Sequences (sections 1.2 and 9.3)

Strategies: Make a list and look for a pattern (find a rule).	
$1, 2, 3, 4, 5, \ldots, n, \ldots$	Counting numbers
2, 4, 6, 8, 10, , 2n,	Even (counting) numbers
1, 3, 5, 7, 9, , 2n-1,	Odd (counting) numbers
1, 4, 9, 16, 25,, n^2 , 1 ² , 2 ² , 3 ² , 4 ² , 5 ² ,, n^2 ,	Square (counting) numbers
2, 4, 8, 16, 32,, 2^{n} , 2^{1} , 2^{2} , 2^{3} , 2^{4} , 2^{5} ,, 2^{n} ,	Powers of two
$1, 8, 27, 64, 125, \dots, n^3, \dots$	Cubes of counting numbers
$3, 9, 27, 81, \dots, 3^{n}, \dots$ $3^{1}, 3^{2}, 3^{3}, 3^{4}, \dots, 3^{n}, \dots$	Powers of three
1, 1, 2, 3, 5, 8, 13,	Fibonacci sequence (after the two 1s, each term is the sum of the two preceding terms.)

Function notation: Shows a formula that describes the sequence.

f(n) = n
$\mathbf{f}(\mathbf{n}) = 2\mathbf{n}$
f(n) = 2n-1
$\mathbf{f}(\mathbf{n}) = \mathbf{n}^2$
$f(n) = 2^n$
$f(n) = n^3$
$f(n) = 3^n$

See textbook for different representations of functions: Arrow diagrams, tables, machines, ordered pairs, graphs, formulas, geometric transformations.