Math 141, section NAME: Test 3, version A, Spring 2012 100 Chapters 6, 7 & 8
b. Find <u>two fractions between</u> $\frac{4}{7}$ and $\frac{5}{9}$, showing your work.
 6pts 2. Show how to illustrate ²/₅ of ³/₄, using a rectangular diagram. Clearly label the diagram to indicate each fraction and the answer.
 5pts 3. When you multiply whole numbers the product is larger than the factors (except for 0 and 1). Is this also true for improper fractions? Explain and give an example:
4pts 4. Is the set of positive fractions closed for division ? (Note, this excludes division by zero.) Explain:
4pts5. Write a brief description of the article with video clips, in module 6, including the main topic discussed and the conclusion of the article.

10pts

- 6. We studied four different ways to illustrate **integer arithmetic**.
 - a. (+3)-(+7)=_____.
 - b. Use a **number line** and **a set model** to illustrate your answer to part a.
 - c. Building from the fact that (2)(2) = 4, finish this **number pattern** to illustrate why (-2)(2) = -4.
 - (2)(2) = 4

Also explain the pattern that each column demonstrates.

- (1)(2) = 2

____=__

4pts

7. Simplify each of the following using rules of exponents. Show your work to illustrate the rule used.

a.
$$\frac{6^{-5}}{6^{+7}}$$
 =

6pts

8. <u>Show your steps</u> to illustrate an easy way to divide these numbers; write your answer in scientific notation.

$$\frac{1.2 \times 10^3}{6.0 \times 10^{-5}}$$

9pts

- 9. Write each decimal as an equivalent fraction. Simplify, if possible.
 - a. 0.36
- b. 0.363636...
- c. 0.41383838....

12pts

- 10 a. **Explain** an easy method to **mentally** <u>calculate</u> 25 % of any number. Also give an example.
 - b. Explain an easy method to mentally <u>calculate</u> 40 % of any number. Also give an example.
 - c. **Explain** an easy method to **mentally** calculate $33\frac{1}{3}\%$ of any number. Also give an example.

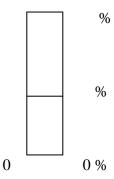
11a. Show an easy way to mentally calculate

this product using a fractional equivalent.

150 % of 30 =

b. Estimate using compatible numbers:

$$\overline{\left(47\frac{1}{3}\right)} \div \left(5\frac{2}{3}\right)$$


6pts

12. Solve using a proportion, showing your work.

If a product costs 58 cents for 24 ounces, what should it cost for 36 ounces?

9 pts

- 13a. 78 is 40 % of what number? Solve using a simple algebraic equation that is not a proportion. Show your work.
- b. Illustrate this problem by shading and putting appropriate numbers on this diagram.

14a. State the theorems from sections 7.1 & 7.2 that let you decide whether a fraction will have a terminating decimal representation.

b. Using the theorem from part a, determine whether each of the following fractions will be a terminating decimal. [Do not divide to convert the fraction to a decimal.]

5	
300	

300		_
Exp	olain:	

_		-	
\mathbf{E}	X	pl	lain: