
Cost Models

Chapter Twenty-One Modern Programming Languages, 2nd ed. 1

Which Is Faster?

 Every experienced programmer has a cost
model of the language: a mental model of
the relative costs of various operations

 Not usually a part of a language
specification, but very important in practice

Chapter Twenty-One Modern Programming Languages, 2nd ed. 2

Y=[1|X]

append(X,[1],Y)

Outline

 A cost model for lists
 A cost model for function calls
 A cost model for Prolog search
 A cost model for arrays
  Spurious cost models

Chapter Twenty-One Modern Programming Languages, 2nd ed. 3

The Cons-Cell List

 Used by ML, Prolog, Lisp, and many other
languages

 We also implemented this in Java

Chapter Twenty-One Modern Programming Languages, 2nd ed. 4

?- A = [],
| B = .(1,[]),
| C = .(1,.(2,[])).
A = [],
B = [1],
C = [1, 2].

A: []

B: []

1

C: []

1 2

Shared List Structure

Chapter Twenty-One Modern Programming Languages, 2nd ed. 5

?- D = [2,3],
| E = [1|D],
| E = [F|G].
D = [2, 3],
E = [1, 2, 3],
F = 1,
G = [2, 3].

F:

E:

1

D: []

2 3

G:

How Do We Know?

 How do we know Prolog shares list
structure—how do we know E=[1|D]
does not make a copy of term D?

  It observably takes a constant amount of
time and space

 This is not part of the formal specification
of Prolog, but is part of the cost model

Chapter Twenty-One Modern Programming Languages, 2nd ed. 6

Computing Length

 length(X,Y) can take no shortcut—it
must count the length, like this in ML:

 Takes time proportional to the length of the
list

Chapter Twenty-One Modern Programming Languages, 2nd ed. 7

fun length nil = 0
| length (head::tail) = 1 + length tail;

Appending Lists

Chapter Twenty-One Modern Programming Languages, 2nd ed. 8

?- H = [1,2],
| I = [3,4],
| append(H,I,J).
H = [1, 2],
I = [3, 4],
J = [1, 2, 3, 4].

H: []

1 2

I: []

3 4

J:

1 2

 append(H,I,J) can also be expensive: it
must make a copy of H

Appending

 append must copy the prefix:

 Takes time proportional to the length of the
first list

Chapter Twenty-One Modern Programming Languages, 2nd ed. 9

append([],X,X).
append([Head|Tail],X,[Head|Suffix]) :-
 append(Tail,X,Suffix).

Unifying Lists

Chapter Twenty-One Modern Programming Languages, 2nd ed. 10

 Unifying lists can also be expensive, since
they may or may not share structure:

?- K = [1,2],
| M = K,
| N = [1,2].
K = [1, 2],
M = [1, 2],
N = [1, 2].

K: []

1 2

M:

N:

1 2

[]

Unifying Lists

 To test whether lists unify, the system must
compare them element by element:

  It might be able to take a shortcut if it finds
shared structure, but in the worst case it
must compare the entire structure of both
lists

Chapter Twenty-One Modern Programming Languages, 2nd ed. 11

xequal([],[]).
xequal([Head|Tail1],[Head|Tail2]) :-
 xequal(Tail1,Tail2).

Cons-Cell Cost Model Summary
 Consing takes constant time
 Extracting head or tail takes constant time
 Computing the length of a list takes time

proportional to the length
 Computing the result of appending two lists

takes time proportional to the length of the
first list

 Comparing two lists, in the worst case,
takes time proportional to their size

Chapter Twenty-One Modern Programming Languages, 2nd ed. 12

Application

Chapter Twenty-One Modern Programming Languages, 2nd ed. 13

reverse([],[]).
reverse([Head|Tail],Rev) :-
 reverse(Tail,TailRev),
 append(TailRev,[Head],Rev).

reverse(X,Y) :- rev(X,[],Y).
rev([],Sofar,Sofar).
rev([Head|Tail],Sofar,Rev) :-
 rev(Tail,[Head|Sofar],Rev).

The cost model guides
programmers away from
solutions like this, which
grow lists from the rear

This is much faster: linear
time instead of quadratic

Exposure
  Some languages expose the shared-structure

cons-cell implementation:
–  Lisp programs can test for equality (equal) or

for shared structure (eq, constant time)
 Other languages (like Prolog and ML) try to

hide it, and have no such test
 But the implementation is still visible in the

sense that programmers know and use the
cost model

Chapter Twenty-One Modern Programming Languages, 2nd ed. 14

Outline

 A cost model for lists
 A cost model for function calls
 A cost model for Prolog search
 A cost model for arrays
  Spurious cost models

Chapter Twenty-One Modern Programming Languages, 2nd ed. 15

Reverse in ML

 Here is an ML implementation that works
like the previous Prolog reverse

Chapter Twenty-One Modern Programming Languages, 2nd ed. 16

fun reverse x =
 let
 fun rev(nil,sofar) = sofar
 | rev(head::tail,sofar) =
 rev(tail,head::sofar);
 in
 rev(x,nil)
 end;

Example

Chapter Twenty-One Modern Programming Languages, 2nd ed. 17

fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =
 rev(tail,head::sofar);

We are evaluating
rev([1,2],nil).
This shows the contents of
memory just before the
recursive call that creates
a second activation.

Chapter Twenty-One Modern Programming Languages, 2nd ed. 18

fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =
 rev(tail,head::sofar);

This shows the contents of
memory just before the
third activation.

Chapter Twenty-One Modern Programming Languages, 2nd ed. 19

fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =
 rev(tail,head::sofar);

This shows the contents of
memory just before the
third activation returns.

Chapter Twenty-One Modern Programming Languages, 2nd ed. 20

fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =
 rev(tail,head::sofar);

This shows the contents of
memory just before the
second activation returns.

All it does is return the
same value that was just
returned to it.

Chapter Twenty-One Modern Programming Languages, 2nd ed. 21

fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =
 rev(tail,head::sofar);

This shows the contents of
memory just before the
first activation returns.

All it does is return the
same value that was just
returned to it.

Tail Calls

 A function call is a tail call if the calling
function does no further computation, but
merely returns the resulting value (if any) to
its own caller

 All the calls in the previous example were
tail calls

Chapter Twenty-One Modern Programming Languages, 2nd ed. 22

Tail Recursion

 A recursive function is tail recursive if all
its recursive calls are tail calls

 Our rev function is tail recursive

Chapter Twenty-One Modern Programming Languages, 2nd ed. 23

fun reverse x =
 let
 fun rev(nil,sofar) = sofar
 | rev(head::tail,sofar) =
 rev(tail,head::sofar);
 in
 rev(x,nil)
 end;

Tail-Call Optimization

 When a function makes a tail call, it no
longer needs its activation record

 Most language systems take advantage of
this to optimize tail calls, by using the same
activation record for the called function
–  No need to push/pop another frame
–  Called function returns directly to original

caller

Chapter Twenty-One Modern Programming Languages, 2nd ed. 24

Example

Chapter Twenty-One Modern Programming Languages, 2nd ed. 25

fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =
 rev(tail,head::sofar);

We are evaluating
rev([1,2],nil).
This shows the contents of
memory just before the
recursive call that creates
a second activation.

Chapter Twenty-One Modern Programming Languages, 2nd ed. 26

fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =
 rev(tail,head::sofar);

Just before the third
activation.

Optimizing the tail call,
we reused the same
activation record.

The variables are
overwritten with their new
values.

Chapter Twenty-One Modern Programming Languages, 2nd ed. 27

fun rev(nil,sofar) = sofar
| rev(head::tail,sofar) =
 rev(tail,head::sofar);

Just before the third
activation returns.

Optimizing the tail call,
we reused the same
activation record again.
We did not need all of it.

The variables are
overwritten with their new
values.

Ready to return the final
result directly to rev’s
original caller
(reverse).

Tail-Call Cost Model

 Under this model, tail calls are significantly
faster than non-tail calls

 And they take up less space
 The space consideration may be more

important here:
–  tail-recursive functions can take constant space
–  non-tail-recursive functions take space at least

linear in the depth of the recursion

Chapter Twenty-One Modern Programming Languages, 2nd ed. 28

Application

Chapter Twenty-One Modern Programming Languages, 2nd ed. 29

fun length nil = 0
| length (head::tail) =
 1 + length tail;

fun length thelist =
 let
 fun len (nil,sofar) = sofar
 | len (head::tail,sofar) =
 len (tail,sofar+1);
 in
 len (thelist,0)
 end;

The cost model guides
programmers away from
non-tail-recursive
solutions like this

Although longer, this
solution runs faster and
takes less space

An accumulating parameter.

Often useful when converting
to tail-recursive form

Applicability

  Implemented in virtually all functional
language systems; explicitly guaranteed by
some functional language specifications

 Also implemented by good compilers for
most other modern languages: C, C++, etc.

 One exception: not currently implemented
in Java language systems

Chapter Twenty-One Modern Programming Languages, 2nd ed. 30

Prolog Tail Calls
 A similar optimization is done by most

compiled Prolog systems
 But it can be a tricky to identify tail calls:

 Call of r above is not (necessarily) a tail
call because of possible backtracking

  For the last condition of a rule, when there
is no possibility of backtracking, Prolog
systems can implement a kind of tail-call
optimization

Chapter Twenty-One Modern Programming Languages, 2nd ed. 31

p :- q(X), r(X).

Outline

 A cost model for lists
 A cost model for function calls
 A cost model for Prolog search
 A cost model for arrays
  Spurious cost models

Chapter Twenty-One Modern Programming Languages, 2nd ed. 32

Prolog Search

 We know all the details already:
–  A Prolog system works on goal terms from left

to right
–  It tries rules from the database in order, trying

to unify the head of each rule with the current
goal term

–  It backtracks on failure—there may be more
than one rule whose head unifies with a given
goal term, and it tries as many as necessary

Chapter Twenty-One Modern Programming Languages, 2nd ed. 33

Application

Chapter Twenty-One Modern Programming Languages, 2nd ed. 34

grandfather(X,Y) :-
 parent(X,Z),
 parent(Z,Y),
 male(X).

grandfather(X,Y) :-
 parent(X,Z),
 male(X),
 parent(Z,Y).

The cost model guides
programmers away from
solutions like this. Why do
all that work if X is not
male?

Although logically
identical, this solution
may be much faster
since it restricts early.

General Cost Model

 Clause order in the database, and condition
order in each rule, can affect cost

 Can’t reduce to simple guidelines, since the
best order often depends on the query as
well as the database

Chapter Twenty-One Modern Programming Languages, 2nd ed. 35

Outline

 A cost model for lists
 A cost model for function calls
 A cost model for Prolog search
 A cost model for arrays
  Spurious cost models

Chapter Twenty-One Modern Programming Languages, 2nd ed. 36

Multidimensional Arrays

 Many languages support them
  In C:

 int a[1000][1000];
 This defines a million integer variables
 One a[i][j] for each pair of i and j

with 0 ≤ i < 1000 and 0 ≤ j < 1000

Chapter Twenty-One Modern Programming Languages, 2nd ed. 37

Which Is Faster?

Chapter Twenty-One Modern Programming Languages, 2nd ed. 38

int addup1
 (int a[1000][1000]) {
 int total = 0;
 int i = 0;
 while (i < 1000) {
 int j = 0;
 while (j < 1000) {
 total += a[i][j];
 j++;
 }
 i++;
 }
 return total;
}

int addup2
 (int a[1000][1000]) {
 int total = 0;
 int j = 0;
 while (j < 1000) {
 int i = 0;
 while (i < 1000) {
 total += a[i][j];
 i++;
 }
 j++;
 }
 return total;
}

Varies j in the inner loop:
a[0][0] through a[0][999], then
a[1][0] through a[1][999], …

Varies i in the inner loop:
a[0][0] through a[999][0], then
a[0][1] through a[999][1], …

Sequential Access

  Memory hardware is generally optimized for
sequential access

  If the program just accessed word i, the hardware
anticipates in various ways that word i+1 will
soon be needed too

  So accessing array elements sequentially, in the
same order in which they are stored in memory, is
faster than accessing them non-sequentially

  In what order are elements stored in memory?

Chapter Twenty-One Modern Programming Languages, 2nd ed. 39

1D Arrays In Memory

  For one-dimensional arrays, a natural layout
  An array of n elements can be stored in a block of

n × size words
–  size is the number of words per element

  The memory address of A[i] can be computed as
base + i × size:
–  base is the start of A’s block of memory
–  (Assumes indexes start at 0)

  Sequential access is natural—hard to avoid

Chapter Twenty-One Modern Programming Languages, 2nd ed. 40

2D Arrays?

 Often visualized as a grid
 A[i][j] is row i, column j:

 Must be mapped to linear memory…

Chapter Twenty-One Modern Programming Languages, 2nd ed. 41

A 3-by-4 array: 3 rows
of 4 columns

Row-Major Order

 One whole row at a time
 An m-by-n array takes m × n × size words
 Address of A[i][j] is

base + (i × n × size) + (j × size)

Chapter Twenty-One Modern Programming Languages, 2nd ed. 42

Column-Major Order

 One whole column at a time
 An m-by-n array takes m × n × size words
 Address of A[i][j] is

base + (i × size) + (j × m × size)

Chapter Twenty-One Modern Programming Languages, 2nd ed. 43

So Which Is Faster?

Chapter Twenty-One Modern Programming Languages, 2nd ed. 44

int addup1
 (int a[1000][1000]) {
 int total = 0;
 int i = 0;
 while (i < 1000) {
 int j = 0;
 while (j < 1000) {
 total += a[i][j];
 j++;
 }
 i++;
 }
 return total;
}

int addup2
 (int a[1000][1000]) {
 int total = 0;
 int j = 0;
 while (j < 1000) {
 int i = 0;
 while (i < 1000) {
 total += a[i][j];
 i++;
 }
 j++;
 }
 return total;
}

C uses row-major order, so this one is
faster: it visits the elements in the same
order in which they are allocated in
memory.

Other Layouts
 Another common

strategy is to treat a 2D
array as an array of
pointers to 1D arrays

 Rows can be different
sizes, and unused ones
can be left unallocated

  Sequential access of
whole rows is efficient,
like row-major order

Chapter Twenty-One Modern Programming Languages, 2nd ed. 45

Higher Dimensions

  2D layouts generalize for higher dimensions
  For example, generalization of row-major

(odometer order) matches this access order:

 Rightmost subscript varies fastest

Chapter Twenty-One Modern Programming Languages, 2nd ed. 46

for each i0
 for each i1
 ...
 for each in-2
 for each in-1
 access A[i0][i1]…[in-2][in-1]

Is Array Layout Visible?

  In C, it is visible through pointer arithmetic
–  If p is the address of a[i][j], then p+1 is the

address of a[i][j+1]: row-major order
  Fortran also makes it visible

–  Overlaid allocations reveal column-major order
  Ada usually uses row-major, but hides it

–  Ada programs would still work if layout changed
  But for all these languages, it is visible as a part of

the cost model

Chapter Twenty-One Modern Programming Languages, 2nd ed. 47

Outline

 A cost model for lists
 A cost model for function calls
 A cost model for Prolog search
 A cost model for arrays
  Spurious cost models

Chapter Twenty-One Modern Programming Languages, 2nd ed. 48

Question

Chapter Twenty-One Modern Programming Languages, 2nd ed. 49

int max(int i, int j) {
 return i>j?i:j;
}

int main() {
 int i,j;
 double sum = 0.0;
 for (i=0; i<10000; i++) {
 for (j=0; j<10000; j++) {
 sum += max(i,j);
 }
 }
 printf("%d\n", sum);
}

If we replace this with a
direct computation,

sum += (i>j?i:j)

how much faster will the
program be?

Inlining

 Replacing a function call with the body of
the called function is called inlining

  Saves the overhead of making a function
call: push, call, return, pop

 Usually minor, but for something as simple
as max the overhead might dominate the
cost of the executing the function body

Chapter Twenty-One Modern Programming Languages, 2nd ed. 50

Cost Model

  Function call overhead is comparable to the
cost of a small function body

 This guides programmers toward solutions
that use inlined code (or macros, in C)
instead of function calls, especially for
small, frequently-called functions

Chapter Twenty-One Modern Programming Languages, 2nd ed. 51

Wrong!

 Unfortunately, this model is often wrong
 Any respectable C compiler can perform

inlining automatically
  (Gnu C does this with –O2 for small

functions)
 Our example runs at exactly the same speed

whether we inline manually, or let the
compiler do it

Chapter Twenty-One Modern Programming Languages, 2nd ed. 52

Applicability
 Not just a C phenomenon—many language

systems for different languages do inlining
  (It is especially important, and often

implemented, for object-oriented languages)
 Usually it is a mistake to clutter up code

with manually inlined copies of function
bodies

  It just makes the program harder to read and
maintain, but no faster after automatic
optimization

Chapter Twenty-One Modern Programming Languages, 2nd ed. 53

Cost Models Change

  For the first 10 years or so, C compilers that
could do inlining were not generally
available

  It made sense to manually inline in
performance-critical code

 Another example is the old register
declaration from C

Chapter Twenty-One Modern Programming Languages, 2nd ed. 54

Conclusion
  Some cost models are language-system-

specific: does this C compiler do inlining?
 Others more general: tail-call optimization

is a safe bet for all functional language
systems and most other language systems

 All are an important part of the working
programmer’s expertise, though rarely part
of the language specification

 No substitute for good algorithms!

Chapter Twenty-One Modern Programming Languages, 2nd ed. 55

