Review rules of exponents page 426. Graphing exponential functions and solving equations. Summary page 435. Page 434 if $a^u = a^v$, then u = v.

6.3 Exponential Functions Solve each equation.

1.
$$4^{2x-1} = 64$$

2.
$$27^{x-3} = 9^{2x-4}$$

3.
$$e^x e^{2x^2} = e^{15}$$

4.
$$9^x - 3^x = 0$$

5. **Graph** $f(x) = 4^{x-2}$.

- a. Label two points:
- b. Label any asymptotes. _____
- c. Find the domain of f(x).
- d. Find the range of f(x).
- e. Graph $f^{-1}(x)$ on the same axis.

Label at least two points on the graph.

f. What is the equation of $f^{-1}(x)$.

$$f^{-1}(x) =$$

6. Graph $f(x) = e^{-x} + 3$.

- a. Label two points:
- b. Label any asymptotes.
- c. Find the domain of f(x).
- d. Find the range of f(x).
- e. Graph $f^{-1}(x)$ on the same axis.

Label at least two points on the graph.

f. What is the equation of $f^{-1}(x)$.

$$f^{-1}(x) =$$

6.4 Logarithmic Functions Recall:

 $y = \log_a x$ if and only if $x = a^y$

This definition illustrates a logarithm is a name for a certain exponent.

Also remember that $\ln x$ is an abbreviation for $\log_e x$ and that $\log x$ means $\log_{10} x$.

Change from logarithmic to exponential form.

Change from exponential to logarithmic form.

4.
$$6^x = 3$$

2.
$$\ln x = 7$$

5.
$$x^2 = 4$$

6.
$$3^2 = x$$

Remember that a logarithmic function is the inverse of an exponential function. Summary page 449.

7. Graph $f(x) = \ln (x-3)$.

8. Graph $f(x) = 2\log_{5}(-x)$.

- a. Label two points: _____
- b. Label any asymptotes. _____
- c. Find the domain of f(x).
- d. Find the range of f(x).
- e. Graph $f^{-1}(x)$ on the same axis.

Label at least two points on the graph.

- a. Label two points:
- b. Label any asymptotes. _____
- c. Find the domain of f(x).
- d. Find the range of f(x).
- e. Graph $f^{-1}(x)$ on the same axis.

Label at least two points on the graph.

f. What is the equation of $f^{-1}(x)$.

f. What is the equation of
$$f^{-1}(x)$$
.

$$f^{-1}(x) =$$

$$f^{-1}(x) =$$

9. Find the **domain** of the following functions.

a.
$$y = ln(x - 3)$$

b.
$$y = \log\left(\frac{3x+4}{x}\right)$$

Evaluate the following without a Calculator!

10.
$$\log \frac{1}{1000} =$$

11.
$$\ln e^{3x+1} =$$

12.
$$\log_{\frac{1}{4}} 64 =$$

13.
$$2 \log_{81} 9 =$$

Solve each equation.

14.
$$\log_5 625 = 3x - 4$$

15.
$$\log_3(2x-1) = 4$$

16.
$$e^{3x+1} = 7$$

17.
$$\log_5(x^2 + x + 4) = 2$$

6.9 Building Models from Data

The following data from the *U. S. Census Bureau* shows the population of New Hanover County for select years from 1940(t=0) to 1990(t=50) in ten thousands.

Year (t)	Population
1940; t=0	4.8
1950; t=10	6.3
1960; t=20	7.2
1970; t=30	8.3
1980; t=40	10.3
1990; t=50	12

a. Find the line of best fit to the data (Write the linear function in the form y = mt + b for t in years and y in ten thousands.) and the correlation coefficient.

b. Find an exponential fit to the same data and find the correlation coefficient.

c. On the same axes, draw the scatter diagram, graph the best-fit line and best-fit exponential curve. Which of the two models fits better? Explain

d. Using the model you chose in (c), estimate the population of New Hanover County in the year 2005.
