Lab CSC 221 Recursion
NAME:_______________________________

Download the zip file containing the source for this lab from the lab calendar page of the course website. http://people.uncw.edu/fall06/csc221/calendar.htm

Make sure that each check point, which is identified by the signature line in front “_________”, is signed before moving to the next item. If the signature line is not filled in by the instructor or TA, the student will not get credit for that item. Turn in the lab worksheet at the end of lab.
1. Computing Powers (5/10)
Computing a positive integer power of a number is easily seen as a recursive process. Consider an:

· If n = 0, an is 1 (by definition)

· If n > 0, an is a * an–1
File Power.java contains a main program that reads in integers base and exp and calls method power to compute baseexp. Fill in the code for power to make it a recursive method to do the power computation. The comments provide guidance.

BEFORE MOVING ON GET SIGNATURES.

2. Efficient Computation of Fibonacci Numbers (5/10)
The Fibonacci sequence is a well-known mathematical sequence in which each term is the sum of the two previous terms. More specifically, if fib(n) is the nth term of the sequence, then the sequence can be defined as follows:

 fib(0) = 0

 fib(1) = 1

 fib(n) = fib(n-1) + fib(n-2) n>1

1.
________________Because the Fibonacci sequence is defined recursively, it is natural to write a recursive method to determine the nth number in the sequence. File Fib.java contains the skeleton for a class containing a method to compute Fibonacci numbers. Save this file to your directory. Following the specification above, fill in the code for method fib1 so that it recursively computes and returns the nth number in the sequence.

2.
________________File TestFib.java contains a simple driver that asks the user for an integer and uses the fib1 method to compute that element in the Fibonacci sequence. Save this file to your directory and use it to test your fib1 method. First try small integers, then larger ones. You'll notice that the number doesn't have to get very big before the calculation takes a very long time. The problem is that the fib1 method is making lots and lots of recursive calls. To see this, add a print statement at the beginning of your fib1 method that indicates what call is being computed, e.g., "In fib1(3)" if the parameter is 3. Now run TestFib again and enter 5—you should get a number of messages from your print statement. Examine these messages and figure out the sequence of calls that generated them. (This is easiest if you first draw the call tree on paper.) . Since fib(5) is fib(4) + fib(3),you should not be surprised to find calls to fib(4) and fib(3) in the printout. But why are there two calls to fib(3)? Because both fib(4) and fib(5) need fib(3), so they both compute it—very inefficient. Run the program again with a slightly larger number and again note the repetition in the calls.

3.
______________Discuss how you can improve the efficiency of this program. Consider whether recursion is the best option. Pen your answer below. BEFORE MOVING ON GET SIGNATURES.

