Chapter 9: Virtual Memory

Operating System Concepts - 8" Edition,

2

Silberschatz, Galvin and Gagne ©2009

BN

g7

Objectives

B To describe the benefits of a virtual memory system

W To explain the concepts of demand paging, page-replacement algorithms,
and allocation of page frames

W To discuss the principle of the working-set model

Operating System Concepts 8" Edition

Silberschatz, Galvin and Gagne ©2009

|
gF7

Virtual Memory That is Larger Than Physical Memory

page 0

page 1

page 2

page v

virtual
memory

Operating System Concepts - 8% Edition

memory
map

physical
memory

Silberschatz, Galvin and Gagne ©2009

)
b & Chapter 9: Virtual Memory

W Background

B Demand Paging

m Copy-on-Write

B Page Replacement

W Allocation of Frames

B Thrashing

B Memory-Mapped Files

B Allocating Kernel Memory

W Other Considerations

B Operating-System Examples

Operating System Concepts - & Edition 92 Silberschatz, Galvin and Gagne ©2009

BN

o)
b & Background

W Virtual memory — separation of user logical memory from physical
memory.

® Only part of the program needs to be in memory for execution

@ Logical address space can therefore be much larger than physical
address space

® Allows address spaces to be shared by several processes
@ Allows for more efficient process creation

W Virtual memory can be implemented via:
® Demand paging
® Demand segmentation

™
A

Operating System Concepts 8% Edition 94 Silberschatz, Galvin and Gagne ©2009

A gt Virtual-address Space

stack

Operating System Concepts — 8" Edition 9.6 Silberschatz, Galvin and Gagne ©2009

- *_%hared Library Using Virtual Memory

stack stack
- shared -
shared library pages shared library
heap heap
data data
code code
Operating System Concepts 8% Edition 97 Silberschatz, Galvin and Gagne ©2009

“%Transfer of a Paged Memory to Contiguous Disk Space

D N
R ——

swap out o] 10 2 3]
40 sl 6d7
8] o[Ho[11J
1213141500
st . swap In 1601718 CJ1eL]
20[J21[J22[J23[]
-

program
A

main

memorv £
o

(&

8

Operating System Concepts 8" Edition 99 Silberschatz, Galvin and Gagne ©20

-

- »Page Table When Some Pages Are Not in Main Memory

frame.

logical page table
memory —

12

ohvsical memorv
£
S50
N

Operating System Concepts — 8" Edition 9.11 Silberschatz, Galvin and Gagne ©2009

Demand Paging

B Bring a page into memory only when it is needed
® Less I/O needed
® Less memory needed
@ Faster response
® More users

B Page is needed = reference to it
® invalid reference = abort
® not-in-memory = bring to memory

B Lazy swapper — never swaps a page into memory unless page will be
needed

® Swapper that deals with pages is a pager

Operating System Concepts - & Edition 98 Silberschatz, Galvin and Gagne ©2009

i Valid-Invalid Bit

B With each page table entry a valid—invalid bit is associated
(v = in-memory, i = not-in-memory)

B |Initially valid-invalid bit is set to i on all entries
B Example of a page table snapshot:

Frame # valid-invalid bit

v

\

v

v

i

i

i

page table

W During address translation, if valid—invalid bit in page table entry /;/\\
is | = page fault ulla
Operating System Concepts — 8" Edition 9.10 Silberschatz, Galvin and Gagne :czu;g

b & Page Fault

B If there is a reference to a page, first reference to that page will
trap to operating system:

page fault
. Operating system looks at another table to decide:
@ Invalid reference = abort
® Just notin memory
Get empty frame
Swap page into frame
Reset tables
Set validation bit = v
Restart the instruction that caused the page fault

o o > w N

\
S5
%

Operating System Concepts — 8" Edition 9.12 Silberschatz, Galvin and Gagne ©2009

Page Fault (Cont.)

B Restart instruction
@ block move

© auto increment/decrement location

Operating System Concepts - 8" Edition 913

Silberschatz, Galvin and Gagne ©2009

™

4%/ Performance of Demand Paging

&

B Page FaultRate0<p<1.0
e if p=0no page faults
e if p=1, every reference is a fault

W Effective Access Time (EAT)
EAT = (1 — p) x memory access
+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead

)
£
= -
N
Operating System Concepts — 8" Edition 9.15 Silberschatz, Galvin and Gagne ©2009
L cu
Py .
> Process Creation

m Virtual memory allows other benefits during process creation:
- Copy-on-Write

- Memory-Mapped Files (later)

£
S50

Operating System Concepts — 8" Edition 917 Silberschatz, Galvin and Gagne ©2009

Steps in Handling a Page Fault

@ Fageison
backing store

operating
system

reference

@

load M
restart page table
instruction|
= free frame ——
® ©)
reset page bring in
table missing page
physical
oy
£D
(o
rd Demand Paging Example

B Memory access time = 200 nanoseconds

B Average page-fault service time = 8 milliseconds

B EAT =(1-p) x 200 + p (8 milliseconds)
=(1—-p x200 + p x 8,000,000
=200 + p x 7,999,800

W If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!

£
o

(&

8

Operating System Concepts 8% Edition 916 Silberschatz, Galvin and Gagne ©20

2 Copy-on-Write

W Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

If either process modifies a shared page, only then is the page copied

B COW allows more efficient process creation as only modified pages are
copied

W Free pages are allocated from a pool of zeroed-out pages

£
S50

Operating System Concepts — 8" Edition 9.18 Silberschatz, Galvin and Gagne ©2009

"
" Before Process 1 Modifies Page C

physical
process; memory process,

T page A 4—‘

T L— pageB N

_‘—’ page C —

Operating System Concepts - 8" Edition 919

Silberschatz, Galvin and Gagne ©2009

™

o
“%7 What happens if there is no free frame?

W Page replacement — find some page in memory, but not
really in use, swap it out

@ algorithm

@ performance — want an algorithm which will result in
minimum number of page faults

B Same page may be brought into memory several times

£
o

(&

8

Operating System Concepts 8" Edition 921 Silberschatz, Galvin and Gagne ©20

N Need For Page Replacement

valid-invalid
o H bit 0| monitor ——
frame /, —
1| load M 1 1 C—
PC —
2 2| D
3 M 3 H
logical memory page table 4| load M
for user 1 for user 1
5 J
6 A
valid-invalid 7 E @
0 A bit
frame Vv physical
1 B memory \—/
2 D
3 E

logical memory page table ™
for user 2 for user 2 A \
¥
Operating System Concepts - 8 Edition 923 Silberschatz, Galvin and Gagne ©2009

™

" After Process 1 Modifies Page C

physical
process, memory process,

|—> page A <—|

L page B s T E—

page C e

Copy of page C

Operating System Concepts — 8" Edition 920 Silberschatz, Galvin and Gagne ©2009

) Page Replacement

W Prevent over-allocation of memory by modifying page-fault service routine
to include page replacement

B Use modify (dirty) bit to reduce overhead of page transfers — only modified
pages are written to disk

B Page replacement completes separation between logical memory and
physical memory — large virtual memory can be provided on a smaller
physical memory

£
o

(&

8

i
2 Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement
algorithm to select a victim frame

3. Bring the desired page into the (newly) free frame;
update the page and frame tables

4. Restart the process

\
S5
%

Operating System Concepts — 8" Edition 9.24 Silberschatz, Galvin and Gagne ©2009

N
<5
e Page Replacement
frame_ valid-invalid bit L
swap out
change victim
to invalid @ page ‘D
/
C®] victim
||] resetpage -\
page table table for
new page swep \D
desired
page in
physical
memory f
Operating System Concepts — 8" Edition 925 Silberschatz, Galvin and Gagne ©2009

N

|
- *Graph of Page Faults Versus The Number of Frames

16
o 14 \
é 12
E \
g 10
3
S 8
2
£ 6
2 4 —

2
1 2 3 4 5 6
number of frames
Operating System Concepts - 8" Edition 9.27 Silberschatz, Galvin and Gagne ©2009

o
b o FIFO Page Replacement

reference string
7012035042303 212¢01701

2] [2] [¢] fal [ol
2| | 2
(o [o] [o] [g] [g

page frames

Operating System Concepts - 8% Edition 929 Silberschatz, Galvin and Gagne @2t

o
“#”/ Page Replacement Algorithms

B Want lowest page-fault rate

B Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string

B In all our examples, the reference string is

1,2,8,4,1,2,5,1,2,3,4,5

A

Silberschatz, Galvin and Gagne ©2009

= (@

Operating System Concepts - 8" Edition 926

—=
“#7’ First-In-First-Out (FIFO) Algorithm

B Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
m 3 frames (3 pages can be in memory at a time per process)

1[1]4 s
2 |2] 1 3 9pagefaults
33|24
B 4 frames
1 T 5 4
2 |2| 1 5 10page faults
3|3|2
4|43
® Belady’s Anomaly: more frames = more page faults /:;\t)
Operating System Concepts — 8" Edition 9.28 Silberschatz, Galvin and Gagne ©2009

Py
“#7/FIFO lllustrating Belady’s Anomaly

16
o 14
=]
& 12
)
g 10 <~
S 8
3, AN
£
E]
€ 4

2

1 2 3 4 5 6 7
number of frames
Operating System Concepts - & Edition 930 Siberschats, Gaivin and Gagne €2009

Optimal Page Replacement

Optimal Algorithm

B Replace page that will not be used for longest period of time
reference string

B 4 frames example
701203042303 21

1,2,8,4,1,2,5,1,2,3,4,5
o o
(O

page frames

2017 01

g
[

[oT=Tr]

6 page faults

® How do you know this?
W Used for measuring how well your algorithm performs

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8% Edition 931 Silberschatz, Galvin and Gagne €2009 Operating System Concepts — 8% Edition 932
) _ = { _ =
5S¢ - > 94
»"Least Recently Used (LRU) Algorithm tdl LRU Page Replacement
W Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
reference string
7 01 203042 803212017 0 1
4] 4 o]
Dol ol lo| [o ol o] o] o s b o
HEERERE 2| 2] |2 2 2 7
page frames
® Counter implementation
® Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter
® When a page needs to be changed, look at the counters to
determine which are to change
// Y // Y
A0 slla
Operating System Concepts — 8" Edition 9.33 Silberschatz, Galvin and Gagne 2009 Operating System Concepts — 8" Edition 9.34 Silberschatz, Galvin and Gagne c2009
) _ = (_ B
i e/ . SN
e LRU Algorlthm (Cont) »"Use Of A Stack to Record The Most Recent Page References
W Stack implementation — keep a stack of page numbers in a double link form:
® Page referenced: .
» move it to the top reference string
» requires 6 pointers to be changed 4 707 101 2127 12
® No search for replacement T T
a b
stack
before
a
A
- e |
= X
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts — & Edition 9.3 Silberschatz, Galvin and Gagne ©2009

Operating System Concepts - 8% Edition

_:ﬁ LRU Approximation Algorithms

B Reference bit
® With each page associate a bit, initially = 0
® When page is referenced bit set to 1
® Replace the one which is 0O (if one exists)
» We do not know the order, however
H Second chance
© Need reference bit
® Clock replacement
@ If page to be replaced (in clock order) has reference bit = 1 then:
» set reference bit 0
» leave page in memory
» replace next page (in clock order), subject to same rules

Operating System Concepts — 8" Edition 9.37 Silberschatz, Galvin and Gagne ©2009

i Counting Algorithms

B Keep a counter of the number of references that have been
made to each page

W LFU Algorithm: replaces page with smallest count

m MFU Algorithm: based on the argument that the page with
the smallest count was probably just brought in and has yet

to be used
£
F
Operating System Concepts — 8" Edition 9.39 Silberschatz, Galvin and Gagne ©2009
L cu
5 4 H -
r Fixed Allocation

B Equal allocation — For example, if there are 100 frames and 5
processes, give each process 20 frames.

B Proportional allocation — Allocate according to the size of process
—s; =size of process p;
—S=3s
—m = total number of frames

= allocation for p; = E xm

m=64
s; =10
s, =127
a=10 64~5
137
127
a,=_—-x64=~59
2= 157" A
)
%
Operating System Concepts — 8" Edition 9.41 Silberschatz, Galvin and Gagne ©2009

)

”’second-Chance (clock) Page-Replacement Algorithm

relerence pages reference pages

bits
] [0
@ [0
aot =p{i] o]
[
o =>{0]
m
@

circular queue of pages circular queue of pages

(a) (b) /,,\\
(oy |
r Allocation of Frames

W Each process needs minimum number of pages
B Example: IBM 370 — 6 pages to handle SS MOVE instruction:
@ instruction is 6 bytes, might span 2 pages
® 2 pages to handle from
® 2pages to handle to
B Two major allocation schemes
o fixed allocation
@ priority allocation

£

Silberschatz, Galvin and Gagne €20

‘W,

8

Operating System Concepts 8% Edition 9.40

o Priority Allocation

W Use a proportional allocation scheme using priorities rather than
size

W If process P;generates a page fault,
@ select for replacement one of its frames

@ select for replacement a frame from a process with lower
priority number

£
Do

Operating System Concepts — 8" Edition 9.42 Silberschatz, Galvin and Gagne ©2009

&

.}
2 Global vs. Local Allocation

W Global replacement — process selects a replacement
frame from the set of all frames; one process can take a
frame from another

W Local replacement — each process selects from only its
own set of allocated frames

o™

(&

2

Operating System Concepts - & Edition 943 Silberschatz, Galvin and Gagne ©20

b & Thrashing (Cont.)

5 thrashing
2
N
g
=)
o
(&}
degree of multiprogramming
Operating System Concepts — 8% Edition 9.45 Silberschatz, Galvin and Gagne ©2009

-

b ot Locality In A Memory-Reference Pattern

A g e T

. ALt 141 1
TS, M’ / }
TRy 5
o e tl—sl gl .

- i

page numoers

il e .
18 T s e

Operating System Concepts — 8" Edition 9.47 Silberschatz, Galvin and Gagne ©2009

)

2 Thrashing

B If a process does not have “enough” pages, the page-fault rate is
very high. This leads to:

@ low CPU utilization

@ operating system thinks that it needs to increase the degree of
multiprogramming

® another process added to the system

B Thrashing = a process is busy swapping pages in and out

o™

(&

2

Operating System Concepts - & Edition 944 Silberschatz, Galvin and Gagne ©20

=

-

“%”/ Demand Paging and Thrashing

B Why does demand paging work?
Locality model

® Process migrates from one locality to another
® Localities may overlap

W Why does thrashing occur?
2 size of locality > total memory size

Operating System Concepts 8% Edition 9.46 Silberschatz, Galvin and Gagne ©2009

o Working-Set Model

® A = working-set window = a fixed number of page references
Example: 10,000 instruction

W WSS; (working set of Process P) =
total number of pages referenced in the most recent A (varies in time)

@ if A too small will not encompass entire locality
@ if Atoo large will encompass several localities
@ if A =% = will encompass entire program

D=3 WSS, = total demand frames

if D> m = Thrashing

B Policy if D> m, then suspend one of the processes

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts - 8% Edition 9.8

_—

- Working-set model

page reference table
..2615777751623412344434344413234443444.

A T A
| |
r\ {2
WS(t,) = {12567} WS(t,) = 3.4)

Operating System Concepts - 8" Edition 949

Silberschatz, Galvin and Gagne ©2009

=

|

“#”/ Page-Fault Frequency Scheme

B Establish “acceptable” page-fault rate
@ If actual rate too low, process loses frame
@ |If actual rate too high, process gains frame

2 increase number
= of frames
2 upper bound
®
S
g
g
lower bound
decrease number
of frames
number of frames
Operating System Concepts — 8% Edition 9.51 Silberschatz, Galvin and Gagne ©2009

)

b & Memory-Mapped Files

B Memory-mapped file /0 allows file I/O to be treated as routine memory
access by mapping a disk block to a page in memory

m Afile is initially read using demand paging. A page-sized portion of the file is
read from the file system into a physical page. Subsequent reads/writes to/
from the file are treated as ordinary memory accesses.

W Simplifies file access by treating file /0 through memory rather than
read() write() system calls

B Also allows several processes to map the same file allowing the pages in
memory to be shared

A
20 .
%

Operating System Concepts - 8% Edition 953

Silberschatz, Galvin and Gagne ©2009

_—

“%7" Keeping Track of the Working Set

W Approximate with interval timer + a reference bit
B Example: A = 10,000
@ Timer interrupts after every 5000 time units
® Keep in memory 2 bits for each page

® Whenever a timer interrupts copy and sets the values of all reference
bits to 0

@ If one of the bits in memory = 1 = page in working set
W Why is this not completely accurate?
® Improvement = 10 bits and interrupt every 1000 time units

Operating System Concepts - & Edition 950 Silberschatz, Galvin and Gagne ©2009

-

§F7 Working Sets and Page Fault Rates

working set
_—
|
1 |
|
|
|
|
page |
fault :
rate 1
|
|
|
0
time
Operating System Concepts - 8" Edition 952 Silberschatz, Galvin and Gagne ©2009

)

b & Memory Mapped Files

I 3 5
i T 6
: 1
L3 !
A 6 1 :
'
G- i
' i
! 1 (H
process A ! 5 | | process B
virtual memory | 1| virtual memory
'
' |
i n P
! '
- 2 le FH----2
physical memory
1/2]|3|4]|5]|6
disk file =
™
£

w

Operating System Concepts — 8" Edition 9.54 Silberschatz, Galvin and Gagne ©2009

)

- “ﬁlémory-Mapped Shared Memory in Windows

process; process,

shared “so. memory-mapped

memory e file
hES

BN shared ..
A memory el
R shared
S5 memory
Operating System Concepts & Ediion 055 Silberschatz, Galvin and Gagne €2009

2 Buddy System

W Allocates memory from fixed-size segment consisting of physically-
contiguous pages

B Memory allocated using power-of-2 allocator
® Satisfies requests in units sized as power of 2
® Request rounded up to next highest power of 2

® When smaller allocation needed than is available, current chunk split
into two buddies of next-lower power of 2

» Continue until appropriate sized chunk available

Operating System Concepts 8" Edition 957

Silberschatz, Galvin and Gagne ©2009

7 Slab Allocator

Alternate strategy
Slab is one or more physically contiguous pages
Cache consists of one or more slabs
Single cache for each unique kernel data structure
® Each cache filled with objects — instantiations of the data structure

When cache created, filled with objects marked as free
B When structures stored, objects marked as used

If slab is full of used objects, next object allocated from empty slab
@ If no empty slabs, new slab allocated
W Benefits include no fragmentation, fast memory request satisfaction

A
A

Operating System Concepts — 8" Edition 9.59 Silberschatz, Galvin and Gagne ©20(

(¥

2

&

2 Allocating Kernel Memory

B Treated differently from user memory

B Often allocated from a free-memory pool
® Kernel requests memory for structures of varying sizes
® Some kernel memory needs to be contiguous

Operating System Concepts - & Edition 956 Silberschatz, Galvin and Gagne ©2009

G5 Buddy System Allocator

physically contiguous pages

‘ 256 KB ‘
128 KB 128 KB
A Ag
64 KB 64 KB
Bl s
32KB| [32KB
G G
L R .
AN
Operating System Concepts — 8% Edition 958 Silberschatz, Galvin and Gagne 2009
(e ””;‘ .
rdl Slab Allocation
kernel objects caches slabs

3 KB
objects

physical
contiguous
pages

7 KB
objects

A
A

(¥

2

Operating System Concepts — 8" Edition 9.60 Silberschatz, Galvin and Gagne ©20(

10

Other Issues -- Prepaging

W Prepaging

@ To reduce the large number of page faults that occurs at process
startup

® Prepage all or some of the pages a process will need, before
they are referenced

@ Butif prepaged pages are unused, /0 and memory was wasted
® Assume s pages are prepaged and a of the pages is used
» Is cost of s *a save pages faults > or < than the cost of

prepaging
s *(1- a) unnecessary pages ?

» anear zero = prepaging loses

Operating System Concepts - 8" Edition 961

Silberschatz, Galvin and Gagne ©2009

&

557 Other Issues — TLB Reach

B TLB Reach - The amount of memory accessible from the TLB

B TLB Reach = (TLB Size) X (Page Size)

B Ideally, the working set of each process is stored in the TLB
@ Otherwise there is a high degree of page faults

W Increase the Page Size

@ This may lead to an increase in fragmentation as not all
applications require a large page size
B Provide Multiple Page Sizes
@ This allows applications that require larger page sizes the
opportunity to use them without an increase in
fragmentation

£
o

(&

8

Operating System Concepts 8" Edition 963 Silberschatz, Galvin and Gagne ©20

€

|
7 Other Issues — /O interlock

W /O Interlock — Pages must sometimes be locked into
memory

W Consider I/O - Pages that are used for copying a file
from a device must be locked from being selected for
eviction by a page replacement algorithm

£
S50

Operating System Concepts — 8" Edition 9.65 Silberschatz, Galvin and Gagne ©2009

Other Issues — Page Size

B Page size selection must take into consideration:
e fragmentation
@ table size
® /0 overhead
@ locality

Operating System Concepts - 8" Edition 9.62 Silberschatz, Galvin and Gagne ©2009

—=
“%7/ Other Issues — Program Structure

W Program structure
® Int[128,128] data;
® Each row is stored in one page
® Program 1
for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)
datali,j] = 0;

128 x 128 = 16,384 page faults

® Program 2
for (i = 0; 1 < 128; i++)
for (j = 0; j < 128; j++)

datali,j] = 0;
128 page faults D
50
¥
Operating System Concepts - & Edition 964 Silberschatz, Galvin and Gagne ©2009

“3”Reason Why Frames Used For I/0 Must Be In Memory

buffer 4 <>
disk drive
‘4‘)
Operating System Concepts - 8™ Edition 9668 Silborschatz, Galvin and Gagne ©2009

11

_—

7 Operating System Examples

Windows XP

B Uses demand paging with clustering. Clustering brings in pages
surrounding the faulting page

B Processes are assigned working set minimum and working set
maximum

® Working set minimum is the minimum number of pages the process is
guaranteed to have in memory

B A process may be assigned as many pages up to its working set maximum

B When the amount of free memory in the system falls below a threshold,
automatic working set trimming is performed to restore the amount of
free memory

® Working set trimming removes pages from processes that have pages in
excess of their working set minimum

Silberschatz, Galvin and Gagne ©2009

® Windows XP
W Solaris
Operating System Concepts — 8" Edition 967 Silberschatz, Galvin and Gagne 2009
=
(cm!
<57 .
& Solaris

Maintains a list of free pages to assign faulting processes
Lotsfree — threshold parameter (amount of free memory) to begin paging
Desfree — threshold parameter to increasing paging

u
u
u
B Minfree — threshold parameter to being swapping
W Paging is performed by pageout process

W Pageout scans pages using modified clock algorithm
u

Scanrate is the rate at which pages are scanned. This ranges from
slowscan to fastscan

W Pageout is called more frequently depending upon the amount of free
memory available

£
o

(&

8

Operating System Concepts 8" Edition 9.69 Silberschatz, Galvin and Gagne ©20

Operating System Concepts — 8" Edition 9.68
(o
5 4 H
il Solaris 2 Page Scanner
8192 |
fastscan
2
[
§
2
100 |
slowscan
t t 1
minfree desfree lotsfree

amount of free memory

£
o

(&

8

Operating System Concepts 8% Edition 970 Silberschatz, Galvin and Gagne ©20

End of Chapter 9

Operating System Concepts - 8% Edition, Silberschatz, Galvin and Gagne ©2009

12

