ONE-WAY INDEPENDENT MEASURES ANOVA'S

Introduction to Analysis of Variance

Purpose:

•

e.g. academic performance (number of problems solved correctly) in 3 different temperature conditions:

Treatment 1 (50°) \rightarrow M = 1 Treatment 2 (70°) \rightarrow M = 4 Treatment 3 (90°) \rightarrow M = 1

t-Tests vs. ANOVA's

Similarities

- •
- •

Differences

- •
- •

Research Design Terminology

Independent variable (IV)

Quasi-independent variable

Factor

Levels of a factor

Single Factor, Independent Measures Designs

Statistical Hypotheses for ANOVA

The Test Statistic for ANOVA

The test statistic for ANOVA is very similar to the t-statistic:

- t = <u>difference obtained between sample means</u> difference expected by chance (error)
- F = <u>variance (differences) between sample means</u> variance (differences) expected by chance (error)

F-ratio based on variance

The variance in the numerator of the F-ratio:

Set 1	Set 2
$M_1 = 20$	$M_1 = 28$
$M_2 = 30$	$M_2 = 30$
$M_3 = 35$	$M_3 = 31$
$s^2 = 58.33$	$s^2 = 2.33$

The variance in the denominator:

A large value for the F-ratio:

The Logic of ANOVA

e.g. Data from experiment examining learning performance (number of problems solved correctly) under 3 temperature conditions:

Tx 1: 50°	Tx 2:70°	Tx 3: 90°
(Sample 1)	(Sample 2)	(Sample 3)
0	4	1
1	3	2
3	6	2
1	3	0
0	4	0
M =	M =	M =
<u>n =</u>	<i>n</i> =	<i>n</i> =

Goal of ANOVA:

1st step:

Next step:

Sources of Variation

The analysis process divides the total variability into 2 basic components or sources of variation:

1. Between-Groups/Treatments Variation (s_B^2) :

2. Within-Groups/Treatments Variation (s_W^2) :

Overall Goal of ANOVA

There are always 2 possible explanations for the differences or variance that exists between treatments:

1) Treatment Effect, Between-Grps/Txts Variance (s_B^2) :

2) Chance, Within-Grps/Txts Variance (s_W^2) :

3 Primary Sources for Chance Differences:

- 1. Individual differences
- 2. Experimenter error
- 3. Random sampling fluctuations

The F ratio:

F =

When the treatment has no effect:

When the txt does have an effect:

Txt 1	Txt 2	Txt 3	
50°	70°	90°	
(Sample 1)	(Sample 2)	(Sample 3)	
0	4	1	$\Sigma X^2 =$
1	3	2	G =
3	6	2	N = k =
1	3	0	k =
0	4	0	
$T_1 =$	$T_2 =$	$T_3 =$	
$n_1 =$	$n_2 =$	$n_3 =$	
$M_1 =$	$n_2 = M_2 =$	$n_3 = M_3 =$	
$\Sigma X^2 =$	$\Sigma X^2 =$	$\Sigma X^2 =$	
$\underline{SS_1} =$	$SS_2 =$	$SS_3 =$	

ANOVA Notation & Formulas

 $\mathbf{F} =$

<u>Analysis of Sum of Squares:</u> **Between-groups sum of squares** $(SS_B) = K$

$$SS_{B} = \sum_{k=1}^{K} \frac{T_{k}^{2}}{n_{k}} - \frac{G^{2}}{N}$$

$$SS_{B} = \left[\frac{(\sum X_{1})^{2}}{n_{1}} + \frac{(\sum X_{2})^{2}}{n_{2}} + \dots + \frac{(\sum X_{k})^{2}}{n_{k}}\right] - \left[\frac{(\sum X_{1} + \sum X_{2} + \dots + \sum X_{k})^{2}}{N_{total}}\right]$$

Within-Treatments/Groups Sum of Squares $(SS_W) =$

$$SS_{W} = \sum X^{2} - \sum \frac{(T_{k})^{2}}{n_{k}}$$

$$SS_{wg} = \left[\sum X_{1}^{2} + \sum X_{2}^{2} + \dots + \sum X_{k}^{2}\right] - \left[\frac{(\sum X_{1})^{2}}{n_{1}} + \frac{(\sum X_{2})^{2}}{n_{2}} + \dots + \frac{(\sum X_{k})^{2}}{n_{k}}\right]$$

 $SS_{\text{within}} = \Sigma SS_{\text{inside each treatment}}$

Total Sum of Squares $(SS_T) =$ $SS_{total} = \left[\sum X_1^2 + \sum X_2^2 + \dots + \sum X_k^2\right] - \left[\frac{\left(\sum X_1 + \sum X_2 + \dots + \sum X_k\right)^2}{N_{total}}\right]$ $SS_T = \sum X^2 - \frac{\left(\sum X\right)^2}{N} = \sum X^2 - \frac{G^2}{N}$

Analysis of Degrees of Freedom (df)

Total degrees of freedom M = N + 1 = 1

 $df_{\text{total}} = N - 1 =$ $df_{\text{total}} = df_{\text{within}} + df_{\text{between}} =$

Within-treatments degrees of freedom $df_{\text{within}} = \Sigma(n-1) = \Sigma df_{\text{in each treatment}} = N - k =$

Between-treatments degrees of freedom $df_{between} = #$ of levels of the IV -1 = k - 1 =

Calculations of Variances

Variance is defined as the mean of squared deviations: $MS = s^2 = \frac{SS}{df}$

Between-treatments mean square

$$MS_{between} = s_{between}^2 = \frac{SS_{between}}{df_{between}} = \frac{SS_{between}}{k-1} =$$

Within-treatments mean square

 $MS_{within} = s_{within}^2 = \frac{SS_{within}}{df_{within}} = \frac{SS_{within}}{N-k} =$

$$F' = \frac{MS_B}{MS_W} =$$

Summary ANOVA Table:

Source of Variation	Sum of Squares	Degrees of Freedom	Variance Estimate (Mean Square)	F-ratio
Between	$SS_B = \sum_{k=1}^{K} \frac{T_k^2}{n_k} - \frac{G^2}{N}$	K – 1	$MS_B = \frac{SS_B}{K-1}$	$F = \frac{MS_B}{MS_W}$
Within	$SS_W = \sum X^2 - \sum \frac{(T_k)^2}{n_k}$	N – K	$MS_W = \frac{SS_W}{N-K}$.
Total	$SS_T = SS_W + SS_B$	N – 1		

The F-Distribution