Lab CSC 221 Inheritance
NAME:_______________________________

Download the zip file containing the source for this lab from the lab calendar page of the course website. http://people.uncw.edu/fall06/csc221/calendar.htm

Make sure that each check point, which is identified by the signature line in front “_________”, is signed before moving to the next item. If the signature line is not filled in by the instructor or TA, the student will not get credit for that item. Turn in the lab worksheet at the end of lab.
1. Exploring Inheritance (4pts /10)
File Dog.java contains a declaration for a Dog class. Save this file to your directory and study it—notice what instance variables and methods are provided. Files Labrador.java and Yorkshire.java contain declarations for classes that extend Dog. Save and study these files as well.

File DogTest.java contains a simple driver program that creates a dog and makes it speak. Study DogTest.java, save it to your directory, and compile and run it to see what it does. Now modify these files as follows:

1.
Add statements in DogTest.java after you create and print the dog to create and print a Yorkshire and a Labrador. Note that the Labrador constructor takes two parameters: the name and color of the labrador, both strings. Don't change any files besides DogTest.java. Now recompile DogTest.java; you should get an error saying something like

./Labrador.java:18: Dog(java.lang.String) in Dog cannot be applied to ()

 {

 ^

1 error

If you look at line 18 of Labrador.java it's just a {, and the constructor the compiler can't find (Dog()) isn't called anywhere in this file.

a.
___________What's going on? (Hint: What call must be made in the constructor of a subclass?)

=>

b.
____________Fix the problem (which really is in Labrador) so that DogTest.java creates and makes the Dog, Labrador, and Yorkshire all speak.

BEFORE MOVING ON GET SIGNATURE FOR a AND b.
2.
____________ Add code to DogTest.java to print the average breed weight for both your Labrador and your Yorkshire. Use the avgBreedWeight() method for both. What error do you get? Why?

_____________ Fix the problem by adding the needed code to the Yorkshire class.

BEFORE MOVING ON GET SIGNATURES.
3.
______________Add an abstract int avgBreedWeight() method to the Dog class. Remember that this means that the word abstract appears in the method header after public, and that the method does not have a body (just a semicolon after the parameter list). It makes sense for this to be abstract, since Dog has no idea what breed it is. Now any subclass of Dog must have an avgBreedWeight method; since both Yorkshire and Laborador do, you should be all set.

4.
_____________Save these changes and recompile DogTest.java. You should get an error in Dog.java (unless you made more changes than described above). Figure out what's wrong and fix this error, then recompile DogTest.java. You should get another error, this time in DogTest.java. Read the error message carefully; it tells you exactly what the problem is. Fix this by changing DogTest (which will mean taking some things out).
2. Overriding the equals Method (2 pts/10)
File Player.java contains a class that holds information about an athlete: name, team, and uniform number. File ComparePlayers.java contains a skeletal program that uses the Player class to read in information about two baseball players and determine whether or not they are the same player.

1.
_______________ Fill in the missing code in ComparePlayers so that it reads in two players and prints "Same player" if they are the same, "Different players" if they are different. Use the equals method, which Player inherits from the Object class, to determine whether two players are the same. Are the results what you expect?

2.
_______________ The problem above is that as defined in the Object class, equals does an address comparison. It says that two objects are the same if they live at the same memory location, that is, if the variables that hold references to them are aliases. The two Player objects in this program are not aliases, so even if they contain exactly the same information they will be "not equal." To make equals compare the actual information in the object, you can override it with a definition specific to the class. It might make sense to say that two players are "equal" (the same player) if they are on the same team and have the same uniform number.

· Use this strategy to define an equals method for the Player class. Your method should take a Player object and return true if it is equal to the current object, false otherwise.

· Test your ComparePlayers program using your modified Player class. It should give the results you would expect.

BEFORE MOVING ON GET SIGNATURES.

3. Rebound Revisited
The files Rebound.java and ReboundPanel.java contain the program are in Listings 8.15 and 8.16 of the text. This program has an image that moves around the screen, bouncing back when it hits the sides (you can use any GIF or JPEG you like). Save these files to your directory, then open ReboundPanel.java in the editor and observe the following:

· The constructor instantializes a Timer object with a delay of 20 (the time, in milliseconds, between generation of action events). The Timer object is started with its start method.

· The constructor also gives the initial position of the ball (x and y) and the distance it will move at each interval (moveX and moveY).

· The actionPerformed method in the ReboundListener inner class "moves" the image by adding the value of moveX to x and of moveY to y. This has the effect of moving the image to the right when moveX is positive and to the left when moveX is negative, and similarly (with down and up) with moveY. The actionPerformed method then checks to see if the ball has hit one of the sides of the panel—if it hits the left side (x <= 0) or the right side (x >= WIDTH-IMAGE_SIZE) the sign of moveX is changed. This has the effect of changing the direction of the ball. Similarly the method checks to see if the ball hit the top or bottom.

Now do the following:

1.
____________ First experiment with the speed of the animation. This is affected by two things—the value of the DELAY constant and the amount the ball is moved each time.

· Change DELAY to 100. Save, compile, and run the program. How does the speed compare to the original?

· Change DELAY back to 20 and change moveX and moveY to 15. Save, compile, and run the program. Compare the motion to that in the original program.

· Experiment with other combinations of values.

· Change moveX and moveY back to 3. Use any value of DELAY you wish.

2.
_____________ Now add a second image to the program by doing the following:

· Declare a second ImageIcon object as an instance variable. You can use the same image as before or a new one.

· Declare integer variables x2 and y2 to represent the location of the second image, and moveX2 and moveY2 to control the amount the second ball moves each time.

· Initialize moveX2 to 5 and moveY2 to 8 (note—this image will have a different trajectory than the first—no longer a 45 degree angle).

· In actionPerformed, move the second image by the amount given in the moveX2 and moveY2 variable, and add code to check to see if the second image has hit a side.

· In paintComponent, draw the second image as well as the first.

· Compile and run the program. Make sure it is working correctly.

 BEFORE MOVING ON GET SIGNATURES.

