TRANSFORMING RAW SCORES INTO SCALED SCORES

Definition of Scaled Scores:

Adding or Subtracting a Constant

- changes the mean
- no change in variation (standard deviation)

Original	Add Constant	New
1	+ 5	6
2	+ 5	7
3	+ 5	8
4	+ 5	9
5	+ 5	10
\bar{X} = 3	+ 5	$ar{X}$ = 8
σ = 1.581		σ = 1.581

Multiplying or Dividing by a Constant

- changes the mean
- changes the variation (standard deviation)

Original	Multiply Constant	New
1	x 5	5
2	x 5	10
3	x 5	15
4	x 5	20
5	x 5	25
$ar{X}$ = 3	x 5	$ar{X}$ = 15
σ = 1.5811		σ = 7.906

STANDARD DISTRIBUTIONS

• Composed of scores that have been transformed (using scaling procedures) to create predetermined values for $\mu \& \sigma$

Purpose of Transforming Raw Scores (X values) into Standard Scores:

1)

2)

Z-SCORE DISTRIBUTIONS

What They Are:

- A specific type of standardized distribution
- A distribution of raw scores that has been transformed into deviation scores
- A distribution that has a mean of zero and a std dev of 1

Relevant Formulas:

Determining a z-Score from a Raw Score: $z = \frac{X - \mu}{\sigma}$ or $z = \frac{X - \overline{X}}{S}$

Determining a Raw Score from a *z*-Score: $X = \mu + z\sigma$

Example:

For a distribution with a mean of μ = 60, and a std deviation of σ = 5, what X value corresponds to a *z*-score of *z* = -2.00?

Properties of Z-Score Distributions

1) Shape

2) The Mean

3) The Standard Deviation

Examples:

For distribution A (M = 70 & SD = 3) the score X = 76 corresponds to a z score of what?

For distribution B (M = 70, SD = 12), the score X = 76 corresponds to a z score of what?

For a distribution of standardized IQ scores with μ = 100 & σ = 15, a score of 130 would be transformed into a *z* score of what?

For a distribution of scores with $\mu = 80 \& \sigma = 12$, find the *z*-score value corresponding to each of the following scores: X = 98 X = 86 X = 77 X = 75

For a distribution of scores with $\mu = 80 \& \sigma = 12$. Find the X value corresponding to each of the following *z*-scores: z = -1.25 z = +2.50 z = -0.75 z = +1.00

Prof A's History Exam \bar{X} = 60 S = 10 Prof B's History Exam \bar{X} = 70 S = 6

Emma is in Prof A's class, & her score was 86.

Her boyfriend Tanner is in Prof B's class, & his score was 84.

Who did better on the exam?

What did you base your comparison on?

CONCEPTUAL MAP

