Lab CSC 221 Inheritance
NAME:_______________________________

Download the zip file containing the source for this lab from the lab calendar page of the course website. http://people.uncw.edu/fall06/csc221/calendar.htm

Make sure that each check point, which is identified by the signature line in front “_________”, is signed before moving to the next item. If the signature line is not filled in by the instructor or TA, the student will not get credit for that item. Turn in the lab worksheet at the end of lab.
1. Polymorphic Sorting (5/10)
The file Sorting.java contains the Sorting class from Listing 9.9 in the text. This class implements both the selection sort and the insertion sort algorithms for sorting any array of Comparable objects in ascending order. In this exercise, you will use the Sorting class to sort several different types of objects.

1. _______________ The file Numbers.java reads in an array of integers, invokes the selection sort algorithm to sort them, and then prints the sorted array. Save Sorting.java and Numbers.java to your directory. Numbers.java won't compile in its current form. Figure out why.

2. _______________ Try to compile Numbers.java and see what the error message is. The problem involves the difference between primitive data and objects. Change the program so it will work correctly (note: you don't need to make many changes - the autoboxing feature of Java 1.5 will take care of most conversions from int to Integer).

3. _______________ Write a program Strings.java, similar to Numbers.java, that reads in an array of String objects and sorts them. You may just copy and edit Numbers.java.

4. _______________ Modify the insertionSort algorithm so that it sorts in descending order rather than ascending order. Change Numbers.java and Strings.java to call insertionSort rather than selectionSort. Run both to make sure the sorting is correct.

5. _______________ The file Salesperson.java partially defines a class that represents a sales person. This is very similar to the Contact class in Listing 9.10. However, a sales person has a first name, last name, and a total number of sales (an int) rather than a first name, last name, and phone number. Complete the compareTo method in the Salesperson class. The comparison should be based on total sales; that is, return a negative number if the executing object has total sales less than the other object and return a positive number if the sales are greater. Use the name of the sales person to break a tie (alphabetical order).

6. _______________ The file WeeklySales.java contains a driver for testing the compareTo method and the sorting (this is similar to Listing 9.8 in the text). Compile and run it. Make sure your compareTo method is correct. The sales staff should be listed in order of sales from most to least with the four people having the same number of sales in reverse alphabetical order.

BEFORE MOVING ON GET SIGNATURES.

2. Searching and Sorting In An Integer List
File IntegerList.java contains a Java class representing a list of integers. The following public methods are provided:

· IntegerList(int size)—creates a new list of size elements. Elements are initialized to 0.

· void randomize()—fills the list with random integers between 1 and 100, inclusive.

· void print()—prints the array elements and indices

· int search(int target)—looks for value target in the list using a linear (also called sequential) search algorithm. Returns the index where it first appears if it is found, -1 otherwise.

· void selectionSort()—sorts the lists into ascending order using the selection sort algorithm.

File IntegerListTest.java contains a Java program that provides menu-driven testing for the IntegerList class. Copy both files to your directory, and compile and run IntegerListTest to see how it works. For example, create a list, print it, and search for an element in the list. Does it return the correct index? Now look for an element that is not in the list. Now sort the list and print it to verify that it is in sorted order.

Modify the code in these files as follows:

1.
_______________ Add a method void replaceFirst(int oldVal, int newVal) to the IntegerList class that replaces the first occurrence of oldVal in the list with newVal. If oldVal does not appear in the list, it should do nothing (but it's not an error). If oldVal appears multiple times, only the first occurrence should be replaced. Note that you already have a method to find oldVal in the list; use it!

Add an option to the menu in IntegerListTest to test your new method.

2.
_______________ Add a method void replaceAll(int oldVal, int newVal) to the IntegerList class that replaces all occurrences of oldVal in the list with newVal. If oldVal does not appear in the list, it should do nothing (but it's not an error). Does it still make sense to use the search method like you did for replaceFirst, or should you do your own searching here? Think about this.

Add an option to the menu in IntegerListTest to test your new method.

3.
_______________ Add a method void sortDecreasing() to the IntegerList class that sorts the list into decreasing (instead of increasing) order. Use the selection sort algorithm, but modify it to sort the other way. Be sure you change the variable names so they make sense!

Add an option to the menu in IntegerListTest to test your new method.

4. _______________ Add a method int binarySearchD (int target) to the IntegerList class that uses a binary search to find the target assuming the list is sorted in decreasing order. If the target is found, the method should return its index; otherwise the method should return –1. Your algorithm will be a modification of the binary search algorithm in listing 9.12 of the text.

Add an option to the menu in IntegerListTest to test your new method. In testing, make sure your method works on a list sorted in descending order then see what the method does if the list is not sorted (it shouldn't be able to find some things that are in the list).
BEFORE MOVING ON GET SIGNATURES.

