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Which Is Faster? 

 Every experienced programmer has a cost 
model of the language: a mental model of 
the relative costs of various operations 

 Not usually a part of a language 
specification, but very important in practice 
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Y=[1|X] 

append(X,[1],Y)  



Outline 

 A cost model for lists 
 A cost model for function calls 
 A cost model for Prolog search 
 A cost model for arrays 
  Spurious cost models 
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The Cons-Cell List 

 Used by ML, Prolog, Lisp, and many other 
languages 

 We also implemented this in Java 
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?-   A = [], 
|    B = .(1,[]), 
|    C = .(1,.(2,[])). 
A = [], 
B = [1], 
C = [1, 2]. 

A: [] 

B: [] 

1 

C: [] 

1 2 



Shared List Structure 
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?-   D = [2,3], 
|    E = [1|D], 
|    E = [F|G]. 
D = [2, 3], 
E = [1, 2, 3], 
F = 1, 
G = [2, 3]. 

F: 

E: 

1 

D: [] 

2 3 

G: 



How Do We Know? 

 How do we know Prolog shares list 
structure—how do we know E=[1|D] 
does not make a copy of term D? 

  It observably takes a constant amount of 
time and space 

 This is not part of the formal specification 
of Prolog, but is part of the cost model 
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Computing Length 

 length(X,Y) can take no shortcut—it 
must count the length, like this in ML: 

 Takes time proportional to the length of the 
list 
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fun length nil = 0 
|   length (head::tail) = 1 + length tail; 



Appending Lists 
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?-   H = [1,2], 
|    I = [3,4], 
|    append(H,I,J). 
H = [1, 2], 
I = [3, 4], 
J = [1, 2, 3, 4]. 

H: [] 

1 2 

I: [] 

3 4 

J: 

1 2 

 append(H,I,J) can also be expensive: it 
must make a copy of H 



Appending 

 append must copy the prefix: 

 Takes time proportional to the length of the 
first list 
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append([],X,X). 
append([Head|Tail],X,[Head|Suffix]) :- 
  append(Tail,X,Suffix). 



Unifying Lists 
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 Unifying lists can also be expensive, since 
they may or may not share structure: 

?-   K = [1,2], 
|    M = K, 
|    N = [1,2]. 
K = [1, 2], 
M = [1, 2], 
N = [1, 2]. 

K: [] 

1 2 

M: 

N: 

1 2 

[] 



Unifying Lists 

 To test whether lists unify, the system must 
compare them element by element: 

  It might be able to take a shortcut if it finds 
shared structure, but in the worst case it 
must compare the entire structure of both 
lists 
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xequal([],[]). 
xequal([Head|Tail1],[Head|Tail2]) :- 
  xequal(Tail1,Tail2). 



Cons-Cell Cost Model Summary 
 Consing takes constant time 
 Extracting head or tail takes constant time 
 Computing the length of a list takes time 

proportional to the length 
 Computing the result of appending two lists 

takes time proportional to the length of the 
first list 

 Comparing two lists, in the worst case, 
takes time proportional to their size 
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Application 
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reverse([],[]). 
reverse([Head|Tail],Rev) :- 
  reverse(Tail,TailRev), 
  append(TailRev,[Head],Rev). 

reverse(X,Y) :- rev(X,[],Y). 
rev([],Sofar,Sofar). 
rev([Head|Tail],Sofar,Rev) :- 
  rev(Tail,[Head|Sofar],Rev). 

The cost model guides 
programmers away from 
solutions like this, which 
grow lists from the rear 

This is much faster: linear 
time instead of quadratic 



Exposure 
  Some languages expose the shared-structure 

cons-cell implementation: 
–  Lisp programs can test for equality (equal) or 

for shared structure (eq, constant time) 
 Other languages (like Prolog and ML) try to 

hide it, and have no such test 
 But the implementation is still visible in the 

sense that programmers know and use the 
cost model 
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Outline 

 A cost model for lists 
 A cost model for function calls 
 A cost model for Prolog search 
 A cost model for arrays 
  Spurious cost models 
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Reverse in ML 

 Here is an ML implementation that works 
like the previous Prolog reverse 
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fun reverse x = 
  let 
    fun rev(nil,sofar) = sofar 
    |   rev(head::tail,sofar) = 
          rev(tail,head::sofar); 
  in 
    rev(x,nil) 
  end; 



Example 
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fun rev(nil,sofar) = sofar 
|   rev(head::tail,sofar) = 
          rev(tail,head::sofar); 

We are evaluating 
rev([1,2],nil).  
This shows the contents of 
memory just before the 
recursive call that creates 
a second activation. 
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fun rev(nil,sofar) = sofar 
|   rev(head::tail,sofar) = 
          rev(tail,head::sofar); 

This shows the contents of 
memory just before the 
third activation. 
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fun rev(nil,sofar) = sofar 
|   rev(head::tail,sofar) = 
          rev(tail,head::sofar); 

This shows the contents of 
memory just before the 
third activation returns. 
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fun rev(nil,sofar) = sofar 
|   rev(head::tail,sofar) = 
          rev(tail,head::sofar); 

This shows the contents of 
memory just before the 
second activation returns. 

All it does is return the 
same value that was just 
returned to it. 
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fun rev(nil,sofar) = sofar 
|   rev(head::tail,sofar) = 
          rev(tail,head::sofar); 

This shows the contents of 
memory just before the 
first activation returns. 

All it does is return the 
same value that was just 
returned to it. 



Tail Calls 

 A function call is a tail call if the calling 
function does no further computation, but 
merely returns the resulting value (if any) to 
its own caller 

 All the calls in the previous example were 
tail calls  
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Tail Recursion 

 A recursive function is tail recursive if all 
its recursive calls are tail calls  

 Our rev function is tail recursive 
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fun reverse x = 
  let 
    fun rev(nil,sofar) = sofar 
    |   rev(head::tail,sofar) = 
          rev(tail,head::sofar); 
  in 
    rev(x,nil) 
  end; 



Tail-Call Optimization 

 When a function makes a tail call, it no 
longer needs its activation record 

 Most language systems take advantage of 
this to optimize tail calls, by using the same 
activation record for the called function 
–  No need to push/pop another frame 
–  Called function returns directly to original 

caller 
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Example 
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fun rev(nil,sofar) = sofar 
|   rev(head::tail,sofar) = 
          rev(tail,head::sofar); 

We are evaluating 
rev([1,2],nil).  
This shows the contents of 
memory just before the 
recursive call that creates 
a second activation. 
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fun rev(nil,sofar) = sofar 
|   rev(head::tail,sofar) = 
          rev(tail,head::sofar); 

Just before the third 
activation. 

Optimizing the tail call, 
we reused the same 
activation record. 

The variables are 
overwritten with their new 
values. 
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fun rev(nil,sofar) = sofar 
|   rev(head::tail,sofar) = 
          rev(tail,head::sofar); 

Just before the third 
activation returns. 

Optimizing the tail call, 
we reused the same 
activation record again.  
We did not need all of it. 

The variables are 
overwritten with their new 
values. 

Ready to return the final 
result directly to rev’s 
original caller 
(reverse). 



Tail-Call Cost Model 

 Under this model, tail calls are significantly 
faster than non-tail calls 

 And they take up less space 
 The space consideration may be more 

important here: 
–  tail-recursive functions can take constant space 
–  non-tail-recursive functions take space at least 

linear in the depth of the recursion 
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Application 
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fun length nil = 0 
|   length (head::tail) =  
      1 + length tail; 

fun length thelist = 
  let 
    fun len (nil,sofar) = sofar 
    |   len (head::tail,sofar) =  
          len (tail,sofar+1); 
  in 
    len (thelist,0) 
  end; 

The cost model guides 
programmers away from 
non-tail-recursive 
solutions like this 

Although longer, this 
solution runs faster and 
takes less space 

An accumulating parameter. 

Often useful when converting 
to tail-recursive form 



Applicability 

  Implemented in virtually all functional 
language systems; explicitly guaranteed by 
some functional language specifications 

 Also implemented by good compilers for 
most other modern languages: C, C++, etc. 

 One exception: not currently implemented 
in Java language systems 
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Prolog Tail Calls 
 A similar optimization is done by most 

compiled Prolog systems 
 But it can be a tricky to identify tail calls: 

 Call of r above is not (necessarily) a tail 
call because of possible backtracking 

  For the last condition of a rule, when there 
is no possibility of backtracking, Prolog 
systems can implement a kind of tail-call 
optimization 

Chapter Twenty-One Modern Programming Languages, 2nd ed. 31 

p :- q(X), r(X). 



Outline 

 A cost model for lists 
 A cost model for function calls 
 A cost model for Prolog search 
 A cost model for arrays 
  Spurious cost models 
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Prolog Search 

 We know all the details already: 
–  A Prolog system works on goal terms from left 

to right  
–  It tries rules from the database in order, trying 

to unify the head of each rule with the current 
goal term 

–  It backtracks on failure—there may be more 
than one rule whose head unifies with a given 
goal term, and it tries as many as necessary 
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Application 
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grandfather(X,Y) :-  
  parent(X,Z),  
  parent(Z,Y), 
  male(X). 

grandfather(X,Y) :-  
  parent(X,Z),  
  male(X), 
  parent(Z,Y). 

The cost model guides 
programmers away from 
solutions like this.  Why do 
all that work if  X is not 
male? 

Although logically 
identical, this solution 
may be much faster 
since it restricts early. 



General Cost Model 

 Clause order in the database, and condition 
order in each rule, can affect cost 

 Can’t reduce to simple guidelines, since the 
best order often depends on the query as 
well as the database 
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Outline 

 A cost model for lists 
 A cost model for function calls 
 A cost model for Prolog search 
 A cost model for arrays 
  Spurious cost models 
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Multidimensional Arrays 

 Many languages support them 
  In C: 

    int a[1000][1000]; 
 This defines a million integer variables 
 One a[i][j] for each pair of i and j 

with 0 ≤ i < 1000 and 0 ≤ j < 1000 
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Which Is Faster? 
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int addup1 
    (int a[1000][1000]) { 
  int total = 0; 
  int i = 0; 
  while (i < 1000) { 
    int j = 0; 
    while (j < 1000) { 
      total += a[i][j]; 
      j++; 
    } 
    i++; 
  } 
  return total; 
} 

int addup2 
    (int a[1000][1000]) { 
  int total = 0; 
  int j = 0; 
  while (j < 1000) { 
    int i = 0; 
    while (i < 1000) { 
      total += a[i][j]; 
      i++; 
    } 
    j++; 
  } 
  return total; 
} 

Varies j in the inner loop: 
a[0][0] through a[0][999], then 
a[1][0] through a[1][999], … 

Varies i in the inner loop: 
a[0][0] through a[999][0], then 
a[0][1] through a[999][1], … 



Sequential Access 

  Memory hardware is generally optimized for 
sequential access 

  If the program just accessed word i, the hardware 
anticipates in various ways that word i+1 will 
soon be needed too 

  So accessing array elements sequentially, in the 
same order in which they are stored in memory, is 
faster than accessing them non-sequentially 

  In what order are elements stored in memory? 
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1D Arrays In Memory 

  For one-dimensional arrays, a natural layout 
  An array of n elements can be stored in a block of 

n × size words  
–  size is the number of words per element 

  The memory address of A[i] can be computed as 
base + i × size: 
–  base is the start of A’s block of memory 
–  (Assumes indexes start at 0) 

  Sequential access is natural—hard to avoid 
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2D Arrays? 

 Often visualized as a grid 
 A[i][j] is row i, column j: 

 Must be mapped to linear memory… 
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A 3-by-4 array: 3 rows 
of 4 columns 



Row-Major Order 

 One whole row at a time 
 An m-by-n array takes m × n × size words 
 Address of A[i][j] is  

base + (i ×  n ×  size) + (j ×  size) 
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Column-Major Order 

 One whole column at a time 
 An m-by-n array takes m × n × size words 
 Address of A[i][j] is  

base + (i ×  size) + (j × m × size) 
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So Which Is Faster? 
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int addup1 
    (int a[1000][1000]) { 
  int total = 0; 
  int i = 0; 
  while (i < 1000) { 
    int j = 0; 
    while (j < 1000) { 
      total += a[i][j]; 
      j++; 
    } 
    i++; 
  } 
  return total; 
} 

int addup2 
    (int a[1000][1000]) { 
  int total = 0; 
  int j = 0; 
  while (j < 1000) { 
    int i = 0; 
    while (i < 1000) { 
      total += a[i][j]; 
      i++; 
    } 
    j++; 
  } 
  return total; 
} 

C uses row-major order, so this one is 
faster: it visits the elements in the same 
order in which they are allocated in 
memory. 



Other Layouts 
 Another common 

strategy is to treat a 2D 
array as an array of 
pointers to 1D arrays 

 Rows can be different 
sizes, and unused ones 
can be left unallocated 

  Sequential access of 
whole rows is efficient, 
like row-major order 
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Higher Dimensions 

  2D layouts generalize for higher dimensions 
  For example, generalization of row-major 

(odometer order) matches this access order: 

 Rightmost subscript varies fastest 
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for each i0 
  for each i1 
    ... 
      for each in-2 
        for each in-1 
          access A[i0][i1]…[in-2][in-1] 



Is Array Layout Visible? 

  In C, it is visible through pointer arithmetic  
–  If p is the address of a[i][j], then p+1 is the 

address of a[i][j+1]: row-major order 
  Fortran also makes it visible 

–  Overlaid allocations reveal column-major order 
  Ada usually uses row-major, but hides it 

–  Ada programs would still work if layout changed 
  But for all these languages, it is visible as a part of 

the cost model 
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Outline 

 A cost model for lists 
 A cost model for function calls 
 A cost model for Prolog search 
 A cost model for arrays 
  Spurious cost models 
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Question 
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int max(int i, int j) { 
  return i>j?i:j; 
} 

int main() { 
  int i,j; 
  double sum = 0.0; 
  for (i=0; i<10000; i++) { 
    for (j=0; j<10000; j++) { 
      sum += max(i,j); 
    } 
  } 
  printf("%d\n", sum); 
} 

If we replace this with a 
direct computation, 

sum += (i>j?i:j)  

how much faster will the 
program be? 



Inlining 

 Replacing a function call with the body of 
the called function is called inlining 

  Saves the overhead of making a function 
call: push, call, return, pop 

 Usually minor, but for something as simple 
as max the overhead might dominate the 
cost of the executing the function body 
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Cost Model 

  Function call overhead is comparable to the 
cost of a small function body 

 This guides programmers toward solutions 
that use inlined code (or macros, in C) 
instead of function calls, especially for 
small, frequently-called functions 
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Wrong! 

 Unfortunately, this model is often wrong 
 Any respectable C compiler can perform 

inlining automatically 
  (Gnu C does this with –O2 for small 

functions) 
 Our example runs at exactly the same speed 

whether we inline manually, or let the 
compiler do it 
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Applicability 
 Not just a C phenomenon—many language 

systems for different languages do inlining 
  (It is especially important, and often 

implemented, for object-oriented languages) 
 Usually it is a mistake to clutter up code 

with manually inlined copies of function 
bodies 

  It just makes the program harder to read and 
maintain, but no faster after automatic 
optimization 
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Cost Models Change 

  For the first 10 years or so, C compilers that 
could do inlining were not generally 
available 

  It made sense to manually inline in 
performance-critical code 

 Another example is the old register 
declaration from C 
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Conclusion 
  Some cost models are language-system-

specific: does this C compiler do inlining? 
 Others more general: tail-call optimization 

is a safe bet for all functional language 
systems and most other language systems 

 All are an important part of the working 
programmer’s expertise, though rarely part 
of the language specification 

 No substitute for good algorithms! 
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