Math 141	NAME:			
Test III, Spring 2004 100				
chapters 6, 7 & 8	Seat:			
Partial credit is based on work shown! In 6pts	Oo NOT use a calculator on this test!!			
1. a. Using a method we discussed in class,	compare the size of $\frac{7}{10}$ and $\frac{11}{15}$. Which is bigger?			
	10 15			
7 11				
b. Find a fraction between $\frac{7}{10}$ and $\frac{11}{15}$. S	how your work.			
10 13				
c. Which property of fractions does this6pts	illustrate?			
_	unated and a discussion (with each fraction and answerlaholad)			
2. Show now to illustrate $\frac{1}{6}$ of $\frac{1}{5}$, using a	rectangular diagram (with each fraction and answer labeled).			
6pts 3. When you multiply whole numbers the p	roduct is larger than either of the original numbers.			
a. Is this also true for proper fractions? Explain and give an example:				
b. Is this also true for improper fractions'	? Explain and give an example:			
8pts				
4. a. List the elements in the set of integers:	}			
b. Is the set of integers closed for subtra	uction?			
Explain:				
c. Is the set of integers closed for divisio	n?			
Explain:	···			

- 5. We studied four different ways to illustrate **integer arithmetic**.
 - a. Use a **number line** and **a set model** to illustrate why (4) (7) = -3.

- b. Building from the fact that (2)(-4) = -8, finish this **number pattern** to illustrate why (-3)(-4) = +12.
 - (2)(-4) = -8
 - (1)(-4) = -4
 - $(0) (-4) = ____ = ___$
 - _____

4pts

- 6. Simplify each of the following using rules of exponents. Show your work to illustrate the rule used.
 - a. $4^7 \cdot 4^{-5} =$

b. $\frac{6^5}{6^{-3}}$

6pts

7. <u>Show your steps</u> to illustrate an easy way to divide these numbers; write your answer in scientific notation.

$$\frac{1.5x10^{-5}}{3.0x10^{-12}}$$

9pts

- 8. Write each decimal as an equivalent fraction. Simplify, if possible.
 - a. 0.24

b. 0.24242424...

c. 0.524242424...

12pts

- 9 a. **Explain** an easy method to **mentally** $\underline{\text{calculate}}$ 10 % of any number. Also give an example.
 - b. Explain an easy method to mentally calculate 20 % of any number. Also give an example.
 - c. Explain an easy method to mentally estimate 68 % of any number. Also give an example.

8pts

10a. Show an easy way to estimate this product using a fraction with a compatible number.

 $0.34 \times 625 =$

b. <u>Calculate mentally</u> using the distributive property. (Show your thought process.)

$$8 x \left(9\frac{3}{4}\right) =$$

6pts

11. A photograph measuring 5 inches by 7 inches is to be enlarged so that the smaller side, when enlarged, will be 8 inches. When enlarged, the longer side will be _____ inches. Solve using a proportion, showing your work.

9 pts

- 12.a. A school fund-raising project has collected \$744, which is 62 % of its goal. What is the amount of the goal for for this project? ______ Solve using a simple algebraic equation, showing your work.
- b. Illustrate this problem by shading & putting appropriate numbers on this diagram.

\$

10pts

- 13. a. State the theorem from section 7.1 that lets you decide whether a fraction will have a terminating decimal representation.
 - b. Without dividing to convert the following fractions to decimals, state whether or not each would be a terminating decimal, then explain how to determine this using the theorem from part a.

7	
560	

7		
42		
_		

Explain:

Explain: