Math 141- Spring 200)4		Name:	ANSWERS
Test I (chapters 1 and	12)	100		
Show all your work!	! Partial cred	lit is based on work s	hown!!	Seat:
6pts	1			
1. Fill in the next two	o numbers for e	each sequence:		
a. 6, 18, 54, 162	, 486,1	458,4374_		
b. 4, 10, 16, 22, 2	.8, 34,4	0,46	_	
c. 4, 16, 64, 256, ^{8pts}	1024,	4096,1638	4	
 For this sequence if a. Describe the sequence if 	from problem uence with wo	1b 4, 10, 16, 22, 2 ords:	28, 34,	
Beginning with 4, add 6 to get the next number in the sequence. Continue this process, adding 6 to any number to get the next number in the sequence.				
b. Describe this sequence with a formula using n as the variable; that is, what is the formula that would generate the sequence if $n = 1$, then $n = 2$, etc.?				
Repeated adding of 6 makes each number in the sequence = [the original #] plus a multiple of 6.				
That is, $[4 + (a multiple of) 6]$				
[4 +	(n - 1) 6]	or this also could b	e written as [6	in – 2]
c. What is the 201 st term of this sequence?				
4 + (201 - 1) 0	6 = 4 + (200) 6	0 = 1204		
3 a Pick any number and try the following "number magic"				
5. u. Tiek uny numbe	i und ity the re	1st trv	2nd trv	algebraic proof 🔉
Pick a number	Examples:	5	8	n
Subtract 2	F	3	6	n - 2
Multiply by 4		12	24	4n - 8
Add 14		26	38	4n + 6
Subtract the original t	number	20	30	3n+6
Divide by 3	lumber	7	10	n+2
(Show your result)		1	10	II + 2
(Show your result)	tion con you m	also about how the rea	with the maintaid to	aaah numbar niakad?
The result is two more than the original number picked.				
c. Use algebra (in s	space above) to ult is $(n + 2)$ if	prove that your gene	ralization is cor	rect/
6pts	······································		r	,
4. In chapter 1, we stu See page 4 in	died strategies textbook!	for planning how to	solve problems.	List six of these strategies.
Guess and test	Look	for a pattern	Inductive Rea	asoning
Draw a picture	Use a	variable	Deductive Reasoning	
Make a list	Solve	a simpler problem	Use properties of numbers (odd, even, etc)	

14pts

- 5. Solve each of the following problems, showing your reasoning and calculations, then list the problem solving strategies (see problem #4 above) that you used.
- a. How many cuts does it take to divide a log into: six equal cross-sectional pieces?__5____ seven equal cross-sectional pieces?____6___

How many cuts does it take to divide a log into "n" equal cross-sectional pieces? (n-1)

List the strategies you used: Draw a picture, look for a pattern, inductive & deductive reasoning.

b. There is an old riddle about a worm at the bottom of a 28-foot well. If the worm climbs up 4 feet each day and slips back 1 foot each night, how many days will it take him to climb out of the well?

The worm climbs up 4 feet and falls back 1 foot each day and thus gains 3 feet a day. But on the last day, it climbs up 4 feet and gets out and does not fall back. Thus it takes 9 days for the worm to get out.

3 feet for each of 8 days = 24 feet, then on the 9^{th} day it climbs 4 feet and gets out.

List the strategies you used: Look for a pattern, deductive reasoning and could draw a diagram.

14pts

- 6. If A = {1, 2, 3, 4} and B = {4, 6, 8} and the universal set, U = {x | x \in whole numbers, 0 < x < 12} then:
- a. $A \cup B = _ \{1, 2, 3, 4, 6, 8\}_{_}$
- b. A B = [1, 2, 3]
- d. The Cartesian Product (A X B) has **how many** elements? __12____ n(A) = 4, n(B) = 3 so $n(A \times B) = 4 \times 3 = 12$ e. List **all** the subsets of set B: {4} $\{4, 6\}$ { } {

$$6\} \{4, 8\} \{4, 6, 8\}$$

4pts

c. List the elements in the appropriate parts of this Venn Diagram for sets A, B and U:

7. Shade this Venn diagram to represent the sets: I can't shade these so I have described the answers.

32pts

- a. Everything should be shaded except for the intersection of set X with Y.
- b. Only shade the part of set Z that intersects with the answer in part a.

8pts

8. True or False: (If false, tell why it is false or correct the statement.)

- a. <u>True</u> $\{1, 2, 3\} \sim \{x, y, z\}$ Sets are equivalent if they have the same number of elements.
- b. ___False____ If $X \subset Y$, then $X \cap Y = Y$. Should be: If $X \subset Y$, then $X \cap Y = X$.
- c. <u>False</u> If $8 \in \{C \cap D\}$, then 8 is in either set C or set D. Should be: set C AND set D.

d. False $A \cup \{ \} = \{ \}$ Should be: $A \cup \{ \} = A$ or could be: $A \cap \{ \} = \{ \}$

b. Mayan

9. Write the usual Hindu-Arabic numeral for each of the following numerals:

6pts

- 10. Write 374 in each of the following number systems.
- a. Babylonian

 $1 (18 \times 20) + 0 (20) + 14 (1)$

6pts

11. a. $374_{ten} = __1422__{six}$

Divide by powers of 6 to regroup numbers.

b. $312_{four} = __54__{ten}$ Rewrite in expanded notation for

213

Rewrite in expanded notation for base four. Then multiply and add to convert to base ten.

$$\frac{1}{6^{3}} + \frac{4}{4} (6^{2}) + \frac{2}{6^{1}} + \frac{2}{6^{0}} + \frac{2}{6^{0}} + \frac{2}{6^{1}} + \frac{2}{6^{0}} + \frac{2}{6^{1}} + \frac{2}{6^{1}$$

$$3(4^{2}) + 1(4^{1}) + 2(4^{0})$$

$$3(16) + 1(4) + 2(1)$$

$$48 + 4 + 2$$

$$54$$

4pts

12. If you are counting in base three, fill in the blanks to show what numbers would follow these:

8pts

13. A particular function is the matching of a whole number with its multiple of 6. This could be expressed with the formula y = 6n. If the domain of the function is $n = \{1, 3, 5\}$, what is the range of the function? <u>{6, 18, 30}</u> Express this function in each of the following ways:

38pts