MEASURES OF VARIABILITY

"An approximate answer to the right question is worth a good deal more than the exact answer to an approximate question." John Tukey

Variability:

Purposes of Measures of Variability:
1.
2.
3.
4.
Importance of a Conceptual Understanding of Variability:
1.
2.
3.
3 COMMON MEASURES OF DISPERSION
1. Range
2. Variance

3. Standard Deviation

RANGE

Definitions:

1.

2.

Formula:

Range = URL X_{max} – LRL X_{min}

Example:

Calculate the range for the following data: 3, 7, 12, 8, 5, 10 $X_{max} =$ $X_{min} =$ Range =

Advantages and Disadvantages of the Range:

Class A: 13, 23, 33, 43, 53, 63, 73, 83, 93, 100 Class B: 13, 85, 85, 86, 87, 87, 88, 88, 89, 100

Example:

Find the range for the following data: 3, 4, 5, 7, 9, 10, 11, 13 Range = URL X_{max} - LRL X_{min} =

CLASS EXERCISE

Consider the 2 distributions on the next page:

- Calculate the means, medians, modes, and ranges for each.
- How are the 2 samples different?
- Which measure of central tendency is the most representative for each sample?
- Is the range an accurate measure of variability for each of the samples? Why or why not?

Two Samples

Class A	Class B
1	1
5	1
5	1
5	5
5	9
5	9
9	9

AVERAGE MEAN DEVIATION (AMD)

Definition:

Formula for the average mean deviation (AMD): $\frac{\sum (X - \overline{X})}{n} = \frac{\sum D}{n}$

Why does the average mean deviation always equals zero?

Disadvantage:

MEAN OF THE ABSOLUTE VALUE OF THE DEVIATIONS

• The absolute value of the deviations: $AMD = \frac{\sum |X - \overline{X}|}{N}$

Example: Absolute Value of the Deviations for Sample A

$$\mathbf{X} \quad (X - \overline{X}) \quad \mathbf{D} = X - \overline{X} \quad |D| = |X - \overline{X}|$$

$$1$$

$$5$$

$$5$$

$$5$$

$$5$$

$$5$$

$$9$$

$$\sum D = \sum |D| = n =$$

$$n = n =$$

$$AMD = |AMD| =$$

Disadvantage:

Alternative:

STANDARD DEVIATION

Symbols: σ (population) or *s* (sample).

Definitions:

1.

2.

Advantage:

Characteristics of standard deviation:

1.

- 2.
- 3.
- 4.

Logic Behind The Standard Deviation Equations

Goal:

Step 1:

- Determine the deviation, or distance from the mean, for each individual score
- Deviation score = $X \mu$ (difference between a score & the mean)

e.g. Distribution of N = 5 scores: 1, 9, 5, 8, 7

$$\sum X = 30 \qquad \qquad Mean: \ \frac{30}{5} = 6 \quad \Rightarrow \mu =$$

Score (X)	Deviation (X - µ)
1	
9	
5	
8	
7	

Step 2:

Square each deviation score

Score (X)	Deviation $(X - \mu)$	Squared deviation $(X - \mu)^2$
1		
9		
5		
8		
7		
$\sum X =$	Σ(X - μ)=	$\sum (X - \mu)^2 =$

Step 3:

Use these squared values to compute the mean squared deviation, which is called variance.

e.g. For the set of N = 5 scores:

The sum of squared deviations =

The mean of the squared deviations (variance) is

VARIANCE

Definition:

Advantage:

Disadvantage:

Step 4:

Take the square root of the variance (a correction for having squared all the distances).

Standard deviation (s) = $\sqrt{\text{variance}} = \sqrt{s^2}$

The standard deviation is

FORMULAS FOR VARIANCE & STANDARD DEVIATION FOR POPULATIONS

Variance= mean squared deviation $= \underline{sum of squared deviations} = \underline{SS}$ number of scoresN

Sum of squares (SS) = sum of the squared deviation scores

• Definitional formula: $SS = \sum (X - u)^2$

Formula tells you to add up the squared deviations:

- 1)
- 2)
- 3)
- 4)

e.g. Compute SS for the set of N = 4 scores: 1, 0, 6, 1

Definitional Formula:
 o Advantages:

• Disadvantages:

Computational Formula:
 Advantage:

$$SS = \sum X^2 - \frac{\left(\sum X\right)^2}{N}$$

Population Variance:
$$\sigma^2 = \frac{SS}{N} = \frac{\sum (X - \overline{X})^2}{N} or \frac{\sum X^2 - \frac{(\sum X)^2}{N}}{N}$$

Population Standard Deviation:
$$\sigma = \sqrt{\frac{SS}{N}}$$

<u>Relationship Between Variance & Standard Deviation:</u> variance = (standard deviation)² standard deviation = $\sqrt{variance}$

<u>Sample Variance</u> (s^2)

Definition:

Why samples consistently tend to be less variable than their populations:

Correction factor:

Definitional Formula for Sample Variance (s²): $s^{2} = \frac{\sum \left(X - \overline{X}\right)^{2}}{n-1} = \frac{SS}{n-1}$

Computational Formula for Sample Variance (s²): $s^{2} = \frac{SS}{n-1} = \frac{\sum X^{2} - \frac{\left(\sum X\right)^{2}}{n}}{n-1}$

Sample Standard Deviation (s):

sample standard deviation =
$$s = \sqrt{\frac{SS}{n-1}} = \sqrt{\text{var} iance}$$

Example:

Sample of n = 7 scores from the population: 1, 6, 4, 3, 8, 7, 6

Score	Deviation	Squared deviation	Computations
(X)	$\left(X - \overline{X}\right)$	$\left(X - \overline{X}\right)^2$	
1			M =
6			
4			$s^{2} = SS/(n-1)$
3			

8			
7			$s = \sqrt{s^2}$
6			
ΣX=	∑D=	SS=	

Practice Using Measures of Dispersion

Compute the variance & standard deviation for each sample

Sample A	Sample B
1	1
5	1
5	1
5	5
5	9
5	9
9	9
Mean A =	Mean B =