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N o Objectives

B To describe the details of implementing local file systems and directory
structures

B To describe the implementation of remote file systems
W To discuss block allocation and free-block algorithms and trade-offs
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S o File-System Structure

H File structure
@ Logical storage unit
@ Collection of related information
W File system resides on secondary storage (disks)
W File system organized into layers
m File control block — storage structure consisting of information about a file
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N o Layered File System

application programs

logical file system

file-organization module

basic file system

1/O control
devices
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“$¥’ A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

£
A9

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts - 8" Edition 16




~

- *,j In-Memory File System Structures

B The following figure illustrates the necessary file system structures provided
by the operating systems.

W Figure 12-3(a) refers to opening a file.

W Figure 12-3(b) refers to reading a file.

£
o

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts - 8" Edition

EN

)
g

Virtual File Systems

B Virtual File Systems (VFS) provide an object-oriented way of implementing
file systems.

M VFS allows the same system call interface (the API) to be used for different
types of file systems.

B The APl s to the VFS interface, rather than any specific type of file system.
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55 In-Memory File System Structures
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“$%Schematic View of Virtual File System

file-system interface

VFS interface
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local file system
type 2

remote file system
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Allocation Methods

)
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Directory Implementation

B Linear list of file names with pointer to the data blocks.
® simple to program
@ time-consuming to execute

B Hash Table - linear list with hash data structure.

@ decreases directory search time
® collisions - situations where two file names hash to the same location

o fixed size
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B An allocation method refers to how disk blocks are allocated for files:
m Contiguous allocation
B Linked allocation

B Indexed allocation
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g Contiguous Allocation

B Each file occupies a set of contiguous blocks on the disk

W Simple — only starting location (block #) and length (number of
blocks) are required

B Random access
B Wasteful of space (dynamic storage-allocation problem)

W Files cannot grow
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- *‘:JContiguous Allocation of Disk Space

e, directory
B file start length
el lC e e | count 0 2
f tr 14 3
40 500 60 700 mail 19 6
8] o[ J1o[J11J L e
iir f 6 2
1213140150
16[J17J18[J19[]
mail
20[J21[J22[]23[]
24[ 25 126[127[]
list
28[J29[]30[131[]
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b Contiguous Allocation

B Mapping from logical to physical

~Q
LA/512
R

Block to be accessed = ! + starting address
Displacement into block =R
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5 Linked Allocation

B Eachfile is a linked list of disk blocks: blocks may be scattered anywhere on
the disk.

block = pointer
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Lt Extent-Based Systems

B Many newer file systems (l.e. Veritas File System) use a modified
contiguous allocation scheme

B Extent-based file systems allocate disk blocks in extents

B An extent is a contiguous block of disks
® Extents are allocated for file allocation
® Afile consists of one or more extents.
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S Linked Allocation (Cont.)

Simple — need only starting address

Free-space management system — no waste of space
No random access

Mapping

e
LA/511 ~

Block to be accessed is the Qth block in the linked chain of
blocks representing the file.
Displacement into block = R + 1
File-allocation table (FAT) — disk-space allocation used by MS-DOS
and OS/2.
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o Linked Allocation
T directory

file start  end
jeep 9 25

121314/ 1157
16171819
20[J21[e2[]23[]
2425126 [127[]

2829130131
\_,/ /4"‘\\\
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S File-Allocation Table

directory entry

start block o
217 618
339
618 339
no. of disk blocks -1

FAT ™
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o Indexed Allocation

B Brings all pointers together into the index block.
W Logical view.
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index table
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“%7/  Example of Indexed Allocation
/’—\ directory

file index block
jeep 19

20[J21[J22[A23

24[J25[J26[J27[]
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P Indexed Allocation (Cont.)

B Need index table
B Random access

B Dynamic access without external fragmentation, but have overhead
of index block.

B Mapping from logical to physical in a file of maximum size of 256K
words and block size of 512 words. We need only 1 block for index
table.

/Q
LA/512.

i

Q = displacement into index table
R = displacement into block
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“$"Indexed Allocation — Mapping (Cont.)

B Mapping from logical to physical in a file of unbounded length
(block size of 512 words).

B Linked scheme — Link blocks of index table (no limit on size).

Q
P
LA/ (512 x 511)
\ R‘
Q, = block of index table
R, is used as follows:
Q,
R, /512<
RZ

Q, = displacement into block of index table
R, displacement into block of file:
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- *‘:fndexed Allocation — Mapping (Cont.)

B Two-level index (maximum file size is 512%)

Q1
LA/(512x512)<
H\

Q, = displacement into outer-index
R, is used as follows:

Q,
R, /51 2<
RZ

Q, = displacement into block of index table
R, displacement into block of file:
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G 1:’ﬁ(‘fombined Scheme: UNIX (4K bytes per block)

mode
owners (2)
timestamps (3)
: > data
size block count
]
direct blocks T :
:

single indirect —

double indirect _|

triple indirect
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- *‘:’J Free-Space Management (Cont.)

B Bit map requires extra space
® Example:
block size = 212 bytes
disk size = 230 bytes (1 gigabyte)
n = 230/212 = 218 hits (or 32K bytes)
B Easy to get contiguous files
W Linked list (free list)
@ Cannot get contiguous space easily
@ No waste of space

m Grouping
m Counting
/‘\\
AR
v
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“$"Indexed Allocation — Mapping (Cont.)

— //ﬂ“”ﬂj

il
1

~
outer-index

index table file
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Free-Space Management

W Bit vector (nblocks)
01 2 n-1

[(TTTTTT .. 11

. 0 = block[]] free
bit[] =
1 = block[/] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit
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ol Free-Space Management (Cont.)

B Need to protect:
® Pointer to free list
® Bit map
» Must be kept on disk
» Copy in memory and disk may differ
» Cannot allow for block[/] to have a situation where bit[i] = 1 in
memory and bit[i] = 0 on disk
@ Solution:
» Set bit[] = 1 in disk
» Allocate block[i]
» Set bit[] = 1 in memory
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- *‘:’J Directory Implementation

B Linear list of file names with pointer to the data blocks
® simple to program
@ time-consuming to execute
B Hash Table - linear list with hash data structure
® decreases directory search time
® collisions - situations where two file names hash to the same location

o fixed size
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Efficiency and Performance

B Efficiency dependent on:
@ disk allocation and directory algorithms
@ types of data kept in file’s directory entry

B Performance
@ disk cache — separate section of main memory for frequently used
blocks
@ free-behind and read-ahead — techniques to optimize sequential access
@ improve PC performance by dedicating section of memory as virtual
disk, or RAM disk

f’ ‘\\
50

3/23/09

=

“$%" Linked Free Space List on Disk

free-space list head ——

24[J25[ 2627

28[]29[]30[31[]
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- *‘:’J 1/0 Without a Unified Buffer Cache

1/O using

MR- o) read( ) and write( )

buffer cache

Operating

file system "
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Page Cache

B A page cache caches pages rather than disk blocks using virtual memory
techniques

B Memory-mapped I/O uses a page cache
M Routine I/0 through the file system uses the buffer (disk) cache

M This leads to the following figure
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Unified Buffer Cache

B A unified buffer cache uses the same page cache to cache both memory-
mapped pages and ordinary file system 1/O
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*%77 1/0 Using a Unified Buffer Cache

1/0 using
read( ) and write( )

N/

buffer cache

memory-mapped 1/0O

file system
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r Recovery

B Consistency checking — compares data in directory structure with data
blocks on disk, and tries to fix inconsistencies

M Use system programs to back up data from disk to another storage device
(floppy disk, magnetic tape, other magnetic disk, optical)

W Recover lost file or disk by restoring data from backup
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4%’ Log Structured File Systems

B Log structured (or journaling) file systems record each update to
the file system as a transaction

® All transactions are written to a log

® Atransaction is considered committed once it is written to the
log
® However, the file system may not yet be updated

W The transactions in the log are asynchronously written to the file
system

® When the file system is modified, the transaction is removed
from the log

M If the file system crashes, all remaining transactions in the log must Py

still be performed -3
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“%”'The Sun Network File System (NFS)

B Animplementation and a specification of a software system for accessing
remote files across LANs (or WANSs)

B The implementation is part of the Solaris and SunOS operating systems
running on Sun workstations using an unreliable datagram protocol (UDP/IP
protocol and Ethernet
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o NFS (Cont.)

B Interconnected workstations viewed as a set of independent machines with
independent file systems, which allows sharing among these file systems in
a transparent manner

® A remote directory is mounted over a local file system directory

» The mounted directory looks like an integral subtree of the local file
system, replacing the subtree descending from the local directory

@ Specification of the remote directory for the mount operation is
nontransparent; the host name of the remote directory has to be
provided

» Files in the remote directory can then be accessed in a transparent
manner

@ Subject to access-rights accreditation, potentially any file system (or
directory within a file system), can be mounted remotely on top of any
local directory
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o NFS (Cont.)

B NFS is designed to operate in a heterogeneous environment of different
machines, operating systems, and network architectures; the NFS
specifications independent of these media

W This independence is achieved through the use of RPC primitives built on
top of an External Data Representation (XDR) protocol used between two
implementation-independent interfaces

B The NFS specification distinguishes between the services provided by a
mount mechanism and the actual remote-file-access services
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“$%7 Three Independent File Systems

S1: S2:
usr usr usr
local shared dir2
dirt
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="\
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g5 NFS Mount Protocol

W Establishes initial logical connection between server and client

W Mount operation includes name of remote directory to be mounted and
name of server machine storing it
® Mount request is mapped to corresponding RPC and forwarded to
mount server running on server machine
® Export list — specifies local file systems that server exports for
mounting, along with names of machines that are permitted to
mount them
B Following a mount request that conforms to its export list, the server
returns a file handle—a key for further accesses
W File handle - a file-system identifier, and an inode number to identify
the mounted directory within the exported file system

W The mount operation changes only the user’s view and does not affect
the server side
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= Three Major Layers of NFS Architecture

ey’

B UNIX file-system interface (based on the open, read, write, and close
calls, and file descriptors)

W Virtual File System (VFS) layer — distinguishes local files from remote ones,
and local files are further distinguished according to their file-system types
@ The VFS activates file-system-specific operations to handle local
requests according to their file-system types

@ Calls the NFS protocol procedures for remote requests

B NFS service layer — bottom layer of the architecture
® Implements the NFS protocol
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3 NFS Protocol

B Provides a set of remote procedure calls for remote file operations. The
procedures support the following operations:

searching for a file within a directory
reading a set of directory entries
manipulating links and directories
accessing file attributes

reading and writing files

B NFS servers are stateless; each request has to provide a full set of
arguments
(NFS V4 is just coming available — very different, stateful)
B Modified data must be committed to the server’s disk before results are
returned to the client (lose advantages of caching)

B The NFS protocol does not provide concurrency-control mechanisms
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“37Schematic View of NFS Architecture

‘ client server ‘

system-calls interface

VFS interface VFS interface
other types of UNIX file NFS NFS UNIX file
file systems system client server system
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4%’ NFS Path-Name Translation

B Performed by breaking the path into component names and performing a
separate NFS lookup call for every pair of component name and directory
vnode

M To make lookup faster, a directory name lookup cache on the client’s side
holds the vnodes for remote directory names

A
= .-

¥

Operating System Concepts - 8" Edition 11.49 Silberschatz, Galvin and Gagne ©2009

4%’ Example: WAFL File System

Used on Network Appliance “Filers” — distributed file system appliances
“Write-anywhere file layout”
Serves up NFS, CIFS, http, ftp
Random 1/0 optimized, write optimized
® NVRAM for write caching
B Similar to Berkeley Fast File System, with extensive modifications
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GF7 Snapshots in WAFL

(c) After block D has changed to D" I;: N
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57 NFS Remote Operations

B Nearly one-to-one correspondence between regular UNIX system calls and
the NFS protocol RPCs (except opening and closing files)

B NFS adheres to the remote-service paradigm, but employs buffering and
caching techniques for the sake of performance

W File-blocks cache — when a file is opened, the kernel checks with the remote
server whether to fetch or revalidate the cached attributes

@ Cached file blocks are used only if the corresponding cached attributes
are up to date

W File-attribute cache — the attribute cache is updated whenever new
attributes arrive from the server

B Clients do not free delayed-write blocks until the server confirms that the
data have been written to disk
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! The WAFL File Layout

rootinode

inode file

| free block map | | free inode map ‘ | file in the file system...

§
A

Operating System Concepts - 8" Edition 1152 Silberschatz, Galvin and Gagne ©2009

55 11.02

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks
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End of Chapter 11
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