Summary of section 2.1 on Sets

Subset $A \subseteq B$ "Set A is contained in set B"

Union of sets, A U B "combination of A and B"

 $A \bigcup B = \{x \mid x \in A \text{ or } x \in B\}$

Intersection of sets, $A \cap B$ "overlap of A and B"

 $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

Complement of a set, A "elements in U but not in set A"

 $\overline{A} = \{ x \mid x \in U \text{ and } x \notin A \}$

Set Difference, A- B "elements in A but not in B"

 $A - B = \{x \mid x \in A \text{ and } x \notin B\}$

Cartesian Product or Cross Product, A x B "ordered pairs of elements from sets A and B"

$$AXB = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

If $A=\{r, w, b\}$ and $B=\{j, k\}$, then $A \times B = \{(r,j), (w,j), (b,j), (r,k), (w,k), (b.k)\}$