Worksheet for sections 7.1 and 7.2

Section 7.1

1. Write these decimal numbers as fractions, and then simplify the fractions:

Decimal	Fraction (exact translation)	Fraction simplified	Prime factors of denominator
.75	75/100	3/4	2,2
.5			
.10			
.05			
.125			
.25			

- 2. a. Notice that all the decimals in #1 were terminating. What did you notice about the <u>denominator of</u> <u>the fractions before simplifying</u>?
 - b. What did you notice about the prime factors of the denominator of the fractions after simplifying?
 - c. Now read the theorem on page 289.

Section 7.2

.636363...

3. **Read** pages 301-305 **then do set A, page 306 # 13-14 & 19-22.** Notice the **patterns** for changing repeating decimals to fractions.

4. After doing # 1	19-22, write the following decimal numbers as fractions, then simplify the fractions:			
Decimal	Fraction (9s in denominator)	Fraction simplified		
		_		
.11111	1/9	1/9		
33333	3/9	1/3		
.55555	517	175		
6666				
.0000				
.7777				

- 5. a. Notice that all the decimals in #4 were repeating. What did you notice about the <u>denominator of the</u> <u>fractions before simplifying</u> ?
 - b. What did you notice about the denominator of the fractions after simplifying?
- 6. Read the theorem on page 304 (and reread the theorem on page 289).

7. **Read Example 7.19 on page 304** for how to **use algebra** to <u>convert a repeating decimal to its</u> <u>fractional form</u>. Convert this infinite repeating decimal 0.5626262... to an equivalent fraction. Do section 7.2 set A # 15 a, b, c.

Also read page 301-302 then do the problems using **Scientific Notation**: section 7.2 Set A # 6-9.

To understand the theorems in sections 7.1 and 7.2 (on pages 289 & 304), it would help to restate these theorems in a series of steps.

- 1. Rewrite the fraction in its simplest form. (Use the divisibility tests to help in this process.)
- 2. Write the prime factorization for the denominator of the simplified fraction.
- 3. a. If the prime factorization for the denominator of the simplified fraction has ONLY factors of 2 and/or 5, then the fraction will convert to a terminating decimal.
 - b. If the prime factorization for the denominator of the simplified fraction has ANY factors OTHER THAN 2 and/or 5, then the fraction will convert to an **infinite repeating decimal**.

Please explore these web sites for additional practice with these theorems: http://www.coolmath.com/prealgebra/02-decimals/04-decimals-converting-fraction-to-decimal-01.htm http://www.coolmath.com/prealgebra/02-decimals/13-decimals-converting-fraction-to-decimalpart2-01.htm

Examples: (Also practice by doing the problems in the homework for section 7.1 set A # 6.)

1. Without dividing to change the following fractions to decimals, tell whether each would be a terminating decimal, , and then explain how you can determine this using the theorem above.

a.
$$\frac{28}{70} =$$
 ______ b. $\frac{15}{70} =$ ______
a. $\frac{28}{70} = \frac{4}{10} = \frac{2}{5}$ this will be a terminating decimal
b. $\frac{15}{70} = \frac{3}{14}$ Since the denominator has a factor of 7, it would never be able to be converted to
a fraction with a power of ten in the denominator and thus will be NOT be a
terminating decimal. It will be an infinite repeating decimal.

$$\begin{bmatrix} \frac{5}{14} = 0.214285714... = 0.2\overline{142857} \end{bmatrix}$$
 Notice: it has 6 digits that repeat infinitely.

2. Tell whether each fraction would be a terminating decimal, without dividing to change the following fractions to decimals. Explain how you can determine if the decimal would terminate.

a.
$$\frac{8}{42} = \frac{1}{6}$$
 The prime factors of the denominator are 2 and 3; the 3 indicates the decimal will be
an infinite repeating decimal. $\frac{1}{6} = 0.16666... = 0.1\overline{6}$

а

b. $\frac{7}{350} = \frac{1}{50}$ The prime factors of the denominator are 2, 5 and 5, which indicates this fraction will have a <u>terminating decimal</u>. $\frac{1}{50} = \frac{2}{100} = 0.02$

Revised April 2011, for the 8th edition of the Musser text Mathematics for Elementary Teachers.