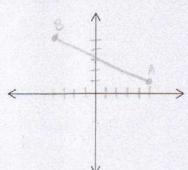
MAT 111 – section Test # 1, version B		lame: Key
Chapter 1, and sections 2.1 & 2.2		eptember 18, 2009
Directions: Show all work algebraically ungraph and the solution on the graph. If roun		가장 보고 있는데 가장 하면 하는데 그런 보고 있었다. 그 사람들은 사람들은 사람들은 사람들은 사람들은 사람들이 되었다. 나는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은
Solve the following equations. Find <u>all</u> so (10 points) 1. $(2x - y = 0)$ 2 Whiltiply	lutions. (10 points) 2. $x^2 + 5x + 8 =$	= 0
$\begin{cases} 4x + 2y = 12 \\ \text{(write your solution as a point)} \end{cases}$	stitute	x=-5±V52-4(1)(8
ed 54x-24=0 7=	= 2x	2(1)
	(x) + 2f(2x) = 12 (x) + 4x = 12	Y = -5±V25+32
8x = 12	$8\chi = 12$ $\chi = 3$	2
$X = \frac{12}{8} = \frac{3}{2}$		$X = -5 \pm \sqrt{-9}$
	graph 4 find	2
3-4=0	intersection pl	X= -5±V7 2
(3,3)	1	11 2
(10 points) 3. $ 2x-5 +4=7$	$4. \sqrt{2x-2} = x$	- 5
[2x-5]=3	(Check your s	
(2x-5)=3 = (2x-5)=-3		$=(x-5)^2$
2x = 8 or $2x = 2$		$x^2 - 10x + 25$
		2-12×+27
X = 4 $X = 1$		(x-9)(x-3)
or graph 2x-5 -3		92
) g = s = 1	$X=9$ $\sqrt{2(9)-2}=9-5$	V2137-Z=3-5
1	J 160 =4	V4 =-2
	4=4	2 \(\frac{1}{2} \) 40

Name: _

MAT 111

Test 1, version B, page 2

5. Given the points A (5,1) and B (-4,5), find the following.


(6 points)

a. Sketch a graph to illustrate these.

b. Find the length of \overline{AB} .

c. Find the midpoint of \overline{AB} .

$$\int (\frac{1}{2} - \frac{1}{2})^{2} + (\frac{1}{2} - \frac{1}{2})^{2}$$

$$\int (\frac{1}{2} - \frac{1}{2})^{2} + (\frac{1}{2} - \frac{1}{2})^{2}$$

$$\int \frac{1}{2} + (\frac{1}{2} - \frac{1}{2})^{2}$$

$$\int \frac{1}{2} + \frac{1}{2} +$$

(9 points)

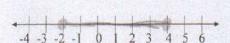
Solve. Illustrate your solution on a number line.
 Use interval notation to express your solution.

$$-7 \le 1 - 2x \le 5$$

$$\frac{-1}{-8} \frac{-1}{-2} \frac{-1}{-2}$$

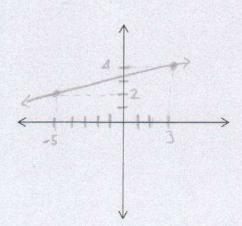
$$\frac{-8 \le -2 \times \le 4}{-2} \frac{4}{-2}$$

(9 points


7. Find the **equation of a line** through the two points (-5, 2) and (3, 4).

(Graph your line to check your answer.)

$$M = \frac{Y_2 - Y_1}{X_2 - X_1} = \frac{4 - 2}{3 + 5} = \frac{2}{8} = \frac{1}{4}$$


$$y-4=\frac{1}{4}(x-3)$$

$$Y - \frac{16}{4} = \frac{1}{4}X - \frac{3}{4}$$

Interval notation:

-2.41

MAT 111

(10 points)

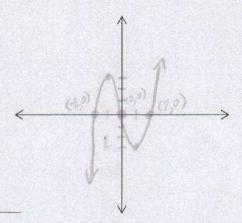
Test 1, version B, page 3

8. For this equation, $4x + y = x^3$, determine the intercepts and the type of symmetry of its graph. Sketch the graph and label the intercepts.

$$V = X^{3} - 4X$$

$$V = A^{3} - 4X$$

$$V = A^{3} - 4X$$


$$V = A^{3} - 4X$$

$$0 = X(X^{2} - 4)$$

$$0 = X(X^{2} - 4)$$

$$0 = X(X + 2)(X - 2)$$

$$0 = X(X + 2)(X - 2)$$

The graph is symmetric with respect to the Ocigin

(10 points)

9. A movie theater charges \$9.00 for regular adult tickets and \$7.00 for senior citizens. On a day when 325 people bought tickets, the total receipts were \$2495. How many senior citizen tickets were sold? Tell what your variable represents, show your equation, your work and your solution.

(10 points)

$$\frac{2x}{x+3} = \frac{-6}{x+3} - 2 \left(\frac{x+3}{x+3} \right)$$

$$2x = -6 - 2(x+3)$$

$$2x = -6 - 2x - 6$$

$$4x = -12$$

$$x = -3$$