
1

Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition,

Chapter 9: Virtual Memory

9.2
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Chapter 9: Virtual Memory

  Background

  Demand Paging

  Copy-on-Write

  Page Replacement

  Allocation of Frames

  Thrashing

  Memory-Mapped Files

  Allocating Kernel Memory

  Other Considerations

  Operating-System Examples

9.3
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Objectives

  To describe the benefits of a virtual memory system 

  To explain the concepts of demand paging, page-replacement algorithms,
and allocation of page frames 

  To discuss the principle of the working-set model

9.4
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Background

  Virtual memory – separation of user logical memory from physical
memory.

  Only part of the program needs to be in memory for execution

  Logical address space can therefore be much larger than physical

address space

  Allows address spaces to be shared by several processes

  Allows for more efficient process creation 

  Virtual memory can be implemented via:

  Demand paging

  Demand segmentation

9.5
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Virtual Memory That is Larger Than Physical Memory

⇒

9.6
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Virtual-address Space

2

9.7
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Shared Library Using Virtual Memory

9.8
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Demand Paging

  Bring a page into memory only when it is needed

  Less I/O needed

  Less memory needed

  Faster response

  More users 

  Page is needed ⇒ reference to it

  invalid reference ⇒ abort

  not-in-memory ⇒ bring to memory

  Lazy swapper – never swaps a page into memory unless page will be
needed

  Swapper that deals with pages is a pager

9.9
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Transfer of a Paged Memory to Contiguous Disk Space

9.10
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Valid-Invalid Bit

  With each page table entry a valid–invalid bit is associated 
(v ⇒ in-memory, i ⇒ not-in-memory)

  Initially valid–invalid bit is set to i on all entries

  Example of a page table snapshot: 

  During address translation, if valid–invalid bit in page table entry

 is I ⇒ page fault

v

v

v

v

i

i

i

….

Frame #
 valid-invalid bit

page table

9.11
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Page Table When Some Pages Are Not in Main Memory

9.12
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Page Fault

  If there is a reference to a page, first reference to that page will
trap to operating system:

 page fault

1.  Operating system looks at another table to decide:

  Invalid reference ⇒ abort

  Just not in memory

2.  Get empty frame

3.  Swap page into frame

4.  Reset tables

5.  Set validation bit = v

6.  Restart the instruction that caused the page fault

3

9.13
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Page Fault (Cont.)

  Restart instruction

  block move 

  auto increment/decrement location

9.14
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Steps in Handling a Page Fault

9.15
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Performance of Demand Paging

  Page Fault Rate 0 ≤ p ≤ 1.0

  if p = 0 no page faults

  if p = 1, every reference is a fault 

  Effective Access Time (EAT)

EAT = (1 – p) x memory access

+ p (page fault overhead

 + swap page out

 + swap page in

 + restart overhead

)

9.16
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Demand Paging Example

  Memory access time = 200 nanoseconds

  Average page-fault service time = 8 milliseconds 

  EAT = (1 – p) x 200 + p (8 milliseconds)

 = (1 – p x 200 + p x 8,000,000

 = 200 + p x 7,999,800

  If one access out of 1,000 causes a page fault, then

 EAT = 8.2 microseconds.

 This is a slowdown by a factor of 40!!

9.17
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Process Creation

  Virtual memory allows other benefits during process creation: 

- Copy-on-Write 

- Memory-Mapped Files (later)

9.18
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Copy-on-Write

  Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory 

If either process modifies a shared page, only then is the page copied

  COW allows more efficient process creation as only modified pages are
copied

  Free pages are allocated from a pool of zeroed-out pages

4

9.19
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Before Process 1 Modifies Page C

9.20
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

After Process 1 Modifies Page C

9.21
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

What happens if there is no free frame?

  Page replacement – find some page in memory, but not
really in use, swap it out

  algorithm

  performance – want an algorithm which will result in

minimum number of page faults

  Same page may be brought into memory several times

9.22
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Page Replacement

  Prevent over-allocation of memory by modifying page-fault service routine
to include page replacement 

  Use modify (dirty) bit to reduce overhead of page transfers – only modified
pages are written to disk 

  Page replacement completes separation between logical memory and
physical memory – large virtual memory can be provided on a smaller
physical memory

9.23
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Need For Page Replacement

9.24
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Basic Page Replacement

1.  Find the location of the desired page on disk 

2.  Find a free frame: 
 - If there is a free frame, use it 
 - If there is no free frame, use a page replacement

algorithm to select a victim frame 

3.  Bring the desired page into the (newly) free frame;
update the page and frame tables 

4.  Restart the process

5

9.25
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Page Replacement

9.26
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Page Replacement Algorithms

  Want lowest page-fault rate

  Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string

  In all our examples, the reference string is

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

9.27
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Graph of Page Faults Versus The Number of Frames

9.28
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

First-In-First-Out (FIFO) Algorithm
  Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

  3 frames (3 pages can be in memory at a time per process)

  4 frames 

  Beladyʼs Anomaly: more frames ⇒ more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5
 10 page faults

4
4
 3

9.29
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

FIFO Page Replacement

9.30
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

FIFO Illustrating Belady’s Anomaly

6

9.31
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Optimal Algorithm

  Replace page that will not be used for longest period of time

  4 frames example

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 

  How do you know this?

  Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4
 5

9.32
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Optimal Page Replacement

9.33
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Least Recently Used (LRU) Algorithm

  Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5  

  Counter implementation

  Every page entry has a counter; every time page is referenced

through this entry, copy the clock into the counter

  When a page needs to be changed, look at the counters to

determine which are to change

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

9.34
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

LRU Page Replacement

9.35
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

LRU Algorithm (Cont.)

  Stack implementation – keep a stack of page numbers in a double link form:

  Page referenced:

 move it to the top

  requires 6 pointers to be changed

  No search for replacement

9.36
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Use Of A Stack to Record The Most Recent Page References

7

9.37
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

LRU Approximation Algorithms

  Reference bit

  With each page associate a bit, initially = 0

  When page is referenced bit set to 1

  Replace the one which is 0 (if one exists)

  We do not know the order, however

  Second chance

  Need reference bit

  Clock replacement

  If page to be replaced (in clock order) has reference bit = 1 then:

  set reference bit 0

  leave page in memory

  replace next page (in clock order), subject to same rules

9.38
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Second-Chance (clock) Page-Replacement Algorithm

9.39
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Counting Algorithms

  Keep a counter of the number of references that have been
made to each page 

  LFU Algorithm: replaces page with smallest count 

  MFU Algorithm: based on the argument that the page with
the smallest count was probably just brought in and has yet
to be used

9.40
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Allocation of Frames

  Each process needs minimum number of pages

  Example: IBM 370 – 6 pages to handle SS MOVE instruction:

  instruction is 6 bytes, might span 2 pages

  2 pages to handle from

  2 pages to handle to

  Two major allocation schemes

  fixed allocation

  priority allocation

9.41
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Fixed Allocation

  Equal allocation – For example, if there are 100 frames and 5
processes, give each process 20 frames.

  Proportional allocation – Allocate according to the size of process

9.42
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Priority Allocation

  Use a proportional allocation scheme using priorities rather than
size 

  If process Pi generates a page fault,

  select for replacement one of its frames

  select for replacement a frame from a process with lower

priority number

8

9.43
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Global vs. Local Allocation

  Global replacement – process selects a replacement
frame from the set of all frames; one process can take a
frame from another

  Local replacement – each process selects from only its
own set of allocated frames

9.44
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Thrashing

  If a process does not have “enough” pages, the page-fault rate is
very high. This leads to:

  low CPU utilization

  operating system thinks that it needs to increase the degree of

multiprogramming

  another process added to the system 

  Thrashing ≡ a process is busy swapping pages in and out

9.45
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Thrashing (Cont.)

9.46
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Demand Paging and Thrashing

  Why does demand paging work? 
Locality model

  Process migrates from one locality to another

  Localities may overlap

  Why does thrashing occur? 
Σ size of locality > total memory size

9.47
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Locality In A Memory-Reference Pattern

9.48
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Working-Set Model

  Δ ≡ working-set window ≡ a fixed number of page references  
Example: 10,000 instruction

  WSSi (working set of Process Pi) = 
total number of pages referenced in the most recent Δ (varies in time)

  if Δ too small will not encompass entire locality

  if Δ too large will encompass several localities

  if Δ = ∞ ⇒ will encompass entire program

  D = Σ WSSi ≡ total demand frames

  if D > m ⇒ Thrashing

  Policy if D > m, then suspend one of the processes

9

9.49
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Working-set model

9.50
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Keeping Track of the Working Set

  Approximate with interval timer + a reference bit

  Example: Δ = 10,000

  Timer interrupts after every 5000 time units

  Keep in memory 2 bits for each page

  Whenever a timer interrupts copy and sets the values of all reference

bits to 0

  If one of the bits in memory = 1 ⇒ page in working set

  Why is this not completely accurate?

  Improvement = 10 bits and interrupt every 1000 time units

9.51
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Page-Fault Frequency Scheme

  Establish “acceptable” page-fault rate

  If actual rate too low, process loses frame

  If actual rate too high, process gains frame

9.52
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Working Sets and Page Fault Rates

9.53
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Memory-Mapped Files

  Memory-mapped file I/O allows file I/O to be treated as routine memory
access by mapping a disk block to a page in memory

  A file is initially read using demand paging. A page-sized portion of the file is
read from the file system into a physical page. Subsequent reads/writes to/
from the file are treated as ordinary memory accesses.

  Simplifies file access by treating file I/O through memory rather than
read() write() system calls

  Also allows several processes to map the same file allowing the pages in
memory to be shared

9.54
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Memory Mapped Files

10

9.55
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Memory-Mapped Shared Memory in Windows

9.56
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Allocating Kernel Memory

  Treated differently from user memory

  Often allocated from a free-memory pool

  Kernel requests memory for structures of varying sizes

  Some kernel memory needs to be contiguous

9.57
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Buddy System

  Allocates memory from fixed-size segment consisting of physically-
contiguous pages

  Memory allocated using power-of-2 allocator

  Satisfies requests in units sized as power of 2

  Request rounded up to next highest power of 2

  When smaller allocation needed than is available, current chunk split

into two buddies of next-lower power of 2

 Continue until appropriate sized chunk available

9.58
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Buddy System Allocator

9.59
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Slab Allocator

  Alternate strategy

  Slab is one or more physically contiguous pages

  Cache consists of one or more slabs

  Single cache for each unique kernel data structure

  Each cache filled with objects – instantiations of the data structure

  When cache created, filled with objects marked as free

  When structures stored, objects marked as used

  If slab is full of used objects, next object allocated from empty slab

  If no empty slabs, new slab allocated

  Benefits include no fragmentation, fast memory request satisfaction

9.60
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Slab Allocation

11

9.61
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Other Issues -- Prepaging

  Prepaging

  To reduce the large number of page faults that occurs at process

startup

  Prepage all or some of the pages a process will need, before

they are referenced

  But if prepaged pages are unused, I/O and memory was wasted

  Assume s pages are prepaged and α of the pages is used

  Is cost of s * α save pages faults > or < than the cost of
prepaging  
s * (1- α) unnecessary pages?

 α near zero ⇒ prepaging loses

9.62
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Other Issues – Page Size

  Page size selection must take into consideration:

  fragmentation

  table size

  I/O overhead

  locality

9.63
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Other Issues – TLB Reach

  TLB Reach - The amount of memory accessible from the TLB

  TLB Reach = (TLB Size) X (Page Size)

  Ideally, the working set of each process is stored in the TLB

  Otherwise there is a high degree of page faults

  Increase the Page Size

  This may lead to an increase in fragmentation as not all
applications require a large page size

  Provide Multiple Page Sizes

  This allows applications that require larger page sizes the

opportunity to use them without an increase in
fragmentation

9.64
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Other Issues – Program Structure

  Program structure

  Int[128,128] data;

  Each row is stored in one page

  Program 1

 for (j = 0; j <128; j++)
 for (i = 0; i < 128; i++)
 data[i,j] = 0;

 128 x 128 = 16,384 page faults  

  Program 2

 for (i = 0; i < 128; i++)

 for (j = 0; j < 128; j++)
 data[i,j] = 0;

128 page faults

9.65
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Other Issues – I/O interlock

  I/O Interlock – Pages must sometimes be locked into
memory

  Consider I/O - Pages that are used for copying a file
from a device must be locked from being selected for
eviction by a page replacement algorithm

9.66
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Reason Why Frames Used For I/O Must Be In Memory

12

9.67
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Operating System Examples

  Windows XP

  Solaris

9.68
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Windows XP

  Uses demand paging with clustering. Clustering brings in pages
surrounding the faulting page

  Processes are assigned working set minimum and working set
maximum

  Working set minimum is the minimum number of pages the process is
guaranteed to have in memory

  A process may be assigned as many pages up to its working set maximum

  When the amount of free memory in the system falls below a threshold,

automatic working set trimming is performed to restore the amount of
free memory

  Working set trimming removes pages from processes that have pages in
excess of their working set minimum

9.69
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Solaris

  Maintains a list of free pages to assign faulting processes

  Lotsfree – threshold parameter (amount of free memory) to begin paging

  Desfree – threshold parameter to increasing paging

  Minfree – threshold parameter to being swapping

  Paging is performed by pageout process

  Pageout scans pages using modified clock algorithm

  Scanrate is the rate at which pages are scanned. This ranges from

slowscan to fastscan

  Pageout is called more frequently depending upon the amount of free

memory available

9.70
 Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition

Solaris 2 Page Scanner

Silberschatz, Galvin and Gagne ©2009
Operating System Concepts – 8th Edition,

End of Chapter 9

