PROBABILITY THEORY

"Did you hear the one about the statistician? Probably...."

Probability

Definition:

Examples:

Probability may be expressed as:

- a fraction
- a proportion
- a percentage

Probability is measured from 0-1:

Equation to calculate the probability of any particular outcome:

In a situation where several different outcomes (A, B, C, D, etc.) are possible, the probability for any particular outcome is represented by the following equation:

Probability of A = <u>number of outcomes classified as A</u> total number of possible outcomes

Examples:

Probability of selecting the king of hearts:

Probability of selecting an ace:

Dr. Okine

p(spade) =

p(heads) =

You have just bought a ticket for the local lottery and your friend has bought 2 tickets. If 500 tickets were sold:

What is the probability that you will win?

What is the probability that your friend will win?

Addition Rule of Probability/Addition Theorem of Probability/The "Or Rule" of Probability

Used:

- •

Equation:

- p(A or B) = p(A) + p(B)
- For mutually exclusive random events, the probability of either 1 event or another event occurring equals the sum of the probabilities of the individual events.

Examples:

p (jack or queen)

You have just bought a ticket for the local lottery and your friend has bought 2 tickets. If 500 tickets were sold, what is the probability that either you or your friend will win?

Equation for events that aren't mutually exclusive:

p(A or B) = p(A) + p(B) - p(A and B)

Example:

What is the prob of obtaining a jack or heart from a deck of cards?

<u>Multiplication Rule of Probability/Multiplication Theorem of</u> <u>Probability/The "And Rule" of Probability</u>

Used:

Examples:

Equation:

- $p(A, B) = p(A) \ge p(B)$ $p(A, B, C) = p(A) \ge p(B) \ge p(C)$
- The probability of two or more independent events occurring together is equal to the product of their individual probabilities.

Examples:

p(heart and jack) =

If you take a 20-question T/F test that you haven't studied for, assuming random guessing, what is the probability that you will miss all 20 questions?

Concept Review

Nielson/NetRatings (2000) study of the characteristics of internet users:

Category	Frequency
Internet users who are female	30.30 million
Internet users who are male	40.20 million
Internet users who are full-time students	9.52 million
Total number of internet users	70.50 million

p(male) =

p(male internet user or female internet user) =

p(female internet user or full-time college student internet user) =

p(female internet user and full-time college student internet user) =

Conditional Probability

Definition:

Used:

Equation for the prob of a sequence of non-independent events: $p(A, B) = p(A) \ge p(A) \ge p(A)$ $p(A, B, C) = p(A) \ge p(A) \ge p(B|A) \ge p(C|A, B)$

Examples:

What is the probability of obtaining a straight royal flush (10, jack, queen, king, ace) in diamonds in 5 consecutive draws w/out replacement?

What is the probability of drawing aces in 4 consecutive draws w/out replacement?

What is the probability of obtaining 3 heads in 5 flips of a fair coin?

Practice Problem: What is the probability of obtaining 4 heads in 5 flips of a fair coin?

Conditional probability

The formula for the probability of B given A: p(B|A) = p(A, B)p(A)

Example: In a study of psychotherapy outcomes for clients with and without a college degree, the results are summarized in the following table of probabilities:

	College Degree (A)			
		Yes	No	Total
Psychotherapy Outcome (B)	Good	.30	.12	.42
	Poor	.15	.43	.58
	Total	.45	.55	1.00

What is the probability that a person will have success in psychotherapy?

Given that a person is a college graduate, what is the probability that the person will have a good psychotherapy outcome?

Does the added information about education aid in predicting psychotherapy success?

PROBABILITY PRACTICE PROBLEMS

There are 900 Psychology majors and 500 Sociology majors at a university with 12,000:

- 1. What is the probability that the next person who comes through the student union front door will be a Psychology major?
- 2. What is the probability that the next person who comes through the student union front door will be a Sociology major?
- 3. What is the probability that the next person who comes through the student union front door will be a Psychology major or a Sociology major?
- 4. If 50 students are Psychology/Sociology double majors, what is the probability that the next person who comes through the student union front door will be a Psychology major or a Sociology major?

Use the following probabilities to solve the next few problems:

	Probability
Having schizophrenia	.01
Employed by the government	.25
Employed in the private sector	.65
Unemployed	.10
High sensation seeker	.20
Low sensation seeker	.10

- 5. What is the probability of being either employed by the government or unemployed?
- 6. What is the probability of being either a high sensation seeker or a low sensation seeker?

- 7. What is the probability of being either employed in the private sector or employed by the government?
- 8. What is the probability of both being employed by the government and having schizophrenia?
- 9. What is the probability of both being employed by the private sector and having schizophrenia?
- 10. What is the probability of being employed by the government, a high sensation seeker, and having schizophrenia?
- 11. What is the probability of being a low sensation seeker, unemployed, and having schizophrenia?

A researcher conducted a survey that asked parents to estimate the daily time 4year-old children spent doing various activities. Use the results of the survey to solve the following several problems.

Sample Characteristics	Frequency	Activities	Minutes
			Per Day
Sex:		Chores	32
Girls	115	Educational Activities	78
Boys	135	Outside Play	65
TOTAL	250	Personal Care	60
		Sleep	510
		Socializing	45
Ethnicity:		Television: Educational	66
White	95	Television: Noneducational	294
African American	89	Videos (entertainment)	65
Latino/Hispanic	38	Video Games	125
Other	28	Other	100
TOTAL	250	TOTAL	1440

- 12. What is the probability of a child being male?
- 13. What is the probability of a child being either White or African American?
- 14. What is the probability of a child being female and White?
- 15. Disregarding the time of day, what is the overall probability that a child is watching either noneducational or educational television?
- 16. Disregarding the time of day, what is the overall probability that a male child is watching noneducational television?
- 17. Disregarding the time of day, what is the overall probability that a child is either socializing or doing chores?
- 18. Disregarding the time of day, what is the probability of child's being male and either watching television or playing video games?
- 19. Disregarding the time of day, what is the probability of a child's being female and either socializing or playing video games?
- 20. Disregarding the time of day, what is the probability that a child in this study is male and either White or Latino/Hispanic and sleeping?

Connection between Probability and Sampling

- Inferential statistics:
- Two stage process:

1) Identify the types of samples that probably would be obtained from a specific population

e.g. Populations are 2 jars of marbles: Jar 1 – 50 white marbles & 50 black marbles Jar 2 – 10 white & 90 black marbles What color are you likely to draw if you select a single marble from jar 1? Jar 2?

2) Use the sample to make an inference about the population

e.g. If you select a sample of n=4 marbles and all are black, which population did the sample probably come from?

• Inferential procedures are typically built around the concept of probability