GRAPHS

"A picture is worth a thousand words." Barnard (1927)

Graphs Are Used To: 1.

1.

2.

3.

But Graphs Can Distort

Example

Two graphs showing the number of major felonies in a city over a 3-year period. Both graphs show exactly the same data.

Year	Number of major felonies
2000	218
2001	225
2002	229

Basic Terminology for Graphs

Axes:

X-axis (the abscissa)

- The horizontal line of a graph
- In freq distribution graph, the DV (scores) is represented the X-axis
- In a graph depicting the results of an experiment, the IV is represented on the X-axis

Y-axis (the ordinate)

- The vertical line of a graph
- In a frequency distribution graph, the frequency is represented on the Y-axis
- In a graph depicting the results of an experiment, the DV is represented on the Y-axis

General Rules for Constructing Graphs

- Give the graph a clear, unambiguous title or figure caption
- Assign appropriate labels and meaningful numbers to each axis
- Values on the X-axis increase from left to right
- Values on the Y axis increase from bottom to top
- The pt where the 2 axes intersect should have a value of (0, 0)
- When plotting data from a frequency distribution, plot the DV (score) along the abscissa and the frequency along the ordinate
- When plotting experimental relationships, plot the IV along the abscissa and the DV along the ordinate
- The graph should be constructed so that its height (Y-axis) is approximately 2/3rd to 3/4th of its length
- Violating these rules produces graphs that give a misleading picture of the data

GRAPHS FOR NOMINAL OR ORDINAL DATA

3

Bar graphs How to draw:

Example:

A bar graph showing the distribution of personality types in a sample of college students. Because personality type is a discrete variable measured on a nominal scale, the graph is drawn with space between the bars.

Class Example:

Plot class members' eye color (brown, blue, green, other) on the X-axis and frequency on the Y-axis

GRAPHS FOR INTERVAL OR RATIO DATA

1) Histograms

2) Polygons

Class Example:

We will use the data in the table below to:

- 1. sketch a frequency distribution histogram
- 2. sketch a frequency distribution polygon
- 3. sketch a cumulative frequency distribution polygon
- 4. sketch a relative frequency distribution polygon
- 5. sketch a cumulative relative frequency polygon
- 6. sketch a cumulative percent polygon

X	f	cum f	relative f (p)	cum relative freq (p)	cum percent (%)
6	1				
5	2				
4	2				
3	4				
2	2				
1	1				

Frequency histogram

What it is:

What it's used for:

How to draw:

Frequency polygon

What it is:

What it is used for:

How to draw it:

<u>Cumulative frequency polygon</u>

Cumulative frequency:

How to draw:

Relative frequency polygon (proportions)

Relative frequencies:

Purpose:

How to draw:

Cumulative relative frequency polygon (proportions)

Cumulative relative frequency:

How to draw:

<u>Cumulative percent polygon (percentiles)</u>

Cumulative %:

How to draw:

Benefit:

7

LEARNING CHECK

Directions: using class height data, enter classmates' heights into the table below and then sketch the following graphs:

- 1. a frequency distribution histogram
- 2. a frequency distribution polygon
- 3. a cumulative frequency distribution polygon
- 4. a relative frequency distribution polygon
- 5. a cumulative relative frequency polygon
- 6. a cumulative percent polygon

X	f	cum f	relative f (p)	cum relative	cum percent
			J (1)	freq (p)	· (%)
76 (6'4")					
75 (6'3'')					
74 (6'2")					
73 (6'1")					
72 (6'0")					
70 (5'10")					
69 (5'9")					
68 (5'8")					
67 (5'7")					
66 (5'6")					
65 (5'5")					
64 (5'4")					
63 (5'3")					
62 (5'2")					
61 (5'1")					
60 (5'0")					

Stem-And-Leaf Diagram

9

What it is:

- The leaf
- The stem

How to draw:

Example:

	Stem	Leaf
Raw data		
34 38 45 56		
45		
56		
67		
81		l

Another purpose: allows for comparison between groups

Example:

The pulse rates of 30 high school students prior to jogging a mile in PE class:

Females:	Males:
75 68 77 72 102	69 90 70 97 83
78 83 75 81 95	77 68 90 72 110
73 80 65 74 75	98 105 95 85 87

Females	Stems	Males

Conclusion?

Stem-and-leaf class activity

- Count the change in your pockets and/or purses
- Record your data on the board
- Prepare a regular stem-and-leaf diagram
- Prepare a back-to-back stem-and-leaf diagram, separating the class data by gender

10