ONE-WAY INDEPENDENT MEASURES ANOVA'S

Summary ANOVA Table:

Source of Variation	Sum of Squares	Degrees of Freedom	Variance Estimate (Mean Square)	F-ratio
Between	$SS_B = \sum_{k=1}^{K} \frac{T_k^2}{n_k} - \frac{G^2}{N}$	K – 1	$MS_B = \frac{SS_B}{K-1}$	$F = \frac{MS_B}{MS_W}$
Within	$SS_W = \sum X^2 - \sum \frac{(T_k)^2}{n_k}$	N – K	$MS_W = \frac{SS_W}{N-K}$	
Total	$SS_T = SS_W + SS_B$	N – 1		

Steps:

- 1) State the research question that the analysis is intended to answer. Did the IV have any effect on performance?
- 2) State the null hypothesis (all grp means are =; the IV has no effect). State the alternative hypothesis (1 or more of the grp means aren't =; there is a difference somewhere).
- 3) Locate the critical region and determine the df's: $df_{\text{between}} = \# \text{ of levels of the IV} - 1 = k - 1$ $df_{\text{within}} = N - k$ $df_{\text{total}} = N - 1$
- 4) Complete the necessary computations to compute the Sum of Squares.
- 5) Compute the Mean-Squares: MS_{between} = (systematic variance + error variance) / df_{between groups} = SS_{between} / df_{between groups} MS_{within} = error variance / df_{within groups} = SS_{within} / df_{within groups}

6) Compute the F-ratio: $F = MS_{between} / MS_{within}$

7) Interpret the results: Is the result significant?

- Compare the p-value to the criterion level (level of significance)
- Compare F-obtained to F-critical

Example 1

<u>Research Purpose:</u> to assess the effect of frat membership on the popularity of college men

Research methodology:

- Compare the avg # of phone calls received each week for male college students living in residence halls & for male college students living in fraternity houses
- Randomly select 10 sophomores from each grp & assess the # of phone calls received by each in a 1-wk pd

Independent Variable: Dependent Variable:

Step 1: State the research question

Step 2: State the hypotheses

Null hypothesis: Alternate hypothesis:

Step 3: Locate the critical region – what are the criteria for rejecting the null hypothesis?

- α-level?
- 1-tailed or 2-tailed?
- df's associated with the 2 variance estimates? $df_B = k - 1 =$

 $df_W = N - k =$

• Critical value for F:

Step 4: Complete the Sum of Squares:

Compute the sum of scores (the total), the mean score, & the sum of squared scores for each grp, & the grand total & the grand mean.

Res Hall	X_1^2	Frat	X_{2}^{2}	
2		4		
6		6		
3		4		
2		2		
4		12		
0		16		
2		4		
15		10		
1		0		
0		5		Totals
$\sum X_1 = T_1 =$	$\sum X_1^2 =$	$\sum X_2 = T_2 =$	$\left(\sum X_2\right)^2 =$	G=
$\frac{\sum X_1 = T_1}{\left(\sum X_1\right)^2} =$	$\overline{X}_1 =$	$\sum X_2 = T_2 =$ $\sum X_2^2 =$	$\overline{X}_2 =$	$\sum X^2 =$
$s_1^2 =$		$S_2^2 =$		

Calculate the sum of squares between-groups, the sum of squares within-groups & the total sum of squares.

$$SS_B = \sum_{k=1}^{K} \frac{T_k^2}{n_k} - \frac{G^2}{N} =$$
$$SS_W = \sum X^2 - \sum \frac{(T_k)^2}{n_k} =$$
$$SS_T = \sum X^2 - \frac{G^2}{N} =$$

Step 5: Calculate the variance estimates, the mean squares for between groups and within-groups.

$$MS_{B} = \frac{SS_{B}}{K-1} = MS_{W} = \frac{SS_{W}}{N-K} =$$

Step 6: Compute the test statistic, the F-ratio.

$$F = \frac{MS_B}{MS_W} =$$

Summary ANOVA for Telephone Calls Example

Summary ANOVA					
Source Between Within Total	SS	Df	MS	F	F _{CV}

Step 7: Interpret the results

Compare the test statistic (the computed *F* ratio) with the critical value (from the table):

The *p*-value:

Conclusion?

EXAMPLE #2

<u>Purpose of study</u>: to assess the effect of method of reinforcement on the # of trials needed to complete a learning task

Research methodology:

- 21 subjects are randomly assigned to 1 of 3 methods of reinforcement
- After the experimental txt, each subject completes the learning task

Independent Variable: Dependent Variable:

	Methods of R	Reinforcement	
Method 1 X_1^2	Method 2 X_2^2	Method 3 X_3^2	
1	8	7	
4	6	6	
3	7	4	
2	4	9	
5	3	8	
1	5	5	
6		7	
		5	Totals
$\mathbf{n}_1 = \sum X_1^2 =$	$n_2 = \sum_{X_2^2} =$	$\mathbf{n}_3 = \sum X_3^2 =$	N=
$\sum X_1 = T_1 =$	$\sum X_2 = T_2 =$	$\sum X_3 = T_3 =$	G=
$\overline{X}_1 = \sum X / n =$	$\overline{X}_2 =$	$\overline{X}_3 =$	$\sum X^2 =$
$\left(\sum X_1\right)^2 = T_1^2 =$		$\left(\sum X_3\right)^2 = T_3^2 =$	$\sum_{k=1}^{K} T^{2} =$
$s^2 =$	$s^2 =$	$s^2 =$	grand mean=

Summary ANOVA for Learning Trials Exam	ple
--	-----

Summary ANOVA					
Source Between Within Total	SS	df	MS	F	F _{Crit}