Summary of Divisibility Tests

<u>Number</u> <u>Divisibility Test</u>

The tests 2	s for 2, 5, and 10 depend on the last digit, while 4 and 8 are extensions of this. One's digit is 0,2,4,6 or 8 (even number)
5	One's digit is 0 or 5
10	One's digit is 0
4	Number formed by last 2 digits is divisible by 4
8	 The number formed by last 3 digits can be divided by 8 Example: 8659 => last 3 digits are 659 659/8=82.375 it does not divide evenly so therefore 8659 is not divisible by 8.

The tests for 3, 9 and 6 depend on the sum of the digits.

3 Sum of digits is divisible by 3

9 Sum of digits is divisible by 9

• Example: $8659 \Rightarrow 8 + 6 + 5 + 9 = 28$; 9 is not a factor of 28 so 28 is not divisible by 9, therefore 8659 is not divisible by 9.

6 Number is divisible by 2 **and** 3. Thus apply the tests for 2 and 3.

Other tests:

- 7 Double the one's digit and subtract that # from the rest of the digits. Repeat this process until the result is obviously divisible by 7, or not.

11 The difference of the sums from alternate digits is divisible by 11.

Example 1: $8659 \Rightarrow 8 + 5 = 13$ and 6 + 9 = 15; $(13 - 15) = -2 \Rightarrow 8659$ is not divisible by 11.

Example 2: 719,081 => 7 + 9 + 8 = 24 and 1 + 0 + 1 = 2; (24 - 2) = 22 => 719,081 is divisible by 11.

- 12 If the number is divisible by 3 and 4.
- 18 If the number is divisible by 2 and 9.