3/23/09

Chapter 11: File System

Implementation
| |

Operating System Concepts - 8" Edition, Silberschatz, Galvin and Gagne ©2009

=

o Chapter 11: File System Implementation

File-System Structure
File-System Implementation
Directory Implementation
Allocation Methods
Free-Space Management
Efficiency and Performance
Recovery

Log-Structured File Systems
NFS

Example: WAFL File System

£

Y
¥

Operating System Concepts - 8" Edition 1.2 Silberschatz, Galvin and Gagne ©2009

EN

)

N o Objectives

B To describe the details of implementing local file systems and directory
structures

B To describe the implementation of remote file systems
W To discuss block allocation and free-block algorithms and trade-offs

A

¥

Operating System Concepts - 8" Edition 13 Silberschatz, Galvin and Gagne ©2009

=

S o File-System Structure

H File structure
@ Logical storage unit
@ Collection of related information
W File system resides on secondary storage (disks)
W File system organized into layers
m File control block — storage structure consisting of information about a file

£

)
¥

Operating System Concepts - 8" Edition 1.4 Silberschatz, Galvin and Gagne ©2009

)

N o Layered File System

application programs

logical file system

file-organization module

basic file system

1/O control
devices
£D
7R
¥
Operating System Concepts - 8" Edition 15 Silberschatz, Galvin and Gagne ©2009

=

“$¥’ A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

£
A9

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts - 8" Edition 16

~

- *,j In-Memory File System Structures

B The following figure illustrates the necessary file system structures provided
by the operating systems.

W Figure 12-3(a) refers to opening a file.

W Figure 12-3(b) refers to reading a file.

£
o

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts - 8" Edition

EN

)
g

Virtual File Systems

B Virtual File Systems (VFS) provide an object-oriented way of implementing
file systems.

M VFS allows the same system call interface (the API) to be used for different
types of file systems.

B The APl s to the VFS interface, rather than any specific type of file system.

Operating System Concepts - 8" Edition

EN

3/23/09

~

55 In-Memory File System Structures

directory structure
open (file name)
diractory structurs file-control block

kernel memory secondary storage

(a)
nger O]
/
data blocks
read (index) —— T
per-process system-wide file-control block
open-file table open-file table
ke | 1d: te -
ool memory Socantianysioregs .
(b) Y
A

Operating System Concepts - 8" Edition

o

Silberschatz, Galvin and Gagne G20

~

“$%Schematic View of Virtual File System

file-system interface

VFS interface

|

|

‘ local file system

local file system
type 2

remote file system
type 1

Operating System Concepts - 8" Edition

1110

|

network
™
A2

)
¥

Silberschatz, Galvin and Gagne ©2009

=

)
<

Allocation Methods

)
g

Directory Implementation

B Linear list of file names with pointer to the data blocks.
® simple to program
@ time-consuming to execute

B Hash Table - linear list with hash data structure.

@ decreases directory search time
® collisions - situations where two file names hash to the same location

o fixed size

£
el

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts - 8" Edition 1141

B An allocation method refers to how disk blocks are allocated for files:
m Contiguous allocation
B Linked allocation

B Indexed allocation

£
A9

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts - 8" Edition 1142

g Contiguous Allocation

B Each file occupies a set of contiguous blocks on the disk

W Simple — only starting location (block #) and length (number of
blocks) are required

B Random access
B Wasteful of space (dynamic storage-allocation problem)

W Files cannot grow

LR

Y
W
09

Operating System Concepts - 8" Edition 1143 Silberschatz, Galvin and Gagne ©:

~

- *‘:JContiguous Allocation of Disk Space

e, directory
B file start length
el lC e e | count 0 2
f tr 14 3
40 500 60 700 mail 19 6
8] o[J1o[J11J L e
iir f 6 2
1213140150
16[J17J18[J19[]
mail
20[J21[J22[]23[]
24[25 126[127[]
list
28[J29[]30[131[]

Operating System Concepts - 8" Edition 1145 Silberschatz, Galvin and Gagne ©2009

3/23/09

=

)
b Contiguous Allocation

B Mapping from logical to physical

~Q
LA/512
R

Block to be accessed = ! + starting address
Displacement into block =R

A

)
¥

Operating System Concepts - 8" Edition 1114 Silberschatz, Galvin and Gagne ©2009

BN

5 Linked Allocation

B Eachfile is a linked list of disk blocks: blocks may be scattered anywhere on
the disk.

block = pointer

LR

At

Operating System Concepts - 8" Edition 1147

Silberschatz, Galvin and Gagne ©2009

=

Lt Extent-Based Systems

B Many newer file systems (l.e. Veritas File System) use a modified
contiguous allocation scheme

B Extent-based file systems allocate disk blocks in extents

B An extent is a contiguous block of disks
® Extents are allocated for file allocation
® Afile consists of one or more extents.

£
A

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts - 8" Edition 1146

S Linked Allocation (Cont.)

Simple — need only starting address

Free-space management system — no waste of space
No random access

Mapping

e
LA/511 ~

Block to be accessed is the Qth block in the linked chain of
blocks representing the file.
Displacement into block = R + 1
File-allocation table (FAT) — disk-space allocation used by MS-DOS
and OS/2.
/e“"'\
LA

)
¥

Operating System Concepts - 8" Edition 1118 Silberschatz, Galvin and Gagne ©2009

o Linked Allocation
T directory

file start end
jeep 9 25

121314/ 1157
16171819
20[J21[e2[]23[]
2425126 [127[]

2829130131
_,/ /4"‘\\\
A

¥

Operating System Concepts - 8" Edition 1149 Silberschatz, Galvin and Gagne ©2009

3/23/09

=

S File-Allocation Table

directory entry

start block o
217 618
339
618 339
no. of disk blocks -1

FAT ™
£

o

Operating System Concepts - 8" Edition 1120 Silberschatz, Galvin and Gagne G20

»

o Indexed Allocation

B Brings all pointers together into the index block.
W Logical view.

I
—0O
I 5O

[|

index table

A
8.

Operating System Concepts - 8" Edition 1.21 Silberschatz, Galvin and Gagne ©2009

=

)
“%7/ Example of Indexed Allocation
/’—\ directory

file index block
jeep 19

20[J21[J22[A23

24[J25[J26[J27[]

28[J29[J30[J31[])
—_— AN
4/ & /v»\)
%
Operating System Cancepts 8 Etion na Siberschatz, Gaivin and Gagne €2009

»

P Indexed Allocation (Cont.)

B Need index table
B Random access

B Dynamic access without external fragmentation, but have overhead
of index block.

B Mapping from logical to physical in a file of maximum size of 256K
words and block size of 512 words. We need only 1 block for index
table.

/Q
LA/512.

i

Q = displacement into index table
R = displacement into block

A
28 -\

Operating System Concepts - 8" Edition 11.23 Silberschatz, Galvin and Gagne ©2009

“$"Indexed Allocation — Mapping (Cont.)

B Mapping from logical to physical in a file of unbounded length
(block size of 512 words).

B Linked scheme — Link blocks of index table (no limit on size).

Q
P
LA/ (512 x 511)
\ R‘
Q, = block of index table
R, is used as follows:
Q,
R, /512<
RZ

Q, = displacement into block of index table
R, displacement into block of file:

Wi Y
D

Silberschatz, Galvin and Gagne G20

A

Operating System Concepts - 8" Edition 1124

- *‘:fndexed Allocation — Mapping (Cont.)

B Two-level index (maximum file size is 512%)

Q1
LA/(512x512)<
H\

Q, = displacement into outer-index
R, is used as follows:

Q,
R, /51 2<
RZ

Q, = displacement into block of index table
R, displacement into block of file:

LR

Y
W
09

Operating System Concepts - 8" Edition 11.25 Silberschatz, Galvin and Gagne ©:

G 1:’ﬁ(‘fombined Scheme: UNIX (4K bytes per block)

mode
owners (2)
timestamps (3)
: > data
size block count
]
direct blocks T :
:

single indirect —

double indirect _|

triple indirect

Silberschatz, Galvin and Gagne ©2009

11.27

Operating System Concepts - 8" Edition

=

- *‘:’J Free-Space Management (Cont.)

B Bit map requires extra space
® Example:
block size = 212 bytes
disk size = 230 bytes (1 gigabyte)
n = 230/212 = 218 hits (or 32K bytes)
B Easy to get contiguous files
W Linked list (free list)
@ Cannot get contiguous space easily
@ No waste of space

m Grouping
m Counting
/‘\\
AR
v
Silberschatz, Galvin and Gagne 62009

Operating System Concepts - 8" Edition 11.29

3/23/09

“$"Indexed Allocation — Mapping (Cont.)

— //ﬂ“”ﬂj

il
1

~
outer-index

index table file

A

)
¥

1126 Silberschatz, Galvin and Gagne ©2009

Operating System Concepts - 8" Edition

=

|
b7

Free-Space Management

W Bit vector (nblocks)
01 2 n-1

[(TTTTTT .. 11

. 0 = block[]] free
bit[] =
1 = block[/] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

£

)
¥

Operating System Concepts - 8" Edition 1128 Silberschatz, Galvin and Gagne ©2009

=

ol Free-Space Management (Cont.)

B Need to protect:
® Pointer to free list
® Bit map
» Must be kept on disk
» Copy in memory and disk may differ
» Cannot allow for block[/] to have a situation where bit[i] = 1 in
memory and bit[i] = 0 on disk
@ Solution:
» Set bit[] = 1 in disk
» Allocate block[i]
» Set bit[] = 1 in memory

A

)
¥

1130 Silberschatz, Galvin and Gagne ©2009

Operating System Concepts - 8" Edition

BN

- *‘:’J Directory Implementation

B Linear list of file names with pointer to the data blocks
® simple to program
@ time-consuming to execute
B Hash Table - linear list with hash data structure
® decreases directory search time
® collisions - situations where two file names hash to the same location

o fixed size

LR

Y
W
09

Operating System Concepts - 8" Edition 131 Silberschatz, Galvin and Gagne ©:

BN

|
P

Efficiency and Performance

B Efficiency dependent on:
@ disk allocation and directory algorithms
@ types of data kept in file’s directory entry

B Performance
@ disk cache — separate section of main memory for frequently used
blocks
@ free-behind and read-ahead — techniques to optimize sequential access
@ improve PC performance by dedicating section of memory as virtual
disk, or RAM disk

f’ ‘\\
50

3/23/09

=

“$%" Linked Free Space List on Disk

free-space list head ——

24[J25[2627

28[]29[]30[31[]

w \\\
A

Operating System Concepts - 8" Edition 1132 Silberschatz, Galvin and Gagne ©2009

Operating System Concepts - 8" Edition 1133 Silberschatz, Galvin and Gagne ©2009

- *‘:’J 1/0 Without a Unified Buffer Cache

1/O using

MR- o) read() and write()

buffer cache

Operating

file system "
£D
A

System Concepts - 8" Edition 11.35

Silberschatz, Galvin and Gagne @

8 Hles

=
)

b -s"/

Page Cache

B A page cache caches pages rather than disk blocks using virtual memory
techniques

B Memory-mapped I/O uses a page cache
M Routine I/0 through the file system uses the buffer (disk) cache

M This leads to the following figure

£
A

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts - 8" Edition

=

|
b7

Unified Buffer Cache

B A unified buffer cache uses the same page cache to cache both memory-
mapped pages and ordinary file system 1/O

A

)
¥

Operating System Concepts - 8" Edition 1136 Silberschatz, Galvin and Gagne ©2009

Y|

*%77 1/0 Using a Unified Buffer Cache

1/0 using
read() and write()

N/

buffer cache

memory-mapped 1/0O

file system

£

»

¥

Operating System Concepts - 8" Edition 1.37 Silberschatz, Galvin and Gagne ©2009

3/23/09

r Recovery

B Consistency checking — compares data in directory structure with data
blocks on disk, and tries to fix inconsistencies

M Use system programs to back up data from disk to another storage device
(floppy disk, magnetic tape, other magnetic disk, optical)

W Recover lost file or disk by restoring data from backup

A
R

¥

Operating System Concepts - 8" Edition 1138 Silberschatz, Galvin and Gagne ©2009

4%’ Log Structured File Systems

B Log structured (or journaling) file systems record each update to
the file system as a transaction

® All transactions are written to a log

® Atransaction is considered committed once it is written to the
log
® However, the file system may not yet be updated

W The transactions in the log are asynchronously written to the file
system

® When the file system is modified, the transaction is removed
from the log

M If the file system crashes, all remaining transactions in the log must Py

still be performed -3

¥

Operating System Concepts - 8" Edition 11.39 Silberschatz, Galvin and Gagne ©2009

“%”'The Sun Network File System (NFS)

B Animplementation and a specification of a software system for accessing
remote files across LANs (or WANSs)

B The implementation is part of the Solaris and SunOS operating systems
running on Sun workstations using an unreliable datagram protocol (UDP/IP
protocol and Ethernet

A
A0

Operating System Concepts - 8" Edition 1140 Silberschatz, Galvin and Gagne ©2009

Y|

o NFS (Cont.)

B Interconnected workstations viewed as a set of independent machines with
independent file systems, which allows sharing among these file systems in
a transparent manner

® A remote directory is mounted over a local file system directory

» The mounted directory looks like an integral subtree of the local file
system, replacing the subtree descending from the local directory

@ Specification of the remote directory for the mount operation is
nontransparent; the host name of the remote directory has to be
provided

» Files in the remote directory can then be accessed in a transparent
manner

@ Subject to access-rights accreditation, potentially any file system (or
directory within a file system), can be mounted remotely on top of any
local directory

s
™
£5)

¥

Operating System Concepts - 8" Edition 1141 Silberschatz, Galvin and Gagne ©2009

o NFS (Cont.)

B NFS is designed to operate in a heterogeneous environment of different
machines, operating systems, and network architectures; the NFS
specifications independent of these media

W This independence is achieved through the use of RPC primitives built on
top of an External Data Representation (XDR) protocol used between two
implementation-independent interfaces

B The NFS specification distinguishes between the services provided by a
mount mechanism and the actual remote-file-access services

A
A0

Operating System Concepts - 8" Edition 1142 Silberschatz, Galvin and Gagne ©2009

“$%7 Three Independent File Systems

S1: S2:
usr usr usr
local shared dir2
dirt
=\
="\
E—
AN
Ah‘ \‘
¥
Operating System Concepts - 8% Edition 143 Silberschatz, Galvin and Gagne 62009

g5 NFS Mount Protocol

W Establishes initial logical connection between server and client

W Mount operation includes name of remote directory to be mounted and
name of server machine storing it
® Mount request is mapped to corresponding RPC and forwarded to
mount server running on server machine
® Export list — specifies local file systems that server exports for
mounting, along with names of machines that are permitted to
mount them
B Following a mount request that conforms to its export list, the server
returns a file handle—a key for further accesses
W File handle - a file-system identifier, and an inode number to identify
the mounted directory within the exported file system

W The mount operation changes only the user’s view and does not affect
the server side

s
™
£5)

¥

Operating System Concepts - 8" Edition 1145 Silberschatz, Galvin and Gagne ©2009

= Three Major Layers of NFS Architecture

ey’

B UNIX file-system interface (based on the open, read, write, and close
calls, and file descriptors)

W Virtual File System (VFS) layer — distinguishes local files from remote ones,
and local files are further distinguished according to their file-system types
@ The VFS activates file-system-specific operations to handle local
requests according to their file-system types

@ Calls the NFS protocol procedures for remote requests

B NFS service layer — bottom layer of the architecture
® Implements the NFS protocol

s
™
£5)

¥

Operating System Concepts - 8" Edition 11.47 Silberschatz, Galvin and Gagne ©2009

3/23/09

U U
usr usr
local local
dir1 dir1
AR
AR
A
(a) (b)
Mounts Cascading mounts s
™
y \
45
%
Operating System Concepts - 8" Edition 144 Silberschatz, Galvin and Gagne 62009

3 NFS Protocol

B Provides a set of remote procedure calls for remote file operations. The
procedures support the following operations:

searching for a file within a directory
reading a set of directory entries
manipulating links and directories
accessing file attributes

reading and writing files

B NFS servers are stateless; each request has to provide a full set of
arguments
(NFS V4 is just coming available — very different, stateful)
B Modified data must be committed to the server’s disk before results are
returned to the client (lose advantages of caching)

B The NFS protocol does not provide concurrency-control mechanisms

A
A0

Operating System Concepts - 8" Edition 1146 Silberschatz, Galvin and Gagne ©2009

“37Schematic View of NFS Architecture

‘ client server ‘

system-calls interface

VFS interface VFS interface
other types of UNIX file NFS NFS UNIX file
file systems system client server system
%
E

'y
=0 .-
r
Operating System Concepts - 8" Edition 11.48 Silberschatz, Galvin and Gagne ©2009

&

4%’ NFS Path-Name Translation

B Performed by breaking the path into component names and performing a
separate NFS lookup call for every pair of component name and directory
vnode

M To make lookup faster, a directory name lookup cache on the client’s side
holds the vnodes for remote directory names

A
= .-

¥

Operating System Concepts - 8" Edition 11.49 Silberschatz, Galvin and Gagne ©2009

4%’ Example: WAFL File System

Used on Network Appliance “Filers” — distributed file system appliances
“Write-anywhere file layout”
Serves up NFS, CIFS, http, ftp
Random 1/0 optimized, write optimized
® NVRAM for write caching
B Similar to Berkeley Fast File System, with extensive modifications

A
5

Operating System Concepts - 8" Edition 151 Silberschatz, Galvin and Gagne ©2009

GF7 Snapshots in WAFL

(c) After block D has changed to D" I;: N

Operating System Concepts - 8" Edition 11.53 Silberschatz, Galvin and Gagne ©2009

3/23/09

&

57 NFS Remote Operations

B Nearly one-to-one correspondence between regular UNIX system calls and
the NFS protocol RPCs (except opening and closing files)

B NFS adheres to the remote-service paradigm, but employs buffering and
caching techniques for the sake of performance

W File-blocks cache — when a file is opened, the kernel checks with the remote
server whether to fetch or revalidate the cached attributes

@ Cached file blocks are used only if the corresponding cached attributes
are up to date

W File-attribute cache — the attribute cache is updated whenever new
attributes arrive from the server

B Clients do not free delayed-write blocks until the server confirms that the
data have been written to disk

§
A

Operating System Concepts - 8" Edition 11.50 Silberschatz, Galvin and Gagne ©2009

! The WAFL File Layout

rootinode

inode file

| free block map | | free inode map ‘ | file in the file system...

§
A

Operating System Concepts - 8" Edition 1152 Silberschatz, Galvin and Gagne ©2009

55 11.02

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

§
A

Operating System Concepts - 8" Edition 1154 Silberschatz, Galvin and Gagne ©2009

End of Chapter 11

e I*?»@
JAN

3/23/09

10

