Sections 2.2-2.3

Seat: _____

Full credit is based on work shown!

See examples in lecture notes in module 2 and examples in the textbook. 6pts

- 1. Express 342 in each of the following systems.
 - a. Babylonian

b. Mayan

Divide to "regroup" the numbers.

Instead of hundreds, it needs to be grouped in 60s and what is left.

Divide to "regroup" the numbers.

Divide to see how many 20s and what is left.

$$5(60) + 42(1)$$

$$17(20) + 2(1)$$

6pts

2. Rewrite each number as indicated.

a.
$$342_{ten} = ___ 526 ___{eight}$$

b.
$$342_{five} = ____97_{___ten}$$

Divide by the powers of the base eight. That is divide by 64, then by 8.

$$\frac{5(8^2) + 2(8^1) + \underline{6}(8^0)}{5(64) + 2(8) + \underline{6}(1)}$$

$$\frac{526}{2}$$

Write in expanded notation, then multiply and add.

$$3(5^{2}) + 4(5^{1}) + 2(5^{0})$$

$$3(25) + 4(5) + 2(1)$$

$$75 + 20 + 2$$

$$97$$

3pts

3. List the base four numerals in order from 1 to 103_{four} . (That is, show how to count in base four.)

Note: In base four the digits that can be used are from this set of four numbers $\{0, 1, 2, 3\}$ So the numbers would be:

See examples of counting in the lecture notes and pictures using blocks in the textbook. See Module 2 in the Blackboard Course. At the bottom of module 2 under "Resources" use the link to **Multi-Base blocks e-manipulative to represent numbers in various bases** http://nlvm.usu.edu/en/nav/frames_asid_152_g_2_t_1.html

Or use the NLVM eManipulative. Go to WileyPLUS, "Read, Study, & Practice", choose chapter 2, Then

Resources for Technology Problems

<u>eManipulatives</u>

Then choose "Multibase Blocks"