Assembly Language for Intel-Based
Computers, 4 Edition
Kip R. Irvine

Chapter 2: IA-32 Processor
Architecture

Slides prepared by Kip R. Irvine
Revision date: 09/25/2002

« Chapter corrections (Web) Assembly language sources (Web)
« Printing a slide show

(c) Pearson Education, 2002. All rights reserved. You may modify and copy this slide show for your personal use, or for
use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.

apter Overview

General Concepts

IA-32 Processor Architecture

IA-32 Memory Management
Components of an IA-32 Microcomputer
Input-Output System

Invine, Kip R. Assembly Language fo Intel-Based Comp: Website Examples

General Concepts

Basic microcomputer design
Instruction execution cycle
Reading from memory

How programs run

Irvine, Kip R. Assembly Language for Int or Web site Examples

Basic Microcomputer Design

» clock synchronizes CPU operations
« control unit (CU) coordinates sequence of execution steps
* ALU performs arithmetic and bitwise processing

registers

Central Processor Unit Memory Storage

Invine, Kip R. Assembly Language for Intel-Based Computers, 2003,

Clock
synchronizes all CPU and BUS operations
machine (clock) cycle measures time of a single
operation

clock is used to trigger events

one cycle

Invine, Kip R. Assembly Language for Intel-Based Comput

Instruction Execution Cycle

Fetch

Decode

Fetch operands instruction
Execute I
Store output

Irvine, Kip R. Assembly Language for Intel Web site Examples

Multi-Stage Pipeline

« Pipelining makes it possible for processor to execute
instructions in parallel

« Instruction execution divided into discrete stages

Example of a non-
pipelined processor.
Many wasted cycles.

Invine, Kip R. Assembly Language for Intel-Ba

Pipelined Execution

use of cycles, greater throughput of instructions:

For k states and n
instructions, the
number of required
cycles is:

k+(n-1)

Ivine, Kip R, Assembly Language for Intel-Based Compute Website Examples

Wasted Cycles (pipelined)

* When one of the stages requires two or more clock cycles, clock
cycles are again wasted.

For k states and n
instructions, the
number of required
cycles is:

k+(2n-1)

Irvine, Kip R. Assembly Language for Intel- Web site

Superscalar

A superscalar processor has multiple execution pipelines. In the
following, note that Stage S4 has left and right pipelines (u and v).

For k states and n
instructions, the
number of required
cycles is:

k+n

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003, Web site

Reading from Memory

* Multiple machine cycles are required when reading from memory,
because it responds much more slowly than the CPU. The steps are:

address placed on address bus
Read Line (RD) set low
CPU waits one cycle for memory to respond

Read Line (RD) goes to 1, indicating that the data is on the data
bus

Invine, Kip R. Assemby Language for Intel-Based Compu Examples

Cache Memory

High-speed expensive static RAM both inside and
outside the CPU.

¢ Level-1 cache: inside the CPU

¢ Level-2 cache: outside the CPU

Cache hit: when data to be read is already in cache
memory

Cache miss: when data to be read is not in cache
memory.

Irvine, Kip R. Assembly Language for Intel Web site

How a Program Runs

sends program
name to

Operating searches for Current
system program in directory

gets starting
cluster from

loads and

starts

rvine, Kip R. Assembly Language for Intel-Based Computers, 2003, Web site ~ Examples

Multitasking

OS can run multiple programs at the same time.

Multiple threads of execution within the same
program.

Scheduler utility assigns a given amount of CPU time
to each running program.

Rapid switching of tasks
« gives illusion that all programs are running at once
« the processor must support task switching.

Invine, Kip R. Assembly Language for Iniel-Based ebsite Examples

IA-32 Processor Architecture

Modes of operation

Basic execution environment
Floating-point unit

Intel Microprocessor history

Irvine, Kip R. Assembly Language for Intel- o 3. Website Examples

Modes of Operation

Protected mode

« native mode (Windows, Linux)

Real-address mode

¢ native MS-DOS

System management mode

¢ power management, system security, diagnostics

« Virtual-8086 mode
* hybrid of Protected
 each program has its own 8086 computer

rvine, Kip R. Assembly Language for Itel-Based Comput Website Examples

Basic Execution Environment

Addressable memory
General-purpose registers

Index and base registers
Specialized register uses

Status flags

Floating-point, MMX, XMM registers

mbly Language for Intel-8ased Compu Website Examples

Addressable Memory

« Protected mode
« 4GB
* 32-bit address
* Real-address and Virtual-8086 modes
« 1 MB space
¢ 20-bit address

Irvine, Kip R. Assembly Language for Ir mputers, 2003. Web site Examples

EAX EBP
EBX ESP
ECX ESI
EDX EDI

16-bit Segment Registers

EFLAGS cs Es
ss Fs
EIP DS Gs

Accessing Parts of Registers

« Use 8-bit name, 16-bit name, or 32-bit name
* Applies to EAX, EBX, ECX, and EDX

8 bits +8 bits.

Bt (low)

Invine, Kip R. Assembly Language for Iniel-Based ebsite Examples

Index and Base Registers

* Some registers have only a 16-bit name for their
lower half:

16-bit

Irvine, Kip R. Assembly Language for Intel- o Web site Examples

Some Specialized Register Uses (1 of 2)

* General-Purpose

* EAX —accumulator

¢ ECX - loop counter

* ESP - stack pointer

« ESI, EDI — index registers

« EBP — extended frame pointer (stack)
e Segment

¢ CS - code segment

¢ DS - data segment

¢ SS - stack segment

* ES, FS, GS - additional segments

rvine, Kip R. Assembly Language for Intel-Based Computers, 2003, Web site ~ Examples

Some Specialized Register Uses (2 of 2)

¢ EIP — instruction pointer

* EFLAGS
« status and control flags
 each flag is a single binary bit

Invine, Kip R. Assembly Language for Intel-Based Computers, 2003 Web site Examples

Status Flags

Carry

< unsigned arithmetic out of range
Overflow

 signed arithmetic out of range
Sign

 result is negative

Zero

« resultis zero
Auxiliary Carry

« carry from bit 3 to bit 4

Parity

« sum of 1 bits is an even number

Irvine, Kip R. Assembly Lar for 3. Website Examples

Floating-Point, MMX, XMM Registers

Eight 80-bit floating-point data registers
e ST(0), STQ), ..., ST(7)
 arranged in a stack
« used for all floating-point
arithmetic
Eight 64-bit MMX registers
Eight 128-bit XMM registers for single-
instruction multiple-data (SIMD) operations

Invine, Kip R. Assembly Language for Intel-Based Computers Website Examples

Intel Microprocessor History

Intel 8086, 80286
IA-32 processor family
P6 processor family
CISC and RISC

Invine, Kp R. Assembly Language for ntl-8ased Computers, 2003, Web site Examples

Early Intel Microprocessors

« Intel 8080
64K addressable RAM
8-bit registers
CP/M operating system
S-100 BUS architecture
8-inch floppy disks!
 Intel 8086/8088
¢ IBM-PC Used 8088
« 1 MB addressable RAM
« 16-bit registers
« 16-bit data bus (8-bit for 8088)
« separate floating-point unit (8087)

Irvine, Kip R. Assembly Language for Int J 0: Web site Examples

The IBM-AT

* Intel 80286
16 MB addressable RAM
Protected memory
several times faster than 8086
introduced IDE bus architecture
80287 floating point unit

Irvine, Kip R. Assembly Language for Intel-Based Comput Website Examples

Intel IA-32 Family

* Intel386

¢ 4 GB addressable RAM, 32-bit
registers, paging (virtual memory)

* Intel486
* instruction pipelining
» Pentium

 superscalar, 32-bit address bus, 64-bit
internal data path

Invine, Kip R. Assembly Language fo Intel-Based Compu Website Examples

Intel P6 Family

Pentium Pro

 advanced optimization techniques in microcode
Pentium Il

* MMX (multimedia) instruction set

Pentium 1

» SIMD (streaming extensions) instructions
Pentium 4

» NetBurst micro-architecture, tuned for multimedia

Irvine, Kip R. Assembly Language for Ir mputers, 2003. Web site Examples

10

CISC and RISC

* CISC - complex instruction set
 large instruction set
« high-level operations
* requires microcode interpreter
« examples: Intel 80x86 family
* RISC - reduced instruction set
« simple, atomic instructions
« small instruction set
« directly executed by hardware
« examples:
* ARM (Advanced RISC Machines)
« DEC Alpha (now Compaq)

rvine, Kip R. Assembly Language for Intel-Based Computers, 2003, Web site ~ Examples

IA-32 Memory Management

Real-address mode
Calculating linear addresses
Protected mode
Multi-segment model
Paging

Invine, Kip R. Assembly Language for Iniel-Based ebsite Examples

Real-Address mode

1 MB RAM maximum addressable

Application programs can access any area
of memory

Single tasking
Supported by MS-DOS operating system

Irvine, Kip R. Assembly Language for Intel- o 3. Website Examples

Segmented Memory

Segmented memory addressing: absolute (linear) address is a
combination of a 16-bit segment value added to a 16-bit offset

BO00FFFF

one segment

linear addresses

8000:0250

Invine, Kip R. Assembly Language for Intel-Based Computers, 2003. ~ Web site Examples

Calculating Linear Addresses

* Given a segment address, multiply it by 16 (add a
hexadecimal zero), and add it to the offset

* Example: convert 08F1:0100 to a linear address

Adjusted Segment value: 0 8 F 1 0
Add the offset: 0100
Linear address: 09010

Invine, Kip R. Assembly Language for nel-8ased Compi ebsite Examples

Your t

What linear address corresponds to the se
address 028F:0030?

Always use hexadecimal notation for addresses.

Irvine, Kip R. Assembly Language for Intel- omputers, 2003. Web site Examples

12

Your turn . ..

What segment ses correspond to the linear address
28F30h?

Many different segment-offset addresses can produce the
linear address 28F30h. For example:

28F0:0030, 28F3:0000, 28B0:0430, . . .

rvine, Kip R. Assembly Language for Intel-Based Computers, 2003, Web site ~ Examples

Protected Mode (1 of 2)

4 GB addressable RAM
+ (00000000 to FFFFFFFFh)

Each program assigned a memory partition which
is protected from other programs

Designed for multitasking
Supported by Linux & MS-Windows

Invine, Kip R. Assembly Language for Intel-Based Computers, 2003 Web site Examples

Protected mode (2 of 2)

Segment descriptor tables
Program structure

» code, data, and stack areas

e CS, DS, SS segment descriptors
« global descriptor table (GDT)

MASM Programs use the Microsoft flat memory
model

Irvine, Kip R. Assembly Lar fo o Web site Examples

13

Flat Segment Model

« Single global descriptor table (GDT).
« All segments mapped to entire 32-bit address space

FFFFFFFF
(4GB)

‘Segment descriptor, in the
Global Descriptor Table

00040000

base address limit access

W reaisAyd

00000000

Ivine, Kip R. Assembly Language for Intel-Based Computers, 2003, Web site Examples

Multi-Segment Model

« Each program has a local descriptor table (LDT)
« holds descriptor for each segment used by the program

Local Descriptor Table

base limit _ access|
00026000 | 0010
00008000 | 000A
00003000 | 0002

Inine, Kip R. Assembly Language for nel-Based Compute e Examples

Paging

Supported directly by the CPU

Divides each segment into 4096-byte blocks called
pages

Sum of all programs can be larger than physical
memory

Part of running program is in memory, part is on disk
Virtual memory manager (VMM) — OS utility that
manages the loading and unloading of pages

Page fault — issued by CPU when a page must be
loaded from disk

Irvine, Kip R. Assembly Language for Intel- o 3. Website Examples

14

Components of an IA-32 Microcomputer

Motherboard
Video output
Memory
Input-output ports

Ivine, Kip R. Assembly Language for IntelBased Computers, 2003, Web site Examples

Motherboard

CPU socket

External cache memory slots

Main memory slots

BIOS chips

Sound synthesizer chip (optional)

Video controller chip (optional)

IDE, parallel, serial, USB, video, keyboard, joystick,
network, and mouse connectors

PCI bus connectors (expansion cards)

Invine, Kp R. Assembly Language or ntl-Based Com e Examples

Intel D850MD Motherboard

mouse, keyboard,
Video parallel, serial, and USB
i connectors
Audio chip

PCl slots
memory controller hub

3 § : Pentium 4 socket
AGP slot . L

dynamic RAM
Firmware hub

1/0 Controller

Speaker

Power connector
Battery

Diskette connector
IDE drive connectors

Ivine, Kip R. Assembly Language for Inel-Based Cor Website Examples 45

15

Video Output

Video controller

» on motherboard, or on expansion card

» AGP (accelerated graphics port technology)*
Video memory (VRAM)
Video CRT Display

* uses raster scanning

* horizontal retrace

* vertical retrace

Direct digital LCD monitors

* no raster scanning required

* This link may change over time.

Ivine, Kip R. Assembly Language for IntelBased Computers, 2003, Web site Examples

Sample Video Controller (ATI Corp.)

128-bit 3D graphics
performance powered by
RAGE™ 128 PRO

3D graphics performance

Intelligent TV-Tuner with
Digital VCR

TV-ON-DEMAND™
Interactive Program Guide

Still image and MPEG-2 motion
video capture

Video editing
Hardware DVD video playback
Video output to TV or VCR

AiW 128 PRO

Examples

ROM

« read-only memory
EPROM

« erasable programmable read-only memory
Dynamic RAM (DRAM)

+ inexpensive; must be refreshed constantly
Static RAM (SRAM)

« expensive; used for cache memory; no refresh required
Video RAM (VRAM)

« dual ported; optimized for constant video refresh
CMOS RAM

« complimentary metal-oxide semiconductor

« system setup information
See: Intel platform memory (Intel technology brief: link address may
change)

Irvine, Kip R. Assembly Language for It o 0: Web site Examples

16

Input-Output Ports

« USB (universal serial bus)
intelligent high-speed connection to devices
¢ up to 12 megabits/second
¢ USB hub connects multiple devices
« enumeration: computer queries devices
« supports hot connections
« Parallel
« short cable, high speed
« common for printers
« bidirectional, parallel data transfer
« Intel 8255 controller chip

Invine, Kip R. Assembly Language f Based Computers, 2003, Web site Examples

Input-Output Ports (cont)

» Serial
¢ RS-232 serial port
« one bit at a time
uses long cables and modems

16550 UART (universal asynchronous receiver
transmitter)

programmable in assembly language

Invine, Kip R. Assembly Language for nel-8ased Compi e Examples

Levels of Input-Output

Level 3: Call a library function (C++, Java)

« easy to do; abstracted from hardware; details hidden
« slowest performance

Level 2: Call an operating system function

« specific to one OS; device-independent

« medium performance

Level 1: Call a BIOS (basic input-output system) function
« may produce different results on different systems

« knowledge of hardware required

« usually good performance

Level 0: Communicate directly with the hardware

« May not be allowed by some operating systems

Irvine, Kip R. Assembly Language for Intel- or Web site Examples

17

Displaying a String of Characters

When a HLL program

characters, the
following steps take

place: BIOS Function
e

rvine, Kip R. Assembly Language for Intel-Based Computers, 2003, Web site ~ Examples

ASM Programming levels

ASM programs can perform input-output at
each of the following levels:

tevel2

ASM Program BIOS Function ‘ Level 1

Level0

Inine, Kip R. Assembly Language for nel-Based Compute Examples

Irvine, Kip R. Assembly Language for Intel- o Web site Examples

18

