Lab CSC 221 Exceptions
NAME:_______________________________

Make sure that each check point, which is identified by the signature line in front “_________”, is signed before moving to the next item. If the signature line is not filled in by the instructor or TA, the student will not get credit for that item. Turn in the lab worksheet at the end of lab.
1. Exceptions Aren't Always Errors (4/10)
File CountLetters.java contains a program that reads a word from the user and prints the number of occurrences of each letter in the word. Save it to your directory and study it, then compile and run it to see how it works. In reading the code, note that the word is converted to all upper case first, then each letter is translated to a number in the range 0..25 (by subtracting 'A') for use as an index. No test is done to ensure that the characters are in fact letters.

1.​​​​
________________Run CountLetters and enter a phrase, that is, more than one word with spaces or other punctuation in between. It should throw an ArrayIndexOutOfBoundsException, because a non-letter will generate an index that is not between 0 and 25. It might be desirable to allow non-letter characters, but not count them. Of course, you could explicitly test the value of the character to see if it is between 'A' and 'Z'. However, an alternative is to go ahead and use the translated character as an index, and catch an ArrayIndexOutOfBoundsException if it occurs. Since you don't want to do anything when a non-letter occurs, the handler will be empty. Modify this method to do this as follows:

· Put the body of the first for loop in a try.

· Add a catch that catches the exception, but don't do anything with it.

Compile and run your program.

2.
________________Now modify the body of the catch so that it prints a useful message (e.g., "Not a letter") followed by the exception. Compile and run the program. Although it's useful to print the exception for debugging, when you're trying to smoothly handle a condition that you don't consider erroneous you often don't want to. In your print statement, replace the exception with the character that created the out of bounds index. Run the program again; much nicer!

BEFORE MOVING ON GET SIGNATURES.

2. Reading from and Writing to Text Files (6/10)
Write a program that will read in a file of student academic credit data and create a list of students on academic warning. The list of students on warning will be written to a file. Each line of the input file will contain the student name (a single String with no spaces), the number of semester hours earned (an integer), the total quality points earned (a double). The following shows part of a typical data file:

 Smith 27 83.7

 Jones 21 28.35

 Walker 96 182.4

 Doe 60 150

The program should compute the GPA (grade point or quality point average) for each student (the total quality points divided by the number of semester hours) then write the student information to the output file if that student should be put on academic warning. A student will be on warning if he/she has a GPA less than 1.5 for students with fewer than 30 semester hours credit, 1.75 for students with fewer than 60 semester hours credit, and 2.0 for all other students. The file Warning.java contains a skeleton of the program. Do the following:

1.
________________Set up a Scanner object scan from the input file and a PrintWriter outFile to the output file inside the try clause (see the comments in the program). Note that you’ll have to create the PrintWriter from a FileWriter, but you can still do it in a single statement.

2.
________________Inside the while loop add code to read and parse the input—get the name, the number of credit hours, and the number of quality points. Compute the GPA, determine if the student is on academic warning, and if so write the name, credit hours, and GPA (separated by spaces) to the output file.

3.
After the loop close the PrintWriter.

4. ________________Think about the exceptions that could be thrown by this program:

· A FileNotFoundException if the input file does not exist

· A NumberFormatException if it can’t parse an int or double when it tries to – this indicates an error in the input file format

· An IOException if something else goes wrong with the input or output stream

Add a catch for each of these situations, and in each case give as specific a message as you can. The program will terminate if any of these exceptions is thrown, but at least you can supply the user with useful information.

5.
________________Test the program. Test data is in the file students.dat. Be sure to test each of the exceptions as well.

BEFORE MOVING ON GET SIGNATURES.

