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We construct supersymmetric dyon solutions based on the ‘t Hooft/Polyakov monopole. We show that these solutions satisfy κ
-symmetry constraints and can therefore be generalized to supersymmetric solutions of type I SOð32Þ string theory. After
applying a T-duality transformation to these solutions, we obtain two D3-branes connected by a wormhole, embedded in an M
5-brane. We analyze the geometries of each D3-brane for two cases: one corresponding to a dyon with vanishing spin and the
other corresponding to a magnetic monopole with nonvanishing spin. In the case of the vanishing spin, the scalar curvature is
finite everywhere. In the case of the nonvanishing spin, we find a frame dragging effect due to the spin. We also find that the
scalar curvature diverges along the spin quantization axis as 1/ρ2, ρ being the cylindrical, radial coordinate defined with
respect to the spin axis. These solutions demonstrate the subtle relationship between the Yang-Mills and gravitational
interactions, i.e., gauge/gravity duality.

1. Introduction

In a previous study, we have investigated spin 0 dyons
within the context of type I SOð32Þ superstring theory in
10 dimensions [1]. Based on the ‘t Hooft/Polyakov mono-
pole, we have constructed dyon solutions which are exact
solutions of the non-Abelian Dirac-Born-Infeld action and
the Wess-Zumino-like action. After applying a T-duality
transformation to the solutions, we have obtained solutions
corresponding to electrically and magnetically charged
wormholes (for additional information about wormholes
and their physical properties, please consult the following
references [2–6]) which connect two D3-branes.

In this study, we extend our previous work to include
solutions with nonvanishing spin. Specifically, we have
applied supersymmetry transformations to the solutions
obtained previously, yielding spin 1/2 and spin 1 dyons.
We then show that the solutions also preserve a combined
κ-symmetry and supersymmetry so that they are also solu-
tions of superstring theory. After applying a suitable coordi-
nate/gauge transformation, followed by a T-duality
transformation, we obtain rotating wormhole solutions
which are both magnetically and electrically charged.

We now outline the steps in our analysis. In Section 2,
we review dimensional reduction of D = 10, N = 1 supersym-
metry to D = 6, N = 2 and then to D = 4, N = 4 supersymme-
try. This reduction is carried out with the purpose of
showing, explicitly, the connection between dyons in four
dimensions and dyons derived from superstrings in ten
dimensions. In Section 3, we use the results of Section 2 to
reinterpret the spin 0 dyon solutions in four spacetime
dimensions [7] as a gauge field dimensionally reduced from
ten to six spacetime dimensions. We then apply supersym-
metry transformations to the gauge fields, thereby recasting
the supersymmetric dyon solutions in four dimensions as a
D = 6, N = 2 supersymmetric gauge theory. As a corollary
of our analysis, we extend the work of Kastor and Na [8],
which applies to supersymmetric magnetic monopoles to
include supersymmetric dyons. In Section 4, we show that
the solutions obtained in Section 3 preserve combined κ
-symmetry and supersymmetry and are therefore solutions
of type IIB superstring theory, which we then recast as solu-
tions of type I SOð32Þ superstring theory, residing on an M5
-brane. In Section 5, we apply a T-duality transformation to
the superstring solutions obtained in Section 4, reducing the
theory from D = 1 + 4 to D = 1 + 3. The result is two rotating
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dyons of equal but opposite charge, each residing on a
curved D3-brane, connected to one another by a wormhole.
Finally, we present numerical and graphical examples,
depicting the scalar curvature and frame dragging effect.

Concerning the system of units and sign conventions, we
adhere to the same conventions as in our previous work [1].
Specifically, in D dimensions, the Levi-Cività symbol is
ε012⋯D = 1. Greek letters denote spacetime indices, i.e., 0, 1,
2, and 3. Uncapitalized Roman letters denote either the spa-
tial indices 1, 2, 3 (alternatively, 3-space coordinates are
denoted as x, y, and z, where x ≡ x1, y ≡ x2, and z ≡ x3) or
the indices of the generators of the gauge group. Capitalized
Roman indices denote indices of ten spacetime dimensions,
i.e., 0, 1, 2, ... 9. The signature of the metric, ηMN , is mostly
positive. The gamma matricies satisfy the following rela-
tions: ΓM† = ΓM . Also, we employ the Lorentz-Heaviside
units of electromagnetism so that c = ℏ = ε0 = μ0 = 1. As a
consequence, the Dirac quantization condition is ge gm = ð
4πÞnm/2, ge (gm) being the electric (magnetic) charge and
nm being an integer.

2. Dimensional Reduction of D = 10, N = 1
Supersymmetry

In this section, we describe the dimensional reduction of the
D = 10, N = 1 supersymmetric Yang Mills theory, first to the
D = 6, N = 2 theory, then to the D = 4, N = 4 theory. This
reduction is performed, specifically, with the purpose of
demonstrating how dyons in D = 4 can be naturally
described as evolving from this dimensional reduction
process.

We begin with the D = 10, N = 1 supersymmetric
Lagrangian density [9]

L = −
1
4
Fa
MNF

aMN − i
1
2
λaΓMDMλ

a, ð1Þ

where

Fa
μν = ∂μA

a
ν − ∂νA

a
μ − igD9 f

abc Ab
μ, A

c
ν

h i
: ð2Þ

The quantity gD9 is the Yang-Mills coupling constant in

ten dimensions (note that g2D9 = g2
D3 ð2πÞ6α′

3
, where gD3 is

the Yang-Mills coupling constant in four dimensions and
α′ is the string coupling constant. See Appendix B of refer-
ence [1]), and f abc are the structure constants of the gauge
group. Here, the gaugino field, λ, is the supersymmetric
partner of the gauge field. The action is invariant under
the supersymmetric transformations

δAa
M = −i�ζΓMλ

a, ð3aÞ

δλa =
1
2
Fa
MNΓ

MNζ, ð3bÞ

where ΓMN = ΓMΓN − ΓNΓM . The gaugino field λa and
supersymmetric parameter ζ are the 32 component Major-

ana spinors with positive chirality, i.e., �λ = ðλaÞTC, where
C is the charge conjugation matrix and Γð10Þλa = ð+1Þ λa,
where the chirality matrix Γð10Þ = i−4 ε01⋯9 Γ

0Γ1 ⋯ Γ9 (the
chirality matrix in D dimensions is ΓðDÞ ≡ K ε01⋯ðD−1Þ Γ

0Γ1

⋯ ΓD−1, where D = 2k + 2 and K = i−k for the Minkowski
signature and K = i−ðk+1Þ for the Euclidean signature).

Using Noether’s theorem, we obtain the supercurrent by
varying the Lagrangian density with respect to the fields Xð
X = Aa

M or λaÞ[10],

ζJM + ζ† J†M ≡〠
X

δL

δ ∂MXð Þ − KM , ð4Þ

where KM is a function whose divergence is the variation of
the Lagrangian density under supersymmetry transforma-
tions, i.e., ∂MKM = δL . The supercharges, Qα, are obtained
from the supercurrents

Qα =
ð
d9x J0α, ð5aÞ

Q†
α =

ð
d9x J†0α : ð5bÞ

The supercharges, which are the generators of supersym-
metry transformations,

ζ†Q† + ζQ, X
h i

= δX, ð6Þ

can be obtained from equation (4). Alternatively, we can
compare equation (6) directly to equations (3a) and (3b)
and obtain

Qα = −
1
2

ð
dx9Fa

MN λa†Γ0ΓMN
� �

α
: ð7Þ

In deriving equation (7), we have used the equal-time,
canonical anticommutation and commutation relations

λaα x!, t
� �

, λ†bβ y!, t
� �n o

= δabδαβδ
9ð Þ x! − y!
� �

, ð8aÞ

Aa
M x!, t
� �

, Eb
N y!, t
� �h i

= −ηMNδ
abδ 9ð Þ x! − y!

� �
: ð8bÞ

The field Eb
N is the canonical momentum conjugate to

Ab
N (Eb

N = Fb
0N) and i�λ

a
αΓ

0 is the canonical momentum con-
jugate to λaα.

We now calculate the anticommutator fQα,Q†
βg. This

calculation, though similar to that of Witten and Olive
[11], differs in that their calculation is based on monopole
solutions resulting from the Higgs field embedded in D = 4,
N = 2 supersymmetry, whereas this calculation is based on
the sequential, dimensional reduction from D = 10, N = 1
supersymmetry to D = 6, N = 2 supersymmetry and finally
to D = 4, N = 4 supersymmetry. Our reason for presenting
the calculation is to demonstrate the relationship between
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dyons in D = 4, N = 4 supersymmetry and superstrings in
the type I SOð32Þ theory. The anticommutator is evaluated
as

zeta2ζ
†
1 Q,Q†È É

= ζ2Q, ζ
†
1Q

†
h i

== ζ2ζ
†
1 −

1
2

� �2
22
ð
dx9Fa

MNF
a
KLΓ

0ΓMΓNΓK†ΓL†:

ð9Þ

In evaluating equation (9), it is helpful to organize the
terms as follows: in the first group, all terms where fM,Ng
and fK , Lg assume different values; in the second group,
bothfM,Ng are contracted withfK , Lg, resulting in terms
with noΓ matrices; and in the third group, one offM,Ng
is contracted with one offK , Lg, resulting in terms with
two Γ matrices. In the first group, terms which contain Γ0

or Γ0† vanish because Γ0† = −Γ0. Each of the remaining
terms can be expressed as a divergence. Such terms are typ-
ically assumed to vanish sufficiently fast at the boundary so
that these terms make no contribution; however, these terms
will become relevant when we consider dyon solutions and
their associated central charges (see equation (21)). The sec-
ond group evaluates P0, the energy, i.e.,

P0 = −
ð
dx9 FaM

0 Fa
0M −

1
4
η00F

a
MNF

aMN
� �

: ð10Þ

In obtaining this result, we have used the fact that Γ0†

= −Γ0 and assumed that all surface integrals vanish. The
third group comprises of terms which contain the product
ΓMΓN . If both M,N ≠ 0, the term vanishes by symmetry
arguments and properties of the gamma matricies. The only
terms which are nonvanishing from this group are those that
contain Γ0ΓNðorΓ0†ΓNÞ, N ≠ 0. Each of these terms evalu-
ates to

PN =
ð
dx9FaM

0 Fa
NM: ð11Þ

Thus,

Q,Q†È É
= P0 + Γ0ΓNPN : ð12Þ

In preparation for constructing dyon solutions in four
dimensions, we constrain the Majorana spinors ζ and λa in
D = 10, also, to be states of positive chirality in D = 6, i.e.,
Γð6Þ χ = ð+1Þχ, ðχ = ζ, λaÞ (the chirality matrix in D dimen-
sions is ΓðDÞ ≡ K ε01⋯ðD−1Þ Γ

0Γ1 ⋯ ΓD−1, where D = 2k + 2
and K = i−k for the Minkowski signature and K = i−ðk+1Þ for
the Euclidean signature). We next reexpress the spinors χ
in terms of projections, i.e.,

χ = χ+ + χ−, ð13aÞ

χ+ = χ+,+1+χ+,−1, ð13bÞ

χ− = χ−,+1+χ−,−1, ð13cÞ

where

χ+,±1 =
1 + Γ 10ð Þ

2
1 + Γ 6ð Þ

2

� �
1 + Γ′ 6ð Þ

2

 !
1 ± Γ0Γ4

2
χ,

χ−,±1 =
1 + Γ 10ð Þ

2
1 + Γ 6ð Þ

2

� �
1 − Γ′ 6ð Þ

2

 !
1 ± Γ0Γ4

2
χ:

ð14Þ

Here, Γ′ð6Þ is the chirality matrix for dimensions 0, 1, 4,
5, 6, and 7:

Γ′ 6ð Þ =
1
i2
ϵ014567Γ

0Γ1Γ4Γ5Γ6Γ7: ð15Þ

We note, in particular, that the ζ±,±1 in the s-basis [9] are

ζ+,±1 = a∗+,±1
1

0

 ! 1

0

 ! 1

0

 ! 1

0

 ! 1

0

 !
±

0

1

 ! 1

0

 ! 0

1

 ! 1

0

 ! 1

0

 !" #

+a+,±1
1

0

 ! 0

1

 ! 0

1

 ! 0

1

 ! 0

1

 !
±

0

1

 ! 0

1

 ! 1

0

 ! 0

1

 ! 0

1

 !" #
,

ζ−,±1 = a∗−,±1
1

0

 ! 1

0

 ! 1

0

 ! 0

1

 ! 0

1

 !
±

0

1

 ! 1

0

 ! 0

1

 ! 0

1

 ! 0

1

 !" #

+a−,±1
1

0

 ! 0

1

 ! 0

1

 ! 1

0

 ! 1

0

 !
±

0

1

 ! 0

1

 ! 1

0

 ! 1

0

 ! 1

0

 !" #
,

ð16Þ

where a+,±1 and a−,±1 are the arbitrary complex constants.
With foresight, we make the following assumptions:

(1) All potential functions Aa
M = Aa

MðxiÞ, i.e., depend
only on the three space coordinates and are time
independent

(2) Aa
6 = Aa

7 = Aa
8 = Aa

9 = 0

(3) A4 and A5 may or may not commute

(4) Aa
5 asymptotically approaches a nonvanishing vac-

uum state, while Aa
4 may vanish asymptotically, i.e,

lim
r⟶∞

Aa
4A

a
4 = v2 cos2ψ, ð17aÞ

lim
r⟶∞

Aa
5A

a
5 = v2 sin2ψ, ð17bÞ

for 0 < ψ ≤ π/2 and v nonvanishing
The reduction from ten to six dimensions is trivial. Since

Aa
6 through Aa

9 vanish, only the gamma matrices Γ0 through
Γ5 appear in the supercharges. In reducing from ten to six
dimensions, the ten dimensional gamma matrices may be
represented as a direct product of six dimensional gamma
matrices and a four dimensional identity matrix, i.e., ΓN ×
I4, where N = 0,⋯, 5. The gamma matrices act on the first
three component spinors of χ, while the four dimensional
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identity matrix acts on the remaining two. The only signifi-
cant consequence of the dimensional reduction is that the
spinor χ is replaced by two spinors:

χ+ = χ+,+1+χ+,−1, ð18aÞ

χ− = χ−,+1+χ−,−1, ð18bÞ
and correspondingly the supercharge Q to two supercharges:

Q+ =Q+,+1+Q+,−1, ð19aÞ

Q− =Q−,+1+Q−,−1: ð19bÞ
Thus, dimensional reduction results in a transitioning

from D = 10, N = 1 supersymmetry to D = 6, N = 2 super-
symmetry with both supercharges being eigenstates of posi-
tive chirality in six dimensions, i.e., Γð6Þ Q± = +Q±. The
central charges are derived from two groups of terms in
the anticommutator, the first group and the third group. A
typical nonvanishing boundary term from the first group is
derived from

Fa
ijF

a
kNΓ

iΓjΓk†ΓN†, ð20Þ

where N = 4, 5. Boundary terms derived from Fa
ij F

a
45 involve

a curl integrated over a surface at infinity. Such terms, which
can be expressed as a line integral, vanish asymptotically if
Fa
4i and Fa

5i approach zero faster than 1/r as r⟶∞. This
is the case for monopole or dyon solutions which asymptot-
ically approach zero as 1/r2. The remaining terms can be
expressed as a divergence which becomes a surface integral
at the boundary. If Fa

ij approach zero as 1/r2 as r⟶∞ as
is the case for monopole and dyon solutions, the surface
integral is nonvanishing. Specifically, the contribution from
the first group of terms is

Γ1Γ2Γ3Γ4gmv cos ψ + Γ1Γ2Γ3Γ5gmv sin ψ, ð21Þ

where the magnetic charge gm is obtained from the relation-
ship

gmv sin ψ =
ð
S∞

BaiAa
5dSi: ð22Þ

We have used the fact that the asymptotic behavior of Aa
4

is given by equation (17a) and that the magnetic field is
given by

Bak =
ϵkij

2!
Fa
ij: ð23Þ

In obtaining equation (22), we have used

ΓiΓjΓkΓ4∂k Fa
ijA

a
4

� �
= ΓiΓjΓkΓ5 Fa

ijF
a
k4 +

ϵkij

2!
DkF

a
ijA

a
4

� �
:

ð24Þ

In equation (24), the second term to the right of the
equal sign vanishes by virtue of the equations of motion,
specifically that the divergence of the magnetic field
vanishes.

The contribution to the central charges from the third
group of terms corresponds to the momentum in the x4

and x5 directions. The relevant terms from equation (9)ð
dx6

ð
dx3Fa

0K F
a
KNΓ

0Γ0ΓNΓ0†, ð25Þ

where N = 4, 5. The portion of the integral over the six
dimensional space yields the volume of the six dimensional
space which we normalize to one. The remaining part of
the integral can be expressed as a divergence which by virtue
of equation (17b) yields a nonvanishing surface contribu-
tion. Substituting the following expression

Γ0ΓN∂k Fa
0KA

a
Nð Þ = Γ0ΓN Fa

0K F
a
KN +DkF

aK
0 Aa

N

À Á ð26Þ

into equation (25) and using the fact the last term in equa-
tion (26) which vanishes by virtue of the equations of
motion, i.e., the divergence of the electric field vanishes, we
obtain the additional contributions to the central charges:

Γ0Γ4gev cos ψ + Γ0Γ5gev sin ψ: ð27Þ

Here, we have used the fact that the electric charge is
obtained:

gev cos ψ =
ð
S∞

EaiAa
4dSi, ð28Þ

where Eai = Ea
i = Fa

i0. Substituting equation (21) and equa-
tion (28) into equation (12), we obtain

Qa,Q†
b

È É
= δab P0 + Γ0ΓiPi + Γ0Γ4gev cos ψ + Γ0Γ5gev sin ψ

È
+ Γ1Γ2Γ3Γ4gmv cos ψ + Γ1Γ2Γ3Γ5gmv sin ψ

É
,

ð29Þ

for ða, b = +,−Þ (we use Fraktur font to denote “+” or “-”).
Simplifying the terms involving central charges, we obtain

Qa,Q†
b

È É
= δab P0 + Γ0ΓiPi + gv exp iΓ 4ð Þψ′Γ0Γ4

� �n
Á cos ψ + iΓ 4ð Þ sin ψΓ0Γ4Γ 6ð Þ
� �

Γ 6ð ÞΓ0Γ4
o
:

ð30Þ

The charge g and the angle ψ′ are defined by (because of
our choice of metric, i.e., η00 = −1, electromagnetic duality
implies ∗Ba ⟶ Ea and ∗Ea ⟶ −Ba)

g =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
m + g2e

q
,

tan ψ′ = gm
ge

:
ð31Þ
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Since Γð6Þχ = 1χ, we can simplify equation (30).

Qa,Q†
b

È É
= δab P0ð + Γ0ΓiPi + gv exp iΓ 4ð Þ ψ′ + ψ

� �
Γ0Γ4

n o
Γ0Γ4

�
:

ð32Þ

Before reducing from six to four dimensions, we note
that

Qa,±1 =
1 ± Γ0Γ4À Á

2
Qa: ð33Þ

In the rest frame of the system, i.e., Pi = 0 and P0 =M,M
being the rest energy of the system, we can show

Qa,+1,Q†
b,+1

È É
= δab M + gv exp iΓ 4ð Þ ψ′ + ψ

� �n o� �
,

Qa,−1,Q†
b,−1

È É
= δab M − gv exp −iΓ 4ð Þ ψ′ + ψ

� �n o� �
,

Qa,+1,Q†
b,−1

È É
= 0:

ð34Þ

Alternatively, we define

Q1
a =

1 + Γ4À Á
2

Qa,+1,

Q2
a =

1 − Γ4À Á
2

Qa,−1:

ð35Þ

We can show by direct substitution of equation (35) into
equation (34) that

Qi
a,Q

j†
b

n o
= δab δijM + Γ4gv exp −iΓ 4ð Þ ψ′ + ψ

� �n o� �
,

ð36Þ

for i, j = 1, 2. The reduction from six to four dimensions is
relatively straightforward. In reducing from ten to six to four
dimensions, the requisite ten dimensional gamma matrices
are represented.

Γμ = γμ × I2 × I4,

Γ 4ð Þ = γ5 × I2 × I4,

Γ4 = γ5 × σ1 × I4,

Γ5 = γ5 × σ2 × I4:

ð37Þ

Here, γμ and γ5 are the four dimensional gamma matri-
ces, σ1 and σ2 are Pauli matrices, and I2 and I4 are the iden-
tity matrices in two and four dimensions, respectively.
Finally, the reduction from six dimensions to four dimen-
sions requires that Γ4 and Γð4Þ from equation (37) be
substituted into equation (36). In reducing from D = 6, N
= 2 to D = 4, N = 4 supersymmetry, each supercharge Qa is
replaced by two supercharges Qa,±1.

The supersymmetry algebra, equation (36), obtained
from dimensional reduction of D = 10, N = 1 supersymme-

try, differs from that of Witten and Olive [11] which is based
on D = 4, N = 2 supersymmetry. The most obvious distinc-
tion is that there are two sets of supercharges, i.e., ða = +,
− Þ. In our construction of dyons with spin in Section 3,
the second set of supercharges generates spin 1 dyon solu-
tions in addition to spin 1/2 and spin 0 solutions. The other
distinction is derived from the fact that the components of
the vector potential Aa

4 and Aa
5 in our analysis replace the

components of the Higgs field, in Witten and Olive’s analy-
sis. Witten and Olive removes one of these components of
the Higgs field by performing a chiral rotation, which would,
in a certain sense, be equivalent to setting ψ = 0 in our anal-
ysis. In our subsequent analysis of dyons with spin, Section
3, we do not eliminate one of Aa

4 and Aa
5 by a coordinate

rotation, analogous to the chiral rotation. The reason is that
our analysis is complicated because Aa

4 and Aa
5, in general, do

not commute. Instead, we are able to set ψ′ = ψ, which is a
direct consequence of the dyon solutions being BPS states.

3. Dyons with Spin

In this section, we review the construction of dyons with
spin. One method of incorporating spin is to construct dyon
solutions from the D = 6 supersymmetric extension of the
Yang-Mills-Higgs action. This methodology shows, implic-
itly, the relationship between dyons with spin in D = 4 and
superstrings. We begin the analysis with a discussion of the
‘t Hooft/Polyakov monopole which is derived from the
Yang-Mills-Higgs Lagrangian density. ‘t Hooft [12] and
Polyakov [13] have shown that within the context of the
spontaneously broken, the Yang-Mills gauge theory SOð3Þ
magnetic monopole solutions of finite mass must necessarily
exist and furthermore possess an internal structure. These
solutions, which possess zero spin, are derived from the
Yang-Mills-Higgs Lagrangian

L = −
1
4
Fa
μνF

μνa +
1
2
DμΦ

aDμΦa −V ΦaΦað Þ, ð38Þ

where

Fa
μν = ∂μA

a
ν − ∂νA

a
μ − igD3 f

abc Ab
μ, A

c
ν

h i
: ð39Þ

The Higgs field Φa is scalar transforming according to
the adjoint representation of the gauge group, and conse-
quently, its covariant derivative is

DμΦ
a = ∂μΦ

a − igD3 f
abc Ab

μ,Φ
c

h i
: ð40Þ

The quantity gD3 is the Yang-Mills coupling constant in
four dimensions, and f abc are the structure constants of the
gauge group. For our purposes, we assume that the gauge
group is SUð2Þ (or a group which contains SUð2Þ as a sub-
group). In addition, we require that the potential VðΦaΦaÞ
vanishes so that the magnetic monopole solutions are BPS
states, which are solvable in closed form [1, 7, 8, 14].
Straightforwardly, one can also show that these solutions
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can be modified to be electrically charged as well as magnet-
ically charged. As a consequence of the solutions being BPS
states, one can show that the electric and magnetic compo-
nents of the fields are related to Φa.

Ea
i = cos ψDiΦ

a, ð41aÞ

Ba
i = sin ψDiΦ

a, ð41bÞ
where

Ea
i = Fa

i0, ð42aÞ

Ba
i = εjki F

a
jk: ð42bÞ

The electric and magnetic fields are obtained from Ea
i

and Ba
i :

Ei = Ea
i
Φa

v
, ð43aÞ

Bi = Ba
i
Φa

v
: ð43bÞ

Here,

v2 = lim
r⟶∞

ΦaΦa: ð44Þ

See equation (50) below.
In equations (41a) and (41b), the electric qe and mag-

netic qm charges are

qe = q cos ψ, ð45aÞ

qm = q sin ψ, ð45bÞ
where q =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2e + q2m

p
. For these solutions ψ′ = ψ, see equa-

tion (31).
From the perspective of six dimensions, the function Φa

can be reinterpreted as gauge fields

Aa
4 =Φa cos ψ, ð46aÞ

Aa
5 =Φa sin ψ: ð46bÞ

This follows because the Higgs field Φa does not depend
on the coordinates of dimensions four and five so that under
gauge transformations, the components Aa

4 and Aa
5 trans-

form in the same manner as Φa. In six dimensions, the dyon
is described in terms of the potential function

A = Aμdx
μ + A4dx

4 + A5dx
5

= cos ψvQ rð ÞTrdt + W rð Þ
gD3

Tθ sin θ nm dϕ − Tϕdθ
h i

+ cos ψvQ rð ÞTrdx4 + sin ψvQ rð ÞTrdx5,
ð47Þ

where v is vacuum expectation value of Φa in the asymptotic

limit of large r (see equation (17a)). The magnetic charge of
the dyon is gm = 4π nm/gD3, for nm an integer, which is the
Higgs field winding number. Tr ,Tθ, and Tϕ constitute a rep-
resentation of the SUð2Þ algebra. The quantities r, θ, and ϕ
are the spherical polar coordinates in three dimensions (in
the transformation to spherical polar coordinates, we have
chosen the x-axis, rather that the z-axis, to be the azimuthal
axis. The motivation for this choice is to provide consistency
with our choice of Γ matrices. Specifically, spin states are
chosen to be eigenvalues of the spin operator Sx. See equa-
tion (69)). The elements Tr ,Tθ, and Tϕ are related to Ta, ð
a = 1, 2, 3Þ:

Tr ≡ T · er = Taear = Ty sin θ cos nmϕ + Tz sin θ sin nmϕ + Tx cos θ,

ð48aÞ

Tθ ≡ T · eθ = Taeaθ = Ty cos θ cos nmϕ + Tz cos θ sin nmϕ − Tx sin θ,

ð48bÞ
Tϕ ≡ T · eϕ = Taeaϕ = −Ty sin nmϕ + Tz cos nmϕ, ð48cÞ

where the Ta are generators of an SUð2Þ subalgebra of SOð
32Þ (the gauge group SOð32Þ is relevant for our discussion
of superstrings in Section 4).

er = ear êxa = cos θ êx1 + sin θ cos nmϕ êx2 + sin θ sin nmϕ êx3 ,
ð49aÞ

eθ = eaθ êxa = − sin θ êx1 + cos θ cos nmϕ êx2 + cos θ sin nmϕ êx3 ,
ð49bÞ

eϕ = eaϕ êxa = − sin nmϕ êx2 + cos nmϕ êx3 : ð49cÞ
Here, the êxa , ða = 1, 2, 3Þ are unit vectors in the x, y, and

z directions, respectively.
The Higgs field is

ΦaTa = vQ rð Þear Ta = vQ rð ÞTr: ð50Þ

Using equations (48a), (48b), and (48c), we can express
the DðΦaTaÞ in spherical polar coordinates

Dr ΦaTað Þ = vQ rð Þ′Tr ,

Dθ ΦaTað Þ = v 1 −W rð Þ½ �Q rð ÞTθ,

Dϕ ΦaTað Þ = v 1 −W rð Þ½ �Q rð Þnm sin θTϕ:

ð51Þ

The solutions WðrÞ and QðrÞ are obtained as in refer-
ence [14].

W rð Þ =w uð Þ = 1 −
u

sinh u
, ð52aÞ

Q rð Þ = q uð Þ = coth u −
1
u
, ð52bÞ

where the dimensionless variable u is related to the radial
coordinate r:
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u =
r

Ldyon
: ð53Þ

The quantity Ldyon characterizes the size of the dyon, i.e.,
the region of space in which it exhibits internal structure:

Ldyon =
1

sin ψMgluon
, ð54Þ

where the mass of the gluon, resulting from spontaneous
symmetry breaking, is

Mgluon = gD3v: ð55Þ

In addition, the mass of the dyon is related to the mass of
a gluon

Mdyon = gv =
g
gD3

Mgluon: ð56Þ

For our purposes, we also require that solutions be
invariant under SLð2, ZÞ transformations, weak/strong dual-
ity, so that we include in the Lagrangian density Witten’s θ
term [15].

Lθ = −
θg2

D3
32π2 F

a
μν

∗Faμν: ð57Þ

This term contributes only a surface term to the action
and therefore does not affect the classical equations of
motion. In the monopole sector of the theory, however, the
term does have a nontrivial effect in that it shifts the allowed
values of the electric charge [7]. The electric charge, qe, is
given as

qe = negD3 − nm
gD3θ
2π

, ð58Þ

where ne is an integer.
The dyon solutions, equation (47), also satisfy the equa-

tions of motion derived from the supersymmetric Lagrang-
ian density, equation (1) with a gaugino field set equal to
zero. The solutions, equations (46a), (46b), and (47), satisfy
the assumptions placed on the D = 10 supersymmetric solu-
tions discussed in Section 2, with the additional property
that the solutions are also BPS states.

In order to construct dyon solutions with spin, we begin
with the D = 6, N = 2 supersymmetric Yang-Mills theory,
obtained from the dimensional reduction of the D = 10, N
= 1 theory, presented in Section 2. The D = 6, N = 2 theory
comprises two supercharges of positive chirality in six
dimensions, Qa, ða = +,−Þ. The theory is invariant under
supersymmetry transformations generated by supercharges
Qa (the gamma matrices in D = 10 are represented as ΓN ×
I4, where Γ

N are six dimensional gamma matrices. See Sec-

tion 2).

δAa
0 =〠

a

δAa
a0 = −i�ζaΓ0 λ

a
a = −iζ†aλ

a
a, ð59aÞ

δAa
i =〠

a

δAa
ai = −i�ζaΓ

iλaa = −iζ†aΓ
0Γi λ

a
a, ð59bÞ

δAa
4 =〠

a

δAa
a4 = −i�ζaΓ4λ

a
a = −iζ†aΓ

0Γ4 λaa, ð59cÞ

δAa
5 =〠

a

δAa
a5 = −i�ζaΓ5λ

a
a = −ζ†aΓ

6ð Þ Γ0Γ4 Γ 4ð Þλaa, ð59dÞ

δλa =〠
a

δλaa =〠
a

1
2
Fa
MNΓ

MNζa

=〠
a

EaΓ0 − ΓiFa
i5Γ

0 Γ0Γ5À ÁÀ
− iBaΓ0Γ 4ð Þ − iΓiFa

i4Γ
0Γ 4ð ÞΓ 6ð Þ Γ0Γ5À Á�

ζa:

ð59eÞ

Supersymmetry is broken by a part of ζa which is an
eigenstate of Γ0Γ4 with eigenvalue -1, i.e., ζa,−1. Substituting
equations (41a) and (41b) and equations (42a) and (42b)
into equation (59a) and equation (59b), we obtain

δAa
aM = 0, ð60aÞ

δλaa,−1 = 2 EaΓ0 − iBaΓ0Γ 4ð Þ
� �

ζa,−1, ð60bÞ

δλaa,+1 = 0: ð60cÞ
As a characteristic of BPS states, half of the super-

symmetries are broken, i.e., for ζa,−1, and half are unbroken,
i.e., for ζa,+1. The dimensional reduction to D = 4 is trivial.
The six dimensional gamma matrices are replaced by those
given in equation (37). It is notable that in our analysis, there
are two broken supercharges, a result which differs from
those of others. See Harvey, for example, [7]. The difference
is a consequence of the fact these other analyses begin with
the D = 4, N = 2 supersymmetric Yang-Mills-Higgs theory.
In contrast, we begin with the D = 10, N = 1 supersymmetric
Yang-Mills theory with only gauge fields, and through
dimensional reduction, we obtain a second supercharge.
For these dyon solutions, the gaugino field has been explic-
itly set to zero. The broken supersymmetry transformations,
which are generated by the two supercharges, each result in a
nonvanishing contribution to the fermion (gaugino) field.
Furthermore, these transformations which break supersym-
metry do not change the energy of the system so that these
nonvanishing fermionic “zero” modes can be considered as
deformations of the dyon background which keep the energy
of the dyon fixed [7]. Since each of these fermionic modes
carries spin 1/2, it is possible to construct dyon states, i.e.,
deformed dyon backgrounds, with either spin 1/2 or spin 1.

To first order the supersymmetry transformation, equa-
tion (59a) leaves the potential function, Aa

M , unchanged. In
reference [8], Kastor and Na have shown that, because of
the nonlinearity inherent in the supersymmetry transforma-
tions, there are nonvanishing contributions to Aa

M when
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higher order corrections to the supersymmetry transforma-
tions are taken into account. Their methodology utilizes an
iterative procedure to calculate higher order corrections to
the supersymmetry transformations. They perform their
analysis using magnetic monopole solutions, i.e., dyons with
vanishing electric charge or ψ = π/2. Since the changes
resulting from the inclusion of electric charge are not imme-
diately obvious, we review their methodology when electric
charge is included in the analysis.

They begin with an iterative expansion of the supersym-
metry transformations

Ψ = exp δð Þ�Ψ = �Ψ + δ�Ψ + 1
2!
δ2 �Ψ + 1

3!
δ3 �Ψ + 1

4!
δ4 �Ψ, ð61Þ

where Ψ represents both bosonic and fermionic fields after
the transformation and �Ψ the bosonic fields before the trans-
formation. This series can be interpreted as follows: the sec-
ond term to the right of the second equal sign is obtained
directly from equations (60a), (60b), and (60c). The third
term is obtained by substituting the second term into equa-
tions (60a), (60b), and (60c). The series terminates after the
fourth term because of the Grassman nature of ζa,−1.
Substituting equation (60a) and equation (60b) in equation
(61), we obtain

δ2Aa
0 =〠

a

δ2Aa
a0 = 2ζ†a,−1Γ

0Γ 4ð ÞΓjζa,−1B
a
j , ð62aÞ

δ2Aa
i =〠

a

δ2Aa
ai = −i2ζ†a,−1ΓiΓ

jζa,−1E
a
j , ð62bÞ

δ2Aa
4 =〠

a

δ2Aa
a4 = 2ζ†a,−1Γ

0Γ 4ð ÞΓjζa,−1B
a
j , ð62cÞ

δ2Aa
5 =〠

a

δ2Aa
a5 = 2ζ†a,−1Γ

0Γ 4ð ÞΓjζa,−1E
a
j , ð62dÞ

δλa =〠
a

δλaa,−1 =〠
a

2 EaΓ0 − iBaΓ0Γ 4ð Þ
� �

ζa,−1: ð62eÞ

Following Kastor and Na [8], we evaluate the matrix ele-
ments in equations (62a), (62b), (62c), (62d), and (62e). We
first quantize the fermionic zero modes. This involves
replacing the complex constants, a∗−,±1 in ζ−,±1, equation
(16), by the operators aa,−1 and a†a,−1 and then integrating
the anticommutator of the fermionic zero modes, equation
(62e),

δab

ð
dx3dy3 δf λaa,−1, δλ

b†
b,−1: ð63Þ

Using equations (8a), (8b), and (16), we obtain

aa,−1, a†b,−1
È É

=
1
4M

δab, ð64aÞ

a†a,−1, a
†
b,−1

È É
= 0, ð64bÞ

aa,−1, ab,−1
È É

= 0, ð64cÞ

where we have used the fact that the mass of the dyon is

M =
ð
dx3 E

!a
· E
!a

+ B
!a

· B
!a� �

= gv: ð65Þ

Applying equation (64a), (64b), and (64c) in the evalua-
tion of equation (62a), (62b), (62c), (62d), and (62e), we
obtain

δ2Aa
0 = −2μ!m ·

1
g
DΦ
�!a

, ð66aÞ

δ2A
 a

= 2μ!e ×
1
g
DΦ
�!a

, ð66bÞ

δ2Aa
4 = 2μ!m ·

1
g
DΦ
�!a

, ð66cÞ

δ2Aa
5 = 2μ!e ·

1
g
DΦ
�!a

, ð66dÞ

δλa−1 =〠
a

2DΦΓ0 cos ψ + sin ψ −iΓ 4ð Þ
� �h i

ζa,−1: ð66eÞ

Here, the electric dipole moment, due to the spinning
magnetic charge, is

μ
!

m ≡
qm

2Mdyon
ζ†a,−1 S

!
ζa,−1, ð67Þ

and the magnetic dipole moment, due spinning electric
charge, is

μ
!
e ≡

qe
2Mdyon

ζ†a,−1 S
!
ζa,−1: ð68Þ

The spin operator is defined in terms of the Lorentz gen-
erators of the rotation group, i.e.,

Sl ≡ ϵ ljk −
i
4

� �
Γj, Γk
h i

: ð69Þ

Because the supersymmetric spinors, ζa,−1, are eigen-
states of Sx (with eigenvalue 1/2), then

ζ†a,−1 S
!
ζa,−1 = ζ†a,−1S

xζa,−1êx =
1
2
êx: ð70Þ

The complex constants, a−,±1 in ζ−,±1, equation (16), are
arbitrary, and consequently, different sets of dyon solutions
are obtained when quantizing the fermionic modes. Specifi-
cally, choosing both a−,+1 = 0 and a−,−1 = 0 results in spin 0
dyon solutions. Choosing either a−,+1 = 0 or a−,−1 = 0 yields
two sets of spin 1/2 dyons with Sx = +1/2. Alternatively,
interchanging a∗−,±1 with a−,±1 yields dyon solutions with Sx

= −1/2. Setting both constants not equal to zero, simulta-
neously, we obtain spin 1 dyon solutions where Sx = ±1, 0.
Considering all of these dyon solutions in total, we can eval-
uate μ

!
m and μ

!
e, explicitly, where for the spin 0 dyon, Sx = 0,
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for the two spin 1/2 dyons Sx = ±1/2, and for the spin 1 dyon
Sx = ±1, 0.

The potential functions δ2Aa
0 and δ2A

 a
are amenable to

straightforward interpretation. Given that

lim
r⟶∞

1
g
DΦ
�!a

=
1
r2

ear
nm

, ð71Þ

then δ2Aa
a0 and δ2Aa

ai in the limit of large r approach the
classical electric and magnetic dipole potentials. The factor
of 2 preceding each dipole moment is the gyromagnetic
(“gyroelectric”) ratio (Kastor and Na have previously
obtained the gyroelectric ratio in their analysis of magnetic
monopoles within the N = 2 super Yang-Mills theory [8]).

It is apparent that the electric dipole field derived from
the potential δ2Aa

0 is equal but opposite to the field derived
from the potential δ2Aa

4. Not as obvious is the fact that the

magnetic dipole field derived from the potential δ2A
 a

is also
equal but opposite to that derived from the potential δ2Aa

5.
This relationship follows directly from the fact that DiDi
Φa = 0. A similar situation occurs in the Maxwell theory in
which the magnetic field derived from the vector, dipole
potential is, except for a minus sign, identical in form to
the electric field derived from the scalar, dipole potential.

4. Dyons, Type IIB, and Type I SOð32Þ
Superstring Theory

The purpose of this section is to generalize the results of Sec-
tion 3 to the superstring theory. As we show, the solutions
obtained in Section 3 correspond, in superstring theory, to
D3-branes, which are embedded in an M5-brane compacti-
fied on a type IIB torus [16].

First, the arena for discussing the dyon solutions of Sec-
tion 3 is theM5-brane. TheM5-brane is a 5 + 1 hypersurface
propagating in D = 1 + 10 dimensions [17]. The underlying
theory is based on a single copy of the D = 11 Majorana fer-
mions which in D = 10 superstring theory reduces to the two
Majorana-Weyl fermions. The defining characteristic of
these fermions, ε, is that they satisfy a constraint equation,
i.e., κ-symmetry:

Γ 6ð Þϵ = ϵ: ð72Þ

This is precisely the constraint placed on the spinors,
equation (14), defining the dyon solutions in Section 3. Con-
sequently, from the perspective of D = 11, the dyon solutions
obtained previously live, in fact, on an M5-brane.

The application of supersymmetry to string theory is
fraught with significant, nontrivial technical issues. First, in
the case of superstring theory, the bosonic part of the action
based on the Lagrangian density (equation (1)) is replaced
by the Dp-brane action which is given by the non-Abelian
Dirac-Born-Infeld plus Wess-Zumino-like actions (note:
the antisymmetric tensor BAB = 0, where the only nonvan-
ishing R-R potential is Cð1Þ, which is a constant back-
ground).

S = SDBI + SWZ, ð73Þ

where

SDBI = −τp
ð
Mp+1

STr e−Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det g + 2πα′F

� �r� �
, ð74Þ

SWZ = μp

ð
Mp+1

P C 1ð Þ
h i

∧STr e2πα′F
n o

: ð75Þ

Here, τp is the physical tension of the Dp-brane, μp is its
R-R charge, and gαβ = P½GMN � is the pullback of the back-
ground metric GMN . STr indicates a symmetric trace for
terms involving products of the generators of the gauge
group (see reference [1] and references therein). In equation
(74), it is known that after expanding the square root as a
power series in FAB, computation of the symmetric trace
yields ambiguous results in terms of order F6 [18, 19].

The fermionic action based on the Lagrangian density
(equation (1)) is replaced by the fermionic Dp-bane action:

SF =
τp
2

ð
Mp+1

e−Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det g + 2πα′F

� �r
θ 1 − ΓDp

À Á
~M

−1� �αβ
ΓβDα − Δ

� �
θ,

ð76Þ

where Δ vanishes since spacetime background is flat for
the cases we are considering. Here,

Mαβ = gαβ + Fαβ, ð77Þ

and Γα = P½ΓM�. For type IIB D(2n+1)-branes,

ΓD 2n+1ð Þ = 〠
q+r=n+1

A2n+1 q, rð Þ
B q, rð Þ , ð78Þ

and for type IIA D(2n)-branes,

ΓD 2nð Þ = 〠
q+r=n+1

A2n q, rð Þ
B q, rð Þ , ð79Þ

where the ΓDð2nÞ for the type IIA theory and the ΓDð2n+1Þ for
the IIB theory differ by a factor of -1 in references [17, 20].
The reason is derived from the fact that Γð10Þ, denoted
Γð10Þ in [20], is defined with indices raised, whereas in
[17], Γð10Þ is defined with indices lowered. We adopt the
same convention for Γð10Þ, as [20].

A2n+1 q, rð Þ = −1ð Þr+1 iσ2ð Þ σ3ð Þrϵα1⋯α2qβ1⋯β2r Fα1α2
⋯ Fα2q−1α2q

Γβ1⋯β2r
,

ð80Þ

A2n q, rð Þ = −1ð Þr+1Γ 10ð Þϵα1⋯α2qβ1⋯β2r Fα1α2
⋯ Fα2q−1α2q

Γβ1⋯β2r
,

ð81Þ
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B q, rð Þ = q! 2rð Þ!2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det g + 2πα′F

� �r
: ð82Þ

Since our interest is the type I SOð32Þ, our focus will be
the type IIB theory to which the type I SOð32Þ is related. For
the type IIB theory, θ is a 64 component double spinor:

θ =
θ1

θ2

 !
: ð83Þ

Each θi, ði = 1, 2Þ is the 32 component Majorana-Weyl
spinor of positive chirality, i.e., Γð10Þ θi = +1 θi. In equation
(80), the Pauli matrices act on the spinorial index i in θi.
For the Abelian gauge theory, the fermionic action is invari-
ant under κ-symmetry which acts on fermions:

δθ = �κ 1 + ΓD 2n+1ð Þ
� �

, ð84Þ

The action SF , equation (76), corresponding to the fer-
mionic sector of the theory, strictly speaking, only applies
to abelian gauge theories. The extension to non-Abelian
gauge theories is plagued with problems similar to those
occurring in the bosonic action. Specifically, expansion of
the square root in terms of the gauge fields yields products
of generators of the algebra whose symmetric trace is known
to result in inconsistencies at order F2 [18]. At first, we
ignore these problems and assume that the action SF applies
to the non-Abelian theory, in which case D corresponds to
the gauge covariant derivative of the applicable non-
Abelian gauge theory.

We now show that the BPS solutions given in Section 3
are exact solutions of type I SOð32Þ superstring theory. Since
the type I SOð32Þ theory is derived from the type IIB theory,
we, initially, focus on the type IIB theory. In [1], we have
shown that the BPS solutions presented in Section 3 are also
solutions of the equations of motion derived from the non-
Abelian DBI action, equation (73), and are therefore solu-
tions of the type IIB theory with the fermionic degrees of
freedom equal to zero. In general, these bosonic solutions
are not supersymmetric. In [17], Simón has shown that
whether such a set of bosonic solutions preserves supersym-
metry is equivalent to determining if there exist supersym-
metry transformations ε:

ϵ =
ϵ1

ϵ2

 !
, ð85Þ

which preserve the bosonic nature of these solutions, i.e., θ
remains zero, and furthermore, the bosonic solutions remain
unchanged to first order. To satisfy the condition that θ = 0,
the combined κ- and supersymmetry transformations must
vanish, i.e.,

sθ = δκθ + ϵ = 0: ð86Þ

Here, the κ-symmetry transformation is

δκθ = 1 + ΓD 2n+1ð Þ
� �

κ, ð87Þ

Simón has shown that this condition is satisfied when

ΓD 2n+1ð Þϵ = ϵ: ð88Þ

Simón has solved equation (88) for a supersymmetric D3
-brane configuration, i.e., n = 1, with the Abelian gauge field
residing on the brane. We now show how the solutions
obtained by Simón can be straightforwardly extended to
the BPS solutions with non-Abelian gauge fields, given in
Section 3.

For n = 1, equation (78) becomes

ΓD 3ð Þ = STr
1

4!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det g + 2πα′F

� �r ϵα0⋯α3

Á Γα0⋯α3
iσ2 + 6Fa

α0α1
TaΓα2α3

σ1 + 3Fa
α0α1

TaFb
α2α3

Tbiσ2

� �
:

ð89Þ

Substituting equation (89) into equation (88) and rear-
ranging terms, we obtain

STr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det g + Fð Þ

p
I2ϵ = STr 1 + ΓiΓ0DiΦ

aTa cos ψσ3 + sin ψσ1ð ÞÂ
− ΓiΓ0σ3E

a
i T

a + ΓiΓjEa
i T

aD jΦ
bTb

Á cos ψσ3 + sin ψσ1ð Þ − ΓiΓ0B
a
i T

aσ1

+ BaiTaDiΦ
bTb

Á cos ψσ3 + sin ψσ1ð ÞBiaTaEb
i T

biσ2

i
ϵ,

ð90Þ

where I2 is the identity matrix in two dimensions. In transi-
tioning from equation (89) to equation (90), we have
imposed the projection constraints

−Γ 4ð Þσ2ϵ = ϵ, ð91Þ

Γ0ΓΦε = ε: ð92Þ

The matrix ΓΦ is defined as

ΓΦ ≡ Γ4 cos ψ + Γ5 sin ψ: ð93Þ

Substituting equations (41a), (41b), and equation (51)
into the square root term in equation (90), we obtain (see
the appendix for details)

Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + sin2ψ Z2

r Trð Þ2 + Z2
θ Tθ
À Á2 + Z2

ϕ Tϕ
À Á2� �h i2r( )

I2ϵ,

ð94Þ
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where

Zr =DrΦ
r ,

Zθ =
DθΦ

θ

r
,

Zϕ =
DϕΦ

ϕ

r sin θ
:

ð95Þ

Making the same substitutions into the terms to the right
of the equal sign in equation (90), we obtain

Tr 1 + sin2ψ Z2
r Trð Þ2 + Z2

θ Tθ
� �2

+ Z2
ϕ TϕÀ Á2� �� �� �

σ21ϵ:

ð96Þ

The reduction of the right-hand side of equation (90)
proceeds, for the most part, as in [17] without requiring that
the symmetric trace condition, with one exception. The sec-
ond term in the second line of equation (90) requires invok-
ing the symmetric trace condition to vanish. In obtaining
both equation (94) and equation (96), we have used the fact

BiaTa = Ba
i T

a = sin ψZiT
aδai ,

EiaTa = Ea
i T

a = cos ψZiT
aδai :

ð97Þ

Using Zi, defined in equation (95), rather than DΦa
i δ

i
a in

equation (94), is equivalent, geometrically, to transforming
from the orthogonal basis vectors of spherical polar coordi-

nates ð∂r , ∂θ, ∂ϕÞ to the orthonormal basis vectors, ð∂r , bθ , bϕÞ,
i.e., ds2 = dr2 + r2dθ2 + r2 sin2θ dϕ2 = dr2 + bθ2

+ bϕ2
. The

reason for this replacement is to facilitate a comparison of
results, presented here, with those presented in [17], where
the metric tensor is given in an orthonormal basis.

We, now, solve the constraint equations, equation (91)
and equation (92) for ε, obtaining (because we have two
independent supercharges, (a = +, − ), there are two solu-
tions for ε. We have omitted labeling ε with an additional
subscript a so that the notation is less cluttered)

ϵ =
ζa,+1

−iΓ 4ð Þζa,+1

 !
: ð98Þ

Up to a phase, which we take to be zero, we find that
ζa,−1 (equation (16)) is given by

ζa,−1 = ϵ2 = −iΓ 4ð Þϵ1 = −iΓ 4ð Þζa,+1: ð99Þ

The relationship between the type IIB theory, (N = 2, D
= 10) supersymmetry, discussed here, and relevant type I
theory SOð32Þ, (N = 1, D = 10) supersymmetry, can be
gleaned from equation (66e) and equation (99) (it is worth
noting that there is a supersymmetric version of the non-
Abelian Dirac-Born-Infeld action (equation (73)). Its con-
struction is based on a generalization of the principles used
here to extend the supersymmetric results of Section 3 to

superstring theory. See, for example, the work of Bergshoeff
et al. [21]). We define

ϵType I = cos ψϵ2 − sin ψϵ1, ð100Þ

so that

δλaa,−1 = 2DΦΓ0ϵType I: ð101Þ

In summary, we have shown that the dyon solutions
obtained in Section 3 satisfy the κ-symmetry constraint,
equation (88), and are therefore, also, solutions of type IIB
(type I SOð32Þ) superstring theory.

5. T-Duality, Gauge/Gravity Duality,
and Wormholes

In this section, we apply T-duality transformations to the
superstring solutions derived in Section 4 and study the
duality between the supersymmetric string theoretic solu-
tions obtained therein and their gravitational analogue. Spe-
cifically, we apply the T-duality transformations to spatial
dimensions x4 and x5 of the M5-brane, transforming the
gauge potential functions, Aa

4T
a and Aa

5T
a, into embedding

coordinates, 2πα′Aa
4T

a and 2πα′Aa
5T

a. In order that such
transformation be interpreted, straightforwardly, the poten-
tials should not depend on the coordinates x4 or x5 and fur-
thermore should also commute. The metric obtained on the
two resulting D3-branes is derived by pulling back the met-
ric induced by the embedding coordinates [22], i.e., the met-
ric, gμν, is given by

gμν = ημν + 〠
5

M,N=4
ηMNSTr DμA

a
MT

aDνA
b
NT

b
� �

: ð102Þ

After including the back reaction in the T-duality trans-
formations, we find that the potential functions Aa

4T
a and

Aa
5T

a, equations (46a) and (46b), in general, do not com-
mute complicating their interpretation as embedding coor-
dinates. Since the noncommutativity is present only for
solutions with nonvanishing spin, we organize this section
into two subsections: the first dealing with the case of van-
ishing spin and second dealing with the more complicated
case of nonvanishing spin, which includes both spin 1/2
and spin 1 solutions.

5.1. Case 1: Spin 0 Solutions. Before applying T-duality
transformations, we perform a coordinate transformation
in the x4, x5 plane which induces a gauge transformation
on Aa

4 and Aa
5, thereby eliminating Aa

4. Since, for the spin 0
case (see equation (50)):

Aa
4T

a =ΦaTa cos ψ, ð103aÞ

Aa
5T

a =ΦaTa sin ψ: ð103bÞ
By rotating the x4, x5 coordinate axes through an angle
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ðπ/2 − ψÞ, we transform Aa
4 and Aa

5:

Aa
4T

a ⟶ sin ψAa
4T

a − cos ψAa
5T

a = 0,

Aa
5T

a ⟶ cos ψAa
4T

a + sin ψAa
5T

a =ΦaTa = vQ rð ÞTr:

ð104Þ

We note that this transformation leaves unchanged the
components of the Minkowski metric ηMN , ðM,N = 4, 5Þ.
After diagonalizing the matrix Tr , we apply a T-duality
transformation to the x5-coordinate axis. As a consequence,
we obtain two D3-branes embedded in a subspace of theM5
-brane, where the embedding coordinates of the two D3
-branes are x5 = ±LD3 QðrÞðLD3 = 2πα′v = 2πα′Mgluon/gD3Þ
In addition, the value of the electric or magnetic charge asso-
ciated with one D3-brane is opposite in sign of the corre-
sponding charge on the other D3-brane (see Figure 1).

The geometrical interpretation of LD3 is straightforward.
It is one half of the separation between the D3-branes in the
asymptotic region of space, i.e., r⟶∞ (alternatively, we
can transform Aa

4T
a ⟶ Aa

0T
a − Aa

4T
a = 0, which, also,

results in the transformation of the Minkowski metric, coin-
cidentally, identical in form to equation (102). Furthermore,
the quantity LD3 now depends only on the magnetic charge,
qm, and not on the electric charge, qe). This is a consequence
of the fact that limr⟶∞QðrÞ = 1. As noted previously, Ldyon
is the characteristic size of the dyon (see equation (54)).

Using equations (102) and (104), we can calculate the
metric tensor

gμνdx
μdxν = −dtdt +

4π2~v2α′2g2D3 sin2ψ d/duð Þq uð Þð Þ2 + α′
sin2ψg2D3~v

2 dudu

+
4π2~v2α′g2

D3q uð Þ2 ~w2 uð Þ sin2ψ + u2
� �

α′

sin2ψg2D3~v
2 dθdθ

+
4π2~v2α′g2

D3q uð Þ2 ~w2 uð Þ sin2ψ + u2
� �

α′

sin2ψg2D3~v
2 sin2θdϕdϕ,

ð105Þ

where ~wðuÞ = −1 +wðuÞ and ~v = v
ffiffiffiffiffi
α′
p

, and the functions q
ðuÞ and wðuÞ are defined in equations (52a) and (52b). It
is straightforward to calculate the scalar curvature. Details
of performing this calculation can be found elsewhere [1].
We omit presenting the scalar curvature here, since it com-
prises a large number of terms and is not amenable to obvi-
ous interpretation. Nonetheless, we can show that the scalar
curvature

lim
r⟶∞

R⟶
−
24π2 sin ψð Þ4g2D3~v6L6dyon

α′r6
, ifψ ≠ 0,

0, ifψ = 0,

8><>:
ð106Þ

so that the geometry of each D3-brane is asymptotically
flat. Furthermore, we can also show that the scalar curvature,
R, is finite everywhere. In particular, for small values of r, the

scalar curvature is given by

lim
r⟶0

R⟶
216π2 sin4 ψð Þg2

D3~v
6

4π2 sin2 ψð Þ~v4 + 9
À Á2

α′
+

r
Ldyon

 !2

Á 8~v
6g2

D3π
2 sin ψð Þ4 100π2 sin ψð Þ2~v4 − 1089

À Á
5 4π2 sin ψð Þ2~v4 + 9
À Á3

α′
:

ð107Þ

We are constraining the Yang-Mills coupling constant
on the D3-branes such that 0 ≤ g2D3 ≤ 4π. Solutions when
g2
D3 > 4π are obtained using weak/strong duality; i.e., the

dual theory is obtained by interchanging electric and mag-
netic charge and letting g2

D3 ⟶ ð4πÞ/g2D3 .
In Figure 2, we compare plots of the scalar curvature of a

magnetic monopole, with one unit of magnetic charge, to a
dyon with one unit of magnetic and one unit of electric
charge. The mass of the gluon Mgluon =MP/2 (the Planck

mass, MP ≈ 1/
ffiffiffiffiffi
α′
p

), and the Yang-Mills coupling constant
gD3 = 1. Note that the maximum scalar curvature of the
dyon is less that of the monopole. In addition, it can be
shown that when ψ⟶ 0 i.e., qe ⟶∞, the two D3 -branes
merge into a single D3 -brane whose scalar curvature R
⟶ 0. Furthermore, it can also be shown, independent of
the value of ψ, that as r⟶∞, the metric gμν ⟶ ημν and
that the geometry of each D3-brane is asymptotically flat.

5.2. Case 2: Spin 1/2 and Spin 1 Solutions. For the case of
nonvanishing spin, the potential functions Aa

4T
a and Aa

5T
a

do not commute, except in the spin 1 case when the x com-
ponent of the spin, Sx, vanishes. We consider, first, the case
when Sx ≠ 0.

For the case of nonvanishing spin,

Aa
4T

a =ΦaTa cos ψ + 2μ!m ·
1
g
DΦ
�!a

Ta, ð108aÞ

0
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Figure 1: Wormhole. Shown is the embedding diagram of the two
D3-branes with azimuthal angle suppressed. The radial coordinate,
r, has been replaced with the dimensionless coordinate r/Ldyon, and
the embedding coordinate x5 has been replaced with the
dimensionless coordinate x5/LD3.
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Aa
5T

a =ΦaTa sin ψ + 2μ!e ·
1
g
DΦ
�!a

Ta: ð108bÞ

See equation (50), equation (66c), and equation (66d).
The noncommutativity of Aa

4T
a and Aa

5T
a is derived from

the fact that ΦaTa and êx ·DΦ
�!a

Ta do not commute. We
resolve the problem of noncommutativity by performing

the following coordinate transformation:

x4 ⟶ x4 − cos 2ψx0 − sin 2ψx5: ð109Þ

This induces the following gauge transformation:

Aa
4T

a ⟶ Aa
4T

a − cos 2ψAa
0T

a − sin 2ψAa
5T

a = 0, ð110Þ
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(a) Magnetic monopole: the magnetic charge of the monopole is qm = 4π, the electric charge qe = 0, i.e., ne = 0, and the θ-term= 0. Its mass is 4πMgluon
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(b) Dyon: the magnetic charge of the dyon is qm = 4π, the electric charge qe = 1/2, i.e., ne = 0, and the θ-term= −π. Its mass is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/4 + 16π2
p

Mgluon

Figure 2: Scalar curvature: depicted in (a) and (b) are the scalar curvatures of a magnetic monopole and dyon, each without spin. In each
figure, the scalar curvature, R, in units of 1/α′, is plotted as a function of the dimensionless, spherical coordinates r/Ldyon, and θ. The mass of
the gluon Mgluon = ðMP/2Þ. The Yang-Mills coupling constant gD3 = 1.
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thereby eliminating the noncommutativity of Aa
4T

a and Aa
5

Ta. In addition, the metric tensor ηMN is transformed to

ηMNð Þ⟶
−sin 2ψð Þ2 cos 2ψð Þ sin 2ψð Þ cos 2ψð Þ
cos 2ψð Þ 1 sin 2ψð Þ

sin 2ψð Þ cos 2ψð Þ sin 2ψð Þ −cos 2ψð Þ2 + 2

0BB@
1CCA,

ð111Þ

for components M,N = 0, 4, 5. The remaining ηMN are
unchanged.

When Sx ≠ 0, we limit our consideration to solutions
where the electric charge, qe = 0, i.e., magnetic monopole
solutions. Our reason for this limitation is that some calcu-
lations, including the curvature tensor, are calculatingly
challenging and furthermore comprise such a large number
of terms that they are not straightforward to interpret. For
the magnetic monopole solutions, ψ = π/2 so that the metric
simplifies to

ηMNð Þ⟶
0 −1 0

−1 1 0

0 0 1

0BB@
1CCA: ð112Þ

Using equation (102), equation (112), and equation
(108b), we can calculate the metric tensor, gμν. For these
solutions,

g00 =
A
B
: ð113Þ

Here,

A = 4 −12π2~v2α′g2
D3 ~w uð Þ2q uð Þ2 + u2

� �
× Sxð Þ2q uð Þ4α′2π2 ~w uð Þ2g6

D3 sin
2θ,

ð114aÞ

B = u2 4π2~v2α′g2D3 ~w uð Þ2q uð Þ2 + u2
� �

: ð114bÞ

The spatial components of the metric, gij, are the same
as those of the spin 0 case, equation (105), with an important
difference in the ϕ component of the metric. Because of the
nonvanishing component of the spin Sx, reference frames
retrogress about the x-axis so that the ϕ coordinate is trans-
formed:

ϕ⟶ ϕ −Ωt: ð115Þ

The angular speed, Ω, is

Ω = −
8π2α′q uð Þ3 ~w2 uð Þ g5D3~v

2Sx
È

4π2α′q uð Þ2 ~w2 uð Þg2D3~v2 + u2
: ð116Þ

Relative to spatial infinity, inertial frames are dragged

with speed

vΩ = Ldyonu sin θ Ωj j: ð117Þ

We note that these solutions are, strictly speaking, only
accurate to Oðα′Þ or, equivalently, accurate for values of
the gluon mass, Mgluon, less than the Planck mass, MP . In
fact, we can show that whenever, Mgluon¡MP, the speed with
which inertial frames are dragged is less than the speed of
light, thus avoiding the possibility of closed time-like curves.
In Figure 3, we show a plot of the spatial dependence of vΩ
for Mgluon = ð1/2ÞMP.

The scalar curvature in the case of nonvanishing spin is
markedly different from that of vanishing spin. Regarding
its general features, we can show that the scalar curvature,
R∝ 1/ρ2, is the cylindrical polar coordinate, ρ⟶ 0. Here,
ρ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 + z2

p
. In particular, as r⟶ 0, i.e., ρ, x⟶ 0,

limρ,x⟶0R⟶ −
Ldyon
ρ

� �2 18g2D3~v
2

4π2~v4 + 9
À Á

α′
, ð118Þ

where ~v = v
ffiffiffiffiffi
α′
p

. Furthermore, we can also show that

lim
x⟶∞

R⟶ −
2 ρ2 + L2dyon
� �

g2D3~v
2

ρ2α′
: ð119Þ

In Figure 4(a), we show a plot of the scalar curvature
whenMgluon = ð1/2ÞMP and gD3 = 1. In Figure 4(b), we show
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Figure 3: Frame dragging. Shown in the plot is the speed, with
which reference frames are dragged around the wormhole relative
to a stationary reference frame in a region of space far from the
wormhole, i.e., r⟶∞. The speed, vΩ, is given as a multiple of
the speed of light.
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a plot of ρ2R, evaluated at ρ = 0. The purpose of scaling by ρ2
is to remove the divergent part of the scalar curvature.

Surprisingly, the scalar curvature is independent of Sx.
The reason is that the R00 component of the Ricci tensor is
the only component which depends on Sx. Specifically, R00
∝ ðSxÞ2. In addition, the g00 component of the metric tensor
is the only component which depends on Sx, i.e., g00 ∝ ðSxÞ2.
Thus, after contracting the metric tensor with the Ricci ten-
sor, the scalar curvature is independent of Sx . As a result,
after contracting the metric tensor with the Ricci tensor,
the scalar curvature is independent of Sx. This is consequen-
tial for the spin one monopole solutions when Sx = 0. For
spin one, when Sx = 0, equations (108a) and (108b) reduce
to equations (103a) and (103b), which would seem to indi-
cate that the scalar curvature is the same as for the spin 0
case. Alternatively, as well as preferably, we can obtain the
case Sx = 0 as the limit Sx ⟶ 0 for the case of nonvanishing
Sx. Taking the limit, Sx ⟶ 0, we find that g00 ⟶ 0, R00
⟶ 0, while all other components of the metric tensor, the
Ricci tensor, and scalar curvature remain unchanged. This
analysis demonstrates that the case of a spin one, magnetic
monopole with Sx = 0, is inherently different from the that
of a magnetic monopole with vanishing spin.

It is interesting to contrast the geometries of vanishing
spin with nonvanishing spin solutions in the asymptotic
region of space. For the spin zero monopole, as r⟶∞,
the metric approaches the Minkowski metric, and the scalar
curvature R⟶ 0. For the nonvanishing spin monopole, the

metric also approaches the Minkowski metric, transformed
using “light cone” coordinates; however in contrast, as ρ
⟶∞, the scalar curvature

R⟶ −
2g2D3~v

2

α′
: ð120Þ

6. Conclusions

In this study, we have investigated the superstring analogue
of the ‘t Hooft/Polyakov monopole. We have conducted this
study in several steps. First, because superstring theory nat-
urally resides in ten dimensions, we have reviewed the
dimensional reduction of D = 10, N = 1 supersymmetry in
a way that specifically applies to this study. The theory
underlying the ‘t Hooft/Polyakov monopole is based on a
real-valued scalar boson, which undergoes spontaneous
symmetry breaking. In this study, we assume this boson to
be complex-valued so that the monopole (dyon) possesses
both magnetic and electric charge. We, next, recast the scalar
dyon theory as a supersymmetric gauge theory in six dimen-
sions. The complex scalar field is replaced by two real fields
which correspond to components of the gauge field in the
two extra dimensions. Applying supersymmetry transforma-
tions to the gauge fields, we obtain a theory comprising of
dyons with spin zero, one half, or one. In addition to posses-
sing both magnetic and electric charge, the dyon possesses
both electric and magnetic dipole moments. We show that
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Figure 4: Rotating magnetic monopole: in (a), the scalar curvature, R, in units of 1/α′, is plotted as a function of the dimensionless,
cylindrical cooordinates ρ/Ldyon and x/Ldyon. In (b), the scalar curvature, which has been rescaled to remove its divergent behavior, is
plotted as a function of x/Ldyon at ρ = 0. The charge of the monopole is qm = 4π, i.e., the electric charge qe = 0 and the θ-term= 0. Its
mass is 4πMgluon. The Yang-Mills coupling constant gD3 = 1.
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both the gyromagnetic and gyroelectric ratios of each are
exactly two, as would be expected [23] (the gyroelectric ratio
has been reported, previously, by Kastor and Na). Next, we
reinterpret the supersymmetric dyon solutions as solutions
in N = 2 type IIB superstring theory. For N = 2 type IIB
superstring theory, the number of on-shell bosonic and fer-
mionic degrees of freedom, in general, is unequal, the num-
ber of fermionic degrees is sixteen, and the number of
bosonic degrees is eight. Supersymmetry requires that the
degrees of freedom of each be equal. To prove that the
supersymmetric dyon solutions are also supersymmetric
solutions in N = 2 type IIB string theory, we show that the
solutions satisfy κ-symmetry constraint equations, which,
when satisfied, remove half of the fermionic degrees of free-
dom. We then recast the solutions in the type IIB theory as
solutions in the type I SOð32Þ theory. We, next, perform a
T-duality transformation on the two components of the
gauge field in the two extra dimensions. The T-duality trans-
formation is complicated by the fact that the two gauge fields
do not commute, a complication we resolve by eliminating
one of the two components of the gauge field by a judi-
ciously chosen coordinate/gauge transformation. The trans-
formed solution is a rotating wormhole joining two D3
-branes. The electric or magnetic charge of the dyon associ-
ated with each D3-brane is opposite in sign to that of the
other D3-brane. Finally, we analyze the geometry of the D3
-branes for two cases: one corresponding to a dyon with
vanishing spin and the other corresponding to a magnetic
monopole with nonvanishing spin. For the case of vanishing
spin, we calculate the metric tensor and scalar curvature. We
find that the scalar curvature is finite, everywhere (we have
obtained comparable results in a previous study [1]). In par-
ticular, the scalar curvature vanishes, asymptotically far from
the throat of the wormhole. For the case of nonvanishing
spin, we similarly calculate the metric tensor and find that
the spin of the magnetic monopole causes frame dragging,
equation (117). We then calculate the scalar curvature.
Unlike the case of vanishing spin, the scalar curvature
diverges along the spin quantization axis. Specifically, it
diverges as 1/ρ2, ρ being the radial, cylindrical coordinate.
Also, in contrast to the case of vanishing spin, we find that
as ρ⟶∞, the scalar curvature, on the boundary,
approaches a constant negative value, equation (120).

In summary, we note that the wormhole solutions,
obtained in this study, provide an example of a gauge, grav-
ity duality. Furthermore, because they correspond to BPS
states and are based on supersymmetry where quantum cor-
rections are expected to be well controlled, we expect such
quantum corrections not to modify these solutions in a sig-
nificant way. Consequently, the underlying theoretical prin-
ciples may provide some insight in formulating a theory of
quantum gravity.

Appendix

In the appendix, we present a heuristic derivation of equation
(94). First, we can show by direct calculation that if Tr, Tθ, and
Tϕ commute, then the left side of equation (90) evaluates to

Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + sin2ψ Z2

r Trð Þ2 + Z2
θ Tθ
À Á2 + Z2

ϕ Tϕ
À Á2� �h i2r( )

I2ϵ:

ðA:1Þ

On the other hand, if Tr, Tθ, and Tϕ do not commute,
there are additional terms. For example, one such term is pro-
portional to sin6ψ:

−Z2
r Z

2
θZ

2
ϕ Tϕ2TθTrTrTθ − TθTϕTrTθTϕTr − TϕTθTθTrTrTϕ
�

+ Tθ2TrTϕTϕTr + Tr2TθTϕTϕTθ − Tr2Tθ2Tϕ2
�
sin6ψ:

ðA:2Þ

After expanding the square root, we obtain products of
such terms. In applying the symmetric trace condition to
expressions like equation (A.2), we first symmetrize each of
the terms containing Tr, Tθ, and Tϕ with respect to their
superscript index. This effectively makes such terms commute
so that the terms vanish. Consequently, the expression for the
square root reduces to equation (94).
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