
During a roundtable at the
New Delhi meeting of the
International Organiza-
tion for Standardization

(ISO) committee responsible for soft-
ware and systems engineering stan-
dards (ISO/IEC JTC1 SC7), a member
of the audience asked if software
engineering professors who do not
teach software engineering stan-
dards to software engineering stu-
dents could be accused of malprac-
tice. By “malpractice” we mean any
inappropriate, wrong, illegal, or care-
less actions that a professional does
while working.

As we well know, engineering do-
mains such as mechanical, chemical,
electrical, or engineering are based
on the laws of nature as discovered by
scientists. Figure 1 illustrates some
of the many laws of nature. Unfortu-
nately, software engineering, unlike
other engineering disciplines, is not
based on the laws of nature.

Would it be conceivable that a pro-
fessor teaching electrical engineer-
ing would not teach Ohm’s law or a

Digital Object Identifier 10.1109/MC.2021.3064438
Date of current version: 7 May 2021

Not Teaching
Software
Engineering
Standards to Future
Software Engineers—
Malpractice?
Claude Y. Laporte, École de technologie supérieure

Mirna Muñoz, Centro de Investigación en Matemáticas

Software engineering standards are essential

sources of codified knowledge for all software

engineers. Could the professors who are not

teaching software engineering standards to

software engineering students be accused

of malpractice?

STANDARDS
EDITOR RICCARDO MARIANI

NVIDIA; rmariani@nvidia.com

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 1 © 2 0 2 1 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y M AY 2 0 2 1 81

82	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

STANDARDS

professor teaching chemistry would
not teach the Boyle–Mariotte law? By
“teaching” we mean not only showing
a few slides but requiring students to
solve some problems and perform a lab
experiment about this law.

The development of software is
based only on the laws of logic and
mathematics. Software engineering,
like other engineering disciplines, is

based on the use of well-defined prac-
tices for ensuring the quality of its
products. In software engineering,
there are several standards that are
actually guides for management prac-
tices. A rigorous process is the frame-
work for the way standards are devel-
oped and approved, including, among
others, ISO standards and standards
from professional organizations such
as IEEE.

As written by Moore a few years
ago,2

Standards are important, not be-
cause they represent best practices,
but because they represent good
enough practices. Courts generally

view the application of standards as
important evidence that engineers
perform their work with appropri-
ate diligence and responsibility. If
accused of negligence or reckless
conduct, an engineer can cite the
standards used when he or she con-
ducted the work to demonstrate that
it was performed in accordance with
codified professional practices.

If an engineer could be accused
of negligence, why could professors
teaching future software engineers
who ignore or do not teach software
engineering standards not be accused
of malpractice?

SAD OBSERVATIONS ABOUT
SOFTWARE ENGINEERS
In a recent “Impact” column in IEEE
Sof t ware,3 t he aut hors wrote, “We
had been hoping that would follow
the same trajectory as its older es-
tablished cousins, such as civil en-
gineering, but we have seen no real
evidence of this.”

The aut hors a lso wrote t hat we
cannot call ourselves an engineering

discipline unless we begin to system-
atically learn from our mistakes, and
in software we seem to have an aver-
sion to measurement. This is quite a
paradox since, on one side, software
people are not learning from their
mistakes, and, on the other side, hun-
dreds of experts around the world
have been working since the 1980s
to document in standards the knowl-
edge gained f rom successf ul and
failed software projects. The portfo-
lio of software engineering standards
now covers the full spectrum, that is,
from the cradle to the grave, of soft-
ware engineering.

Another paradox is the fact that
sof t ware engineering standards
documenting codified knowledge and
publicly available are not used, or
ignored, by a large number of pro-
fessors who are mandated to trans-
fer software engineering practices
to their software engineering stu-
dents. Consequently, those students
will end up in a software development
organization with a large deficit of
essential knowledge. Is this a case of
negligence or malpractice?

WHY BOTHER WITH
STANDARDS?
Standards are sources of codified knowl-
edge, and studies have demonstrated
the benefits of them, such as product
interoperability, increased produc-
tivity, market share gains, and im-
proved interaction with stakehold-
ers such as enterprises, government
organizations, and the public. Stan-
dards and associated technical docu-
ments could be considered a form of
technology transfer, and, if the right
standards are selected and used cor-
rectly, they should have an economic
impact in an organization.4 The con-
tribution of standards to the econ-
omy of some countries is illustrated
in Table 1.

The advantages or benefits as well
as disadvantages or costs have been
reported regarding the use of volun-
tary standards. Table 2 lists a few of
these advantages and disadvantages.

Hooke’s Law

Boyle-Mariotte’s Law Ohm’s Law

Coulomb’s Law
Curie’s Law

Newton’s Law

1
2

x(t) =

V = RIp1xV1 = p2xV2

a ⋅ t2 + v0 ⋅ t + x0

Gravitational Law

Refraction Law

σ = E ⋅ ε

E = −µ ⋅ B

η1 ⋅ sin (θ1) = η2 ⋅ sin (θ2)

FA → B = −G
MA MB uAB

AB2

F12 =
q1 q2

4π∈0

r2 – r1

r2 – r1
3

FIGURE 1. The laws of nature that support engineering disciplines.1

Software engineering, like other engineering
disciplines, is based on the use of well-defined

practices for ensuring the quality of its products.

	 M AY 2 0 2 1 � 83

In addition to the known benefits of
standards, five major lessons emerged
from a French study5:

›› Company value enhancement:
The knowledge capital contrib-
uted by corporate involvement
in standardization work rep-
resents true value.

›› Innovation: Standardization
promotes the dissemination
of innovation. It emphasizes a
product’s advantages and con-
stitutes a product selection tool.

›› Transparency and ethics: Stan-
dards contribute to better com-
pliance with the rules of compe-
tition. By establishing the rules
of the game, standards make it
easier to eliminate players who
fail to comply.

›› International: By promoting
the development of interna-
tional exchanges, standardiza-
tion provides companies with
a genuine passport for export-
ing their products.

›› Product and service quality:
Standardization gives companies
a great degree of control over
safety-related problems and
provides a genuine guarantee
of quality.

QUALITY AND
PRODUCTIVITY ISSUES IN
SOFTWARE DEVELOPMENT
The recent cost of quality report from
the Consortium for Information &
Software Quality for the year 20207

reported that the total cost of poor
software quality in the United States
is US$2.08 trillion. The report also
revealed a 5–10× difference in perfor-
mance between the top 10% and the
bottom 10% of organizations sampled.

TABLE 1. A comparative contribution of standards to national economies.5

Germany (DIN)

United
Kingdom
(DTI)

Standards
Council of Canada

Australia
Standards

France
(AFNOR)

Period subject to analysis 1961–1990 1948–2001 1981–2004 1962–2004 1950–2007

Growth rate of gross domestic
product (GDP) (%)

3.3 2.5 2.7 3.6 3.4

Contribution to growth of GDP (%) 27.3 11 9 21.8 23.8

Impact in % points on GDP growth 0.9 0.3 0.2 0.8 0.8

TABLE 2. The advantages and disadvantages of voluntary standards reported.5,6

Advantages or benefits Disadvantages or costs

• � Promote innovation
• � Improve efficiency of an organization
• � Increase competitiveness
• � Facilitate access to a wider market
• � Clarify the rules of a market
• � Improve quality of products and services
• � Promote improvement of processes
• � Facilitate partnerships
• � Improve the image and credibility of organizations
• � Promote a uniform terminology
• � Regularly updated
• � Facilitate the selection of suppliers and partners
• � Facilitate access to recognize knowledge
• � Facilitate access to investments and financing

• � Difficult to understand
• � Cost of acquiring standards
• � Cost of standard implementation
• � Cost of certification
• � Require outside expertise to implement them
• � Conflicting standards
• � High number of standards available
• � Describe only “what has to be done” not “how to do it”
• � Insufficient guidance to select and apply them
• � Slow evolution of standard may impede innovation
• � Difficult and costly to apply in small organizations
• � Difficult to demonstrate “savings”
• � Many producers of standards
• � Perception that standards add unnecessary bureaucracy to an

organization
• � Language barrier for users that are not proficient in English

We cannot call ourselves an engineering discipline
unless we begin to systematically learn from our
mistakes, and in software we seem to have an

aversion to measurement.

84	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

STANDARDS

In 2018, the consortium reported that
in the United States, US$500 billion
was being spent on finding and fixing
software bugs. With the U.S. code base
growing at ~7% per year and IT wages
growing at ~3% year, the amount spent
finding and fixing software bugs in
2020 would be ~US$607 billion.

In March 2020, the Standish Group
released its report “CHAOS 2020: Beyond
Infinity.” In that report they stated that
only 35% of projects were fully successful
with respect to time and budget, 19% of
projects will be cancelled before comple-
tion, and 47% of projects are challenged
(that is, over budget, behind schedule, or
have low quality deliverables).8

According to Charette,

Studies have shown that software
specialists spend about 40% to
50% of their time on avoidable
rework rather than on what they
call value-added work, which is
basically work that’s done right the
first time. Once a piece of software
makes it into the field, the cost of
fixing an error can be 100 times
as high as it would have been
during the development stage.8

Measuring and reducing the per-
centage of avoidable rework should be
one objective of most process improve-
ment initiatives.

SOFTWARE ENGINEERING
STANDARDS
Software engineering standards should
be a very important source of codified
knowledge for academia that teaches the
development and maintenance of soft-
ware to future software engineers.

There is a large portfolio of software
engineering standards that covers all
activities of software development and
management. For instance, standards
provide descriptions of processes, activi-
ties, and tasks applied during the acquisi-
tion of a software system, product, or ser-
vice and during the supply, development,
operation, maintenance, and disposal
of software products. These stan-
dards cover configuration management,

software testing, risk management, and
software measurement.

Unfortunately, software engineer-
ing standards are initially developed
by large organizations without having
smaller settings in mind. Most small
organizations do not have the expertise
or the resources to participate in stan-
dard development. A large majority of
enterprises worldwide is very small
entities (VSEs), that is, enterprises, or-
ganizations, departments, or projects
with up to 25 people.10 In Europe, for in-
stance, more than 92% of enterprises,
called microenterprises, have up to
nine employees and another 6.5% have
between 10 and 49 employees.11

MALPRACTICE
Malpractice could be defined as any in-
appropriate, wrong, illegal, or careless
actions that a professional does while
working. The Guide to the Software En-
gineering Body of Knowledge (SWEBOK
Guide) and the IEEE/ACM Software En-
gineering Code of Ethics and Profes-
sional Practice provide insight about
the role of professors in teaching soft-
ware engineering standards.

The SWEBOK Guide indicates that the
benefits of software engineering stan-
dards are many and include improving
software quality, helping avoid errors,
protecting both software producers
and users, increasing professional dis-
cipline, and helping technology tran-
sition.12 One objective of the SWEBOK
Guide is to provide a foundation for
curriculum development and indi-
vidual certification and licensing ma-
terial. The SWEBOK Guide provides
an annex listing the relevant stan-
dards for each knowledge area. For
instance, one main relevant standard
of the software requirements knowl-
edge area is ISO/ IEC/ IEEE 29148:
2011, Systems and Software Engineer-
ing—Life Cycle Processes—Require-
ments Engineering.

The SWEBOK Guide provides this
clause about professional liability:

It is common for software
engineers to be concerned with

matters of professional liabil-
ity. As an individual provides
services to a client or employer,
it is vital to adhere to stan-
dards and generally accepted
practices, thereby protecting
against allegations or proceed-
ings of or related to malpractice,
negligence, or incompetence.

The IEEE/ACM Software Engineer-
ing Code of Ethics and Professional
Practice, intended as a standard for
teaching and practicing software
engineering, documents the ethical
and professional obligations of soft-
ware engineers.13 The code indicates
that software engineers are those who
contribute, by direct participation or
by teaching, to the analysis, specifi-
cation, design, development, certi-
fication, maintenance, and testing of
software systems. The code contains
eight principles related to the behav-
ior of and decisions made by profes-
sional software engineers, including
practitioners, educators, managers,
supervisors, and policy makers as
well as trainees and students of the
profession. Principles 3 and 8 pro-
vide information about the knowl-
edge and the use of standards (see
“Principles 3 and 8”).

Therefore, according to the SWE-
BOK Guide and the IEEE/ACM Soft-
ware Engineering Code of Ethics
and Professional Practice, professors
who are not learning and teaching
software engineering standards to soft-
ware engineering students could be
accused of malpractice. See “An Im-
possible Scenario?” for a case study.

TEACHING SOFTWARE
ENGINEERING
STANDARDS—A
SUCCESS STORY
A series of standards and guides have
been developed to help very small enti-
ties, that is, entities having up to 25 peo-
ple, in developing and maintaining soft-
ware: the ISO/IEC 29110 series.10,15,16
Universities in at least 21 countries are
teaching ISO/IEC 29110. In Thailand,

	 M AY 2 0 2 1 � 85

AN IMPOSSIBLE SCENARIO?

A software engineer in an eight-person company that

develops computer-controlled valves for organizations

such as pharmaceutical or chemical companies was sup-

posed to conduct an inspection of the requirements that he

documented. The contract with the customer indicated that

software development shall be conducted using IEEE software

engineering standards. But the developer did not know IEEE

Standard 1028 that describes the types of software reviews

with the procedures required for the execution of each type.14

So after the developer completed the documentation of the re-

quirements according to the organizational software process,

he inspected the requirements by himself, using the checklist

provided by the software process.

After installing the new software, the computer-controlled

valves malfunctioned and caused damage in the chemical

plant. One of the customer’s technicians had to be brought to

the emergency room of a hospital. The software supplier was

asked to immediately correct the defective software. The sup-

plier did not want to correct the software unless the customer

paid an additional US$50,000. The customer decided to sue

the supplier of the defective software.

At the court hearing, the customer’s lawyer requested

evidence showing that an inspection of the requirements

had been performed. The supplier could not provide that

proof. The lawyer then interrogated the developer and

asked him to describe how he inspected the requirements.

The lawyer provided the judge with a copy of the IEEE-1028

standard as evidence. In the IEEE standard, the following

note is added to the definition of inspection: “Inspections

are peer examinations led by impartial facilitators who are

trained in inspection techniques.” It became evident that

the developer had done an informal review instead of the

inspection defined in the IEEE 1028 standard. If an inspec-

tion had been performed, the developer’s colleagues could

have detected the defects. In addition, if an inspection had

been performed, proofs of execution (for example, a list

of participants, list of defects detected, decisions made,

and updated version of the requirements) could have been

provided to the judge.

The judge decided that the supplier did not fulfil the require-

ments of the contract. The judge also blamed the developer for

negligence by not performing an inspection as described in the

contract. The judge ordered the supplier to rework the software

as described in the contract at no cost to the customer. The judge

also asked the software supplier when the updated software

would be delivered to the customer. The supplier indicated that

it would take two weeks to rework the software: the complete

development process would need to be executed since the de-

fects in the requirements impact the test procedures, test cases,

architecture, and code. Also, all integration tests would need to

be executed, and the user manual would need modifications.

Outside the courthouse after the hearing, the president of

the supplier fired the developer. The next day, the developer con-

tacted a lawyer to launch a class-action lawsuit of negligence

against the university he attended, on behalf on the hundreds of

software engineering students at that university. The developer

also broadcasted information about the class-action lawsuit on

his social networks. The next day, that news became viral all over

the world among software engineering students, lawyers, and

universities that provide software engineering programs.

PRINCIPLES 3 AND 8

PRINCIPLE 3—PRODUCT

Software engineers shall ensure that their products and

related modifications meet the highest professional

standards possible. In particular, software engineers shall, as

appropriate:

»» 3.06. Work to follow professional standards, when avail-

able, that are most appropriate for the task at hand, depart-

ing from these only when ethically or technically justified.

PRINCIPLE 8—SELF
Software engineers shall participate in lifelong learning

regarding the practice of their profession and shall promote an

ethical approach to the practice of the profession. In particular,

software engineers shall continually endeavor to:

»» 8.05. Improve their knowledge of relevant standards and

the law governing the software and related documents

on which they work.

86	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

STANDARDS

for instance, more than 10 universities
are teaching ISO/IEC 29110. In Mex-
ico, with the financial support of the
secretariat of economy of the state of

Zacatecas, a six-step method has been
developed to accelerate the implemen-
tation of ISO/IEC 29110 in VSEs, soft-
ware engineering courses and capstone

projects, and software development
centers (SDCs) of universities.17

SDCs are environments where stu-
dents work in teams as a real organi-

zation to develop software for real
customers either internal or external
to the university. SDCs implemented
a software development process using

ISO/IEC 29110. They were supported
by a local research center that pro-
vided workshops to software engi-
neering professors, support for the
implementation, and improvement
of their software processes. The SDCs
of 10 universities have obtained, like
any software commercial organiza-
tion, the ISO/IEC 29110 standard cer-
tification. VSEs that hired graduates
of the SDCs were very satisfied with
their new employees.

Three important elements have ac-
celerated the adoption of the ISO/IEC
29110 series by universities and VSEs of
many countries. First, some ISO/IEC

SURVEY OF A FEW SOFTWARE
ENGINEERING PROFESSORS

For this article, we launched a quick survey to 30 software

engineering professors. We are aware that the answers

provided may not reflect what is happening at many universities

around the world.

The professors were asked to answer the following

questions:

1.	 Why do you think that there is a lack of teaching stan-

dards at universities?

2.	 What benefits can be obtained when teaching standards

in universities?

3.	 What needs should be satisfied to enable professors to

teach standards in universities?

Answers to question 1

The professors cited the following reasons:

1.	 they are difficult to teach

2.	 they are expensive

3.	 the time available to teach and put them in practice is

too short

4.	 a lack of knowledge about their benefits

5.	 a lack of knowledge of professors

6.	 standards are perceived as boring topics

7.	 standards are not included in the curricula of their

universities.

Answers to question 2

The professors cited the following benefits:

1.	 students who have worked with standards have been

placed in quality departments in companies

2.	 students develop software of higher quality, on time and

within the resources available

3.	 students develop a comprehension that standards could

help them, and they are not enemies that impose con-

straints on them

4.	 students improve their performance (for example, pro-

ductivity and quality) when developing software

5.	 students learn discipline by covering all phases of devel-

opment and give due importance to other subjects and

not just to software development

6.	 students improve their ability to work as a team by dis-

tributing responsibilities and assuming commitments

7.	 students are better prepared for their career as

professionals.

Answers to question 3

The professors cited the following needs:

1.	 the need for professors to be trained in standards so they

would be able to teach them adequately

2.	 to allow them to modify the curricula to add enough time

to teach standards

3.	 to select those standards according to objectives of the

program

4.	 to have specific places to develop software projects

5.	 to improve the collaboration of universities with the

software industry.

The portfolio of software engineering standards
now covers the full spectrum, that is, from the
cradle to the grave, of software engineering.

	 M AY 2 0 2 1 � 87

29110 documents, such as the manage-
ment and engineering guides, are freely
available from ISO. Second, to lower the
adoption barrier, a few ISO/IEC 29110
documents have been translated into
Czech, French, Portuguese, and Spanish
and adopted as national standards by
several countries. Third, teaching mate-
rial and webinars are being developed to
help academia in learning and teach-
ing the ISO/IEC 29110 series.

The ISO/IEC 29110 framework is
still young, but its use by VSEs and uni-
versities proves that the series’ original
objectives, that is, developing a series
of standards and guides, can readily be
implemented by commercial as well as
public VSEs and successfully taught to
software engineering students.

HELPING PROFESSORS
TEACH SOFTWARE
STANDARDS
There are a few ways to help professors
teach software engineering standards.
First, professors must start by acquir-
ing and studying the standards selected
for their courses. Then, they must pre-
pare teaching material (for example,
presentation material, exercises, and
projects). Software engineering stu-
dents will not learn about a standard if
professors spend only a few minutes in
class and present them with a few slides
about a standard. To be of any use, stu-
dents must not only study a standard
and do a few exercises but put it in prac-
tice in a software development project in
an environment similar to industry.18,19

Unfortunately, professors are rarely
rewarded for the quality of their
courses. They are mostly rewarded by
the number of papers published in jour-
nals and conferences and research money
they bring to their universities. Professors
participating in the development and im-
plementation of software engineering
standards should also be rewarded since
these activities are part of the knowledge
creation and diffusion mandates of all
universities. See “Survey of a Few Soft-
ware Engineering Professors.”

Professors could also attend, as
an observer, the ISO or IEEE working

groups that develop or improve soft-
ware engineering standards. After
attending a few meetings, professors
could then formally join a working
group as a full member. Their participa-
tion in the development and implemen-
tation of a standard could also be an op-
portunity to publish papers. In the last
10 years, about 200 papers have been
written by researchers, mainly in ac-
ademia, about the ISO/IEC 29110 se-
ries, illustrating the interest in this set
of standards and guides by academia.20

Some standards, like the IEEE-1028
standards about reviews13 or the IEEE-
828 standard about configuration
management,14 could be used in more
than one course, providing a deeper
knowledge to students, by performing
reviews and configuration manage-
ment activities in requirements, ar-
chitecture, and programming courses.
Finally, a one- or two-semester cap-
stone project would be an ideal way to
implement the standards learned in
previous courses by teams of students.

Unfortunately, most software engi-
neering standards are not free. More-
over, they are very expensive from
a student point of view and even for
professors of many countries. For ex-
ample, the cost of the IEEE-1028 stan-
dard14 is about US$160. Therefore, uni-
versities with a software engineering
program should provide free or low-
cost access to software engineering
standards to their software engineer-
ing students, for example, through a
membership to a professional society
like the IEEE Computer Society.

Since the software engineering
discipline does not have as its
foundation the laws of nature, not

teaching software engineering standards,

that is, as sources of documented knowl-
edge, to software engineering students
should be considered as malpractice
even if software engineering standards
will not give a guarantee of achieving
quality, cost, and schedule objectives.

To protect these professors, those
who teach software engineering and
those who do not want to teach the
software engineering standards per-
tinent to their courses, from malprac-
tice, universities should provide them
with the opportunity to be trained

in standards and their benefits. Fi-
nally, universities should challenge
them to improve their collaboration
with industry so that software can be
developed by their students in a re-
al-world environment.17

The correct use of appropriate soft-
ware engineering standards by soft-
ware engineering students should
increase their confidence level of
achieving the objectives of a project,
that is, delivering software to the cus-
tomer with all of the functionalities
and quality characteristics within bud-
get and schedule.

If software engineering professors
do not teach software engineering stan-
dards to their students, remembering
that a software engineering standard
is documented knowledge gained from
thousands of successful and failed proj-
ects, “We could be in for another ‘lost de-
cade’ if we plan to rush at new technol-
ogy, forgetting everything we learned
about decent software engineering.”3

Readers can learn more about ISO/
IEC 29110 at http://profs.logti.etsmtl
.ca/claporte/English/VSE/index.html.
Several management and engineering
ISO/IEC 29110 guides are available for
free from the ISO at http://standards
.iso.org/ittf/PubliclyAvailableStandards
/index.html

“Courts generally view the application of standards
as important evidence that engineers perform their
work with appropriate diligence and responsibility.”

88	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

STANDARDS

The SWEBOK Guide is also avail-
able as a free ISO technical report,
ISO/IEC TR 19759:2005, Software En-
gineering—Guide to the Software Engi-
neering Body of Knowledge (SWEBOK)
and available at: http://standards.iso
.org/ittf/PubliclyAvailableStandards/
index.html.

ACKNOWLEDGMENTS
We thank the 30 professors from Ecua-
dor, Mexico, Panama, Spain, and the
United States who took the time to an-
swer our survey.

REFERENCES
1.	 C. Y. Laporte and A. April, Software

Quality Assurance. Hoboken, NJ:
Wiley, 2018.

2.	 J. W. Moore, “An integrated collection
of software engineering standards,”
IEEE Softw., vol. 16, no. 6, pp. 51–57,
Nov.–Dec. 1999. doi: 10.1109/52.805473.

3.	 M. van Genuchten and L. Hatton,
“Ten years of ‘impact’ columns—
The good, the bad, and the ugly,”
IEEE Softw., vol. 36, no. 6, pp.
57–60, Nov.–Dec. 2019. doi: 10.1109/
MS.2019.2932495.

4.	 C. Y. Laporte and F. Chevalier, “An
innovative approach to the devel-
opment of project management
processes for small-scale projects
in a large engineering company,”
in Effective Standardization Man-
agement in Corporate Settings, K.
Jakobs, Ed. Hershey, PA: Busi-
ness Science Reference, 2016, pp.
123–160. doi: 10.4018/978-1-4666-
9737-9.ch007.

5.	 H. Miotti, “The economic impact
of standardization technologi-
cal change, standards growth in
France,” AFNOR, Paris, France,
June 2009. [Online]. Available:
https://normalisation.afnor.org/
wp-content/uploads/2016/06/
Etude-ImpactEcoNorm-GB2009.pdf

6.	 S. K. Land, “Results of the IEEE
survey of software engineering
standards users,” in Proc. Softw. Eng.
Standards Symp. Forum (ISESS 97),

Walnut Creek, CA, June 1–6, 1997,
pp. 242–270.

7.	 H. Krasner, “The cost of poor
software quality in the US: A 2020
report,” in Proc. Consortium Inf. Softw.
QualityTM (CISQTM), Milford, MA,
2021.

8.	 “CHAOS2020. Beyond infinity,”
The Standish Group International
Inc., Standish Group Report,
Centerville, MA. Accessed 2021.
[Online]. Available: https://www
.standishgroup.com/news/49

9.	 R. N. Charette, “Why software fails
[software failure],” IEEE Spectr., vol.
42, no. 9, pp. 42–49, Sept. 2005. doi:
10.1109/MSPEC.2005.1502528.

10.	 C. Y. Laporte and R. V. O’Connor,
“Systems and software engineering
standards for very small entities:
Accomplishments and overview,”
Computer, vol. 49, no. 8, pp. 84–87,
Aug. 2016. doi: 10.1109/MC.2016.242.

11.	 R. Moll, “Being prepared—A bird’s
eye view of SMEs and risk manage-
ment,” ISO Focus +, Geneva, Switzer-
land, Rep., Feb. 2013.

12.	 P. Bourque and R. E. Fairley, Eds.,
Guide to the Software Engineering Body
of Knowledge: Version 3.0 (SWEBOK
Guide). Los Alamitos, CA: IEEE Com-
puter Society, 2014.

13.	 Software Engineering Code of
Ethics and Professional Practice,
IEEE-CS-1999. 1999. [Online]. Avail-
able: https://www.computer.org/
education/code-of-ethics

14.	 IEEE Standard for Software Reviews
and Audits, IEEE Standard 1028-2008,
Aug. 15, 2008.

15.	 C. Y. Laporte and J. M. Miranda, “De-
livering software and systems engi-
neering standards for small teams—
Feedback from very small entities,
their customers, auditors and aca-
demia on ISO/IEC 29110,” Computer,
vol. 53, no. 8, pp. 79–83, Aug. 2020.
doi: 10.1109/MC.2020.2993331.

16.	 C. Y. Laporte, M. Muñoz, J. Mejia Mi-
randa, and R. V. O’Connor, “Applying
software engineering standards in
very small entities: From startups

to grownups,” IEEE Softw., vol. 35,
no. 1, pp. 99–103, Jan./Feb. 2018. doi:
10.1109/MS.2017.4541041.

17.	 M. Muñoz, J. Mejia, A. Peña, G. Lara,
and C. Y. Laporte, “Transitioning
international software engineering
standards to academia: Analyzing
the results of the adoption of
ISO/IEC 29110 in four Mexican uni-
versities,” Comput. Standards Inter-
faces, vol. 66, Oct. 2019. doi: 10.1016/
j.csi.2019.03.008.

18.	 C. Y. Laporte, A. April, and K.
Benchérif, “Teaching software
quality assurance in an undergradu-
ate software engineering program,”
Softw. Qual. Professional J., ASQ, vol.
9, no. 3, pp. 4–10, 2007.

19.	 C. Y. Laporte, “International soft-
ware engineering standards applied
in undergraduate and graduate
software quality assurance courses
IEEE standards university,” IEEE
Standards Education E-Magazine,
Nov. 2015. [Online]. Available: http://
www.standardsuniversity.org/
issue/november-2015/

20.	 X. Larrucea and B. Fernandez-Gauna,
“A mapping study about the standard
ISO/IEC29110,” Comput. Stand. Inter-
faces, vol. 65, pp. 159–166, July 2019.
doi: 10.1016/j.csi.2019.03.005.

CLAUDE Y. LAPORTE is an adjunct
professor of software engineering
at École de technologie supérieure,
Montréal, Québec, H3C 1K3,
Canada, and the lead editor of the
ISO/IEC 29110 series of standards
and guides. Contact him at claude
.laporte@etsmtl.ca.

MIRNA MUÑOZ is a professor
of software engineering at Centro
de Investigación en Matemáticas-
Unidad Zacatecas, Zacatecas,
98160, Mexico, and co-editor of
the ISO/IEC 29110 Agile Software
Development Guide. Contact her at
mirna.munoz@cimat.mx.

