won’t run into
the case where a single indexer pod gets
hot as a result of processing a large or ac-
tive repository.

The system is deployed up to dozens
of times a day, and it handles those de-
ployments gracefully by stopping the
consumption of any new Kafka mes-
sages, allowing inflight indexes a 30-sec-
ond window to complete processing,
and aborting and re-queueing any index
that can’t finish in that window. Since
processing is incremental for each git
blob, the new pod that picks up that
message will have to parse and tag only
those blobs that didn’t finish during the
original run.

Querying. When tag results have been
fully processed, they are stored in a data-
base, along with enough information to
serve future queries: For repository X at
commit Y where is foo defined? The sys-
tem provides a few Twirp RPC (remote

a commit SHA; the tagger is a service that
accepts raw source-code content, parses
and tags this code, and returns the re-
sults; the query service provides a Twirp
RPC interface to the symbols database,
allowing github.com’s front end to look
up definitions and references.

Figure 2 shows the relationships
among the various indexer sequence
components.

Indexing. Developers upload code to
GitHub via pushing through Git or as a
result of editing a file through the web-
site’s interface. Upon receiving a new
push, GitHub servers send a message
to Kafka describing metadata (project
location, change author, target branch)
about the push. The system runs a pool
of Kubernetes pods, spread across mul-
tiple clusters and physical data centers,
that listen to these messages. Because
messages are distributed across the

pool of pods according to a repository’s
unique identifier, a given pod typically
consumes messages for the same re-
positories over and over again, allowing
effective local caching in the indexing
pipelines.

As messages are consumed, the in-
dexer process aggregates them, ensur-
ing that pushes to the same repository
within a time window are processed as
one request. It subsequently filters out
invalid messages; because of reasons
of scale, pushes are indexed only to the
default branch; they must involve only
programming languages that the sys-
tem supports. It then throttles the rate
of indexing, so that initial indexes are
allowed to complete fully before subse-
quent pushes are processed. Kafka re-
cords when a given message is passed
off for processing, and a cap on simul-
taneous processing puts backpressure

Figure 2. Indexer sequence.

request shallow
repo clone

repository
downloaded

client
(git or web)

GitHub.com

‘git push’

produce
message to

Kafka
topic

request tags
(send blob content)

receive tags

save

consume
a

message

throttle,
aggregate

Kafka

post_
receive

hook

parse
content,

walk AST,
produce

tags

indexer tagger data-
store

client
(git or web) GitHub.com Kafka indexer tagger

data-
store

index workers on pods
subscribe to the topic

and consume messages
from their assigned

partition

produce list of blobs to
parse by comparing

datastore with results
of ‘git ls-tree’

persist tags, track that blobs and commit
are now indexed

FEBRUARY 2022 | VOL. 65 | NO. 2 | COMMUNICATIONS OF THE ACM 49

practice

procedure call) endpoints that allow the
github.com front end user interface to
look up definitions and references based
on the user’s interaction and context. In
the past, the team’s database of choice
was a large MySQL instance, partitioned
across multiple machines by Vitess (a
MySQL sharding technology). As of this
writing, tag data is stored in Microsoft
Azure Blob Storage, a cloud storage sys-
tem that supports uploading files.

Figure 3 shows the relationships
among the various query sequence com-
ponents.

Operational Journey
The first prototype of this system used
the ctags command-line tool directly:
An invocation of ctags dumped the
yielded tags into the Git storage associ-
ated with the tagged repository, and fur-
thermore attempted to do this on every
push to that repository. This was great
for a demo, but infeasible to run at scale:
CPU resources are at a premium on the
Git storage servers; multiple pushes to
multiple refs made managing the tags
file challenging; and handling lookup
requests on those servers wasn’t ideal.
Ctags didn’t have the API needed to
take advantage of Git’s data structures,
and it’s not easy to use command-line
programs in such a way that their opera-
tions can be served by Web services.

Enter Tree-sitter. When the Seman-
tic Code team picked up the project,
the next iteration used Tree-sitter in-
stead of ctags but most of the indexing
logic was still implemented in the main
github.com Ruby on Rails application.
Queued on push, indexing jobs written
in Ruby served to fetch Git content over
an internal RPC, detect the language of
a source file, filter out irrelevant con-
tent (for example, binary files, code in
languages not supported), call out to a
service for parsing/tagging, and save the
resulting tags. A dedicated MySQL data-
base was used for storing and retrieving
tag data and the query path was essen-
tially direct to this database from the
Rails controllers.

This solved a certain set of problems
and proved that the Tree-sitter parsers
and initial name-binding analyses could
provide parsing/tagging as a service,
with easy iteration on grammars and
easy horizontal scaling of the parsing
compute workload. Most importantly,
this prototype convinced leadership that

this was a valuable set of features to build
and that it enhanced the GitHub experi-
ence in a meaningful way. It also showed
that we had a plan for scaling, support-
ing all the repositories on GitHub, and
supporting new languages.

Out of the monolith. The next itera-
tion moved further out of the github.
com Ruby on Rails application, for sev-
eral reasons:

 ˲ The job architecture in GitHub
wasn’t overly resilient and had “try once,
best effort” semantics, which led to un-
reliability. Additionally, these operations
entailed significant resource contention
on the job workers shared with myriad
background jobs being processed at
GitHub, such as webhooks, delivering
emails, and updating pull requests.

 ˲ As more repositories, users, and
languages were added, the growth of
the tags database impaired the ability
to scale. This quickly became one of the
largest MySQL instances at GitHub.

From an engineering organization
perspective, working in the main Ruby
on Rails application codebase was slow
and came with a number of restrictions.

Many parts of GitHub’s main deploy-
ment pipeline are streamlined today,
but at the time deploying a single pull
request could take more than a day. To
address these challenges, additional ser-
vices were implemented:

 ˲ A rewrite of the parsing/tagging
service, using GitHub’s open source
Semantic language toolkit.

 ˲ The indexer service, which con-
sumes push information from Kafka,
clones and parses repositories, and in-
serts results into a dedicated MySQL da-
tabase.

 ˲ The query service that performs da-
tabase lookups and returns results to the
Ruby on Rails application.

These patterns served the system well
for a significant period of time, allowing
rapid growth, the release of several new
languages for the code-navigation fea-
ture, and streamlined development and
deployment.

Scaling MySQL. The next iteration
required migrating the database from
a single MySQL instance to a horizon-
tally distributed cluster of partitioned
MySQL instances, powered by the open-

Figure 3. Query sequence.

GitHub.com

view single code file

hover: request definition
for symbol under cursor

render popup
(HTML, AJAX)

return symbols

return locations

find symbols table
of contents

find definition

return top level
symbols in blob

return all locations
where symbol appears

in project

lookup blob

lookup symbol

browser

browser

is this
commit indexed?

data-
store

GitHub.com
data-
store

query
service

query
service

symbol(s), surrounding line of
context, link

50 COMMUNICATIONS OF THE ACM | FEBRUARY 2022 | VOL. 65 | NO. 2

practice

in the system stayed the same: Just
swap the box that says “MySQL” with
a different box that says “Azure”—that
was the idea, at least.

In practice, this involved significant
work. Not only did the team have to
maintain the legacy MySQL and new
Azure systems side by side, but it also had
to design an Azure-compatible schema
for tags data that would allow incremen-
tal indexing of repositories and querying
of tags with roughly the same perfor-
mance characteristics as the MySQL-
based system. This meant optimizing for
space and time and costs. (Storage costs
money, but so does each operation: for
example, read operations are less expen-
sive than writes, which are less expensive
than list-query operations.)

Datastore design. The storage struc-
ture the team ended up with is the
following, expressed in a file-system-
like form. The overall path structure
includes a <version> prefix to al-
low major structural and formatting
changes of the datastore. The data for
each repository is then prefixed with its
id (see Figure 4).

This in-database file hierarchy pro-
vides access to all the different data
required to provide useful code-naviga-
tion information. During indexing, the
appropriate files are uploaded to blob
storage for the repo under analysis. At
query time, the repository, a commit
SHA, and the symbol name provide
enough information to fetch the appro-
priate files and compute the results. All
files are immutable.

The symbol names by hash prefix
file (Figure 5) contains all symbol names
in the commit that share a two-character
SHA1 hash prefix stored as TSV. This pre-
fix allows speeding up database queries
by filtering based on this two-character
prefix. This is the first file read when do-
ing a symbol lookup in order to get a list
of blob SHAs where a symbol is defined
(D) or referenced (R).

 The index blobs for a commit file
(Figure 6) denotes that a commit has
been indexed and holds a map of all
blob SHAs in the commit, along with
paths for those blobs. This file is read,
and intersecting the blob SHAs with
those from the previous step gives a list
of blobs to fetch in a later step.

This file contains a header and two
TSV content sections. The header gives
the byte offset (from the start of the

source project Vitess. Moving to Vitess
entailed engineering complexity: The
team needed to write new schemas,
choose new sharding strategies, and de-
ploy both primary and secondary MySQL
instances within this cluster. During this
time, the team migrated from a Seman-
tic-based tagging service to one that op-
erated entirely with (newly developed)
Tree-sitter queries. Though Semantic
performed well, using the Tree-sitter
query language allowed faster iteration
and avoided the operational overhead of
a program-analysis framework.

Moving to blob storage. The most re-
cent iteration, and the one deployed to
github.com as of this writing, entailed
a dramatic change in database formats.
While the Vitess-sharded MySQL data-
base provided, in theory, significant run-
way for horizontal scaling (just add more
shards), several new constraints became
apparent:

 ˲ Money. With the Vitess cluster,
there was technically no limit to hori-
zontally scaling MySQL, but sufficiently
powerful hardware entailed significant
upfront and maintenance costs. While
these costs were constrained by index-
ing only a repository’s primary branch,
projections for the costs of parsing all
branches for all code on all of GitHub
were simply prohibitive.

 ˲ Not all the features of MySQL could
be used, especially given that SQL’s ca-
pacities were limited by the constraints
imposed by Vitess in order to shard the
database correctly.

 ˲ The number of writes to the data-
base was overwhelming MySQL: In or-
der to keep MySQL and Vitess running
smoothly, traffic had to pass through a
throttling service, which entailed a sig-
nificant bottleneck in indexer perfor-
mance. Writes to MySQL are throttled
based on replication lag. When the lag
(time between a write to a primary be-
ing applied to a replica) exceeds some
threshold, the indexer processes back
off inserts. Usually these are temporary
blips caused by unhealthy hardware,
configuration differences, or just pat-
terns of data (for example, developers
are extra busy on Monday mornings and
in January after the holidays).

Though this migration was primar-
ily about cost structure, the change in
data storage resulted in a few interest-
ing performance benefits along the
way. Architecturally though, everything

From
an engineering
organization
perspective,
working in
the main Ruby
on Rails application
codebase was
slow and came
with a number
of restrictions.

FEBRUARY 2022 | VOL. 65 | NO. 2 | COMMUNICATIONS OF THE ACM 51

practice

file) of the start of each section. Each
section contains one line for each path
that was indexed. The first section con-
tains <path>\t<blob_sha> fields and
is sorted by path. This allows a binary
search for a particular path to find its
blob SHA in the commit. The lines in the
second section contain a single <byte_
offset> field that is the offset (from the
start of the file) of one of the lines in sec-
tion 1. The section in Figure 6 is sorted
by blob SHA and allows a binary search
for a set of blob SHAs to find the paths
where they appear in the commit.

All definitions and references for a
particular git blob (Figure 7) is the fi-
nal step in symbol lookup, providing
the information to return to the front
end. Many definition lookups result in

a single file read at this step. Since ref-
erences can be spread out across multi-
ple files, reads are done in parallel with
an upper limit.

Definitions are stored first, so that
find operations can return early once
the first reference is reached. Note that
since this is the SHA1 hash of the blob
contents, once a blob is parsed, it never
needs to be parsed again and can be
shared across any commit that includes
that blob.

The other files are used to quick-
ly tell if a particular branch or tag
has been indexed or not. refs/
(heads|tags)/<branch_name>.tsv
contains the single commit SHA for the
tip of the branch that has been indexed.
DEFAULT.tsv contains a commit SHA

and ref of the default branch.
Each iteration of the system and even

the migration of the datastore happened
under the full production load with
minimal to no impact on end users. The
blob storage change resulted in signifi-
cant cost savings, an increase in index-
ing throughput, and a slight decrease in
query request times.

Conclusion
The resulting code-navigation system
processes and indexes more than 1,000
pushes per minute and generates more
than two million new identifier names
per minute. The p99 (99th percentile;
that is, the time it takes for the slowest
1% of indexes) for the first-time index of
a repository is ~60 seconds (the 50th per-
centile is ~1.1 seconds). The p99 for an
incremental index is ~10 seconds (p50 is
~1.3 seconds). The system serves 30,000
requests per minute for symbol lookup,
with p99 request times on the order of 90
milliseconds. It supports nine languag-
es: C#, CodeQL, Go, Java, JavaScript,
PHP, Python, Ruby, and TypeScript, with
grammars for many others under devel-
opment.

We learned, though, that scale—as
much as being about large numbers
of users and repositories and HTTP re-
quests and the daunting size of the cor-
pus of code hosted on GitHub—is about
adoption, user behavior, incremental
improvement, and utility. Static analy-
sis in particular is difficult to scale with
respect to human behavior; we often
think of complex analysis tools work-
ing to find potentially problematic pat-
terns in code and then trying to convince
the humans to fix them. Our approach
took a different tack: use basic analysis
techniques to quickly put information
that augments our ability to understand
programs in front of everyone reading
code on GitHub with zero configuration
required and almost immediate avail-
ability after code changes. The result is
a delightful experience of reading, navi-
gating, sharing, and comprehending
code on GitHub.

Timothy Clem has been building GitHub since 2011,
where he finds great delight in distributed systems, the
design and application of programming languages, and
bringing research ideas to scale.

Patrick Thomson is an engineer, functional programmer,
and programming-language nerd at GitHub.

Copyright held by authors/owners.
Publication rights licensed to ACM.

Figure 6. Indexing blobs for a commit.

#Filename pattern: commits/<commit_sha>/index.tsv.gz

content start: <byte offset of start of content>
oid index start: <byte offset of start of secondary index>
columns: filepath blob_sha
###

<path> <blob_sha>
...

<byte_offset of blob_sha>
...

Figure 4. Datastore file system layout.

/<version>/<repo_id>/
 blobs/
 <blob_sha>.tsv.gz
 ...
 commits/
 <commit_sha>/
 index.tsv.gz
 symbols/
 <hash_prefix>.tsv.gz (see figure 4.)
 ...
 ...
 refs/
 DEFAULT.tsv
 heads/
 <branch_name>.tsv
 ...
 tags/
 ...

Figure 5. Symbol names by hash prefix.

Filename pattern: commits/<commit_sha>/symbols/<hash_prefix>.tsv

blob _ sha <D|R> <symbol _ name>

Figure 7. All definitions and references for a blob.

Filename pattern: blobs/<blob_sha>.tsv.gz

<symbol _ name> <D|R> <syntax _ type> <row> <col> <end _ col> <line of source code>

