
Parameters

Chapter Eighteen Modern Programming Languages, 2nd ed. 1

Parameter Passing

  How are parameters passed?
  Looks simple enough…
  We will see seven techniques

Chapter Eighteen Modern Programming Languages, 2nd ed. 2

int plus(int a, int b)
{
 return a+b;
}

int x = plus(1,2);

formal parameters

method body

method call

actual parameters

Outline

  18.2 Parameter correspondence
  Implementation techniques

–  18.3 By value
–  18.4 By result
–  18.5 By value-result
–  18.6 By reference
–  18.7 By macro expansion
–  18.8 By name
–  18.9 By need

  18.10 Specification issues

Chapter Eighteen Modern Programming Languages, 2nd ed. 3

Parameter Correspondence

 A preliminary question: how does the
language match up parameters?

 That is, which formal parameters go with
which actual parameters?

 Most common case: positional parameters
–  Correspondence determined by positions
–  nth formal parameter matched with nth actual

Chapter Eighteen Modern Programming Languages, 2nd ed. 4

Keyword Parameters

 Correspondence can be determined by
matching parameter names

 Ada:
 DIVIDE(DIVIDEND => X, DIVISOR => Y);

 Matches actual parameter X to formal
parameter DIVIDEND, and Y to DIVISOR

  Parameter order is irrelevant here

Chapter Eighteen Modern Programming Languages, 2nd ed. 5

Mixed Keyword And Positional

 Most languages that support keyword
parameters allow both: Ada, Fortran, Dylan,
Python

 The first parameters in a list can be
positional, and the remainder can be
keyword parameters

Chapter Eighteen Modern Programming Languages, 2nd ed. 6

Optional Parameters

 Optional, with default values: formal
parameter list includes default values to be
used if the corresponding actual is missing

 This gives a very short way of writing
certain kinds of overloaded function
definitions

Chapter Eighteen Modern Programming Languages, 2nd ed. 7

Example: C++

Chapter Eighteen Modern Programming Languages, 2nd ed. 8

int f(int a=1, int b=2, int c=3) { body }

int f() {f(1,2,3);}
int f(int a) {f(a,2,3);}
int f(int a, int b) {f(a,b,3);}
int f(int a, int b, int c) { body }

Unlimited Parameter Lists
  Some languages allow actual parameter lists

of unbounded length: C, C++, and scripting
languages like JavaScript, Python, and Perl

 Library routines must be used to access the
excess actual parameters

 A hole in static type systems, since the
types of the excess parameters cannot be
checked at compile time

Chapter Eighteen Modern Programming Languages, 2nd ed. 9

int printf(char *format, ...) { body }

Outline

  18.2 Parameter correspondence
  Implementation techniques

–  18.3 By value
–  18.4 By result
–  18.5 By value-result
–  18.6 By reference
–  18.7 By macro expansion
–  18.8 By name
–  18.9 By need

  18.10 Specification issues

Chapter Eighteen Modern Programming Languages, 2nd ed. 10

By Value

  Simplest method
 Widely used
 The only method in real Java

Chapter Eighteen Modern Programming Languages, 2nd ed. 11

For by-value parameter passing, the formal parameter
is just like a local variable in the activation record of
the called method, with one important difference: it is
initialized using the value of the corresponding actual
parameter, before the called method begins executing.

Chapter Eighteen Modern Programming Languages, 2nd ed. 12

int plus(int a, int b) {
 a += b;
 return a;
}

void f() {
 int x = 3;
 int y = 4;
 int z = plus(x, y);
}

When plus
is starting

previous
activation record

return address

x: 3

previous
activation record

result: ?

return address

a: 3

current
activation record

b: 4 y: 4

z: ?

Changes Visible To The Caller

 When parameters are passed by value,
changes to a formal do not affect the actual

 But it is still possible for the called method
to make changes that are visible to the caller

 The value of the parameter could be a
pointer (in Java, a reference)

 Then the actual cannot be changed, but the
object referred to by the actual can be

Chapter Eighteen Modern Programming Languages, 2nd ed. 13

Chapter Eighteen Modern Programming Languages, 2nd ed. 14

void f() {
 ConsCell x = new ConsCell(0,null);
 alter(3,x);
}

void alter(int newHead, ConsCell c) {
 c.setHead(newHead);
 c = null;
}

When alter
is starting

previous
activation record

return address

x:

previous
activation record

return address

newHead: 3

current
activation record

c:

head: 0
tail: null

Chapter Eighteen Modern Programming Languages, 2nd ed. 15

void f() {
 ConsCell x = new ConsCell(0,null);
 alter(3,x);
}

void alter(int newHead, ConsCell c) {
 c.setHead(newHead);
 c = null;
}

When alter
is finishing

previous
activation record

return address

x:

previous
activation record

return address

newHead: 3

current
activation record

c: null

head: 3
tail: null

By Result

 Also called copy-out
 Actual must have an lvalue
  Introduced in Algol 68; sometimes used for

Ada

Chapter Eighteen Modern Programming Languages, 2nd ed. 16

For by-result parameter passing, the formal parameter
is just like a local variable in the activation record of
the called method—it is uninitialized. After the called
method finished executing, the final value of the
formal parameter is assigned to the corresponding
actual parameter.

Chapter Eighteen Modern Programming Languages, 2nd ed. 17

void plus(int a, int b, by-result int c) {
 c = a+b;
}
void f() {
 int x = 3;
 int y = 4;
 int z;
 plus(x, y, z);
}

When plus
is starting

previous
activation record

return address

x: 3

previous
activation record

return address

a: 3

current
activation record

b: 4 y: 4

z: ? c: ?

Chapter Eighteen Modern Programming Languages, 2nd ed. 18

void plus(int a, int b, by-result int c) {
 c = a+b;
}
void f() {
 int x = 3;
 int y = 4;
 int z;
 plus(x, y, z);
}

When plus is
ready to return

previous
activation record

return address

x: 3

previous
activation record

return address

a: 3

current
activation record

b: 4 y: 4

z: ? c: 7

Chapter Eighteen Modern Programming Languages, 2nd ed. 19

void plus(int a, int b, by-result int c) {
 c = a+b;
}
void f() {
 int x = 3;
 int y = 4;
 int z;
 plus(x, y, z);
}

When plus
has returned

previous
activation record

return address

x: 3

previous
activation record

return address

a: 3

current
activation record

b: 4 y: 4

z: 7 c: 7

By Value-Result

 Also called copy-in/copy-out
 Actual must have an lvalue

Chapter Eighteen Modern Programming Languages, 2nd ed. 20

For passing parameters by value-result, the formal
parameter is just like a local variable in the activation
record of the called method. It is initialized using the
value of the corresponding actual parameter, before
the called method begins executing. Then, after the
called method finishes executing, the final value of the
formal parameter is assigned to the actual parameter.

Chapter Eighteen Modern Programming Languages, 2nd ed. 21

void plus(int a, by-value-result int b) {
 b += a;
}
void f() {
 int x = 3;
 plus(4, x);
}

When plus
is starting

previous
activation record

return address

x: 3

previous
activation record

return address

a: 4

current
activation record

b: 3

Chapter Eighteen Modern Programming Languages, 2nd ed. 22

void plus(int a, by-value-result int b) {
 b += a;
}
void f() {
 int x = 3;
 plus(4, x);
}

When plus is
ready to return

previous
activation record

return address

x: 3

previous
activation record

return address

a: 4

current
activation record

b: 7

Chapter Eighteen Modern Programming Languages, 2nd ed. 23

void plus(int a, by-value-result int b) {
 b += a;
}
void f() {
 int x = 3;
 plus(4, x);
}

When plus
has returned

previous
activation record

return address

x: 7

previous
activation record

return address

a: 4

current
activation record

b: 7

By Reference

 One of the earliest methods: Fortran
 Most efficient for large objects
  Still frequently used

Chapter Eighteen Modern Programming Languages, 2nd ed. 24

For passing parameters by reference, the lvalue of the
actual parameter is computed before the called method
executes. Inside the called method, that lvalue is used
as the lvalue of the corresponding formal parameter.
In effect, the formal parameter is an alias for the
actual parameter—another name for the same memory
location.

Chapter Eighteen Modern Programming Languages, 2nd ed. 25

void plus(int a, by-reference int b) {
 b += a;
}
void f() {
 int x = 3;
 plus(4, x);
}

When plus
is starting

previous
activation record

return address

x: 3

previous
activation record

return address

a: 4

current
activation record

b:

Chapter Eighteen Modern Programming Languages, 2nd ed. 26

void plus(int a, by-reference int b) {
 b += a;
}
void f() {
 int x = 3;
 plus(4, x);
}

When plus
has made the
assignment

previous
activation record

return address

x: 7

previous
activation record

return address

a: 4

current
activation record

b:

Implementing Reference

Chapter Eighteen Modern Programming Languages, 2nd ed. 27

void plus(int a, int *b) {
 *b += a;
}
void f() {
 int x = 3;
 plus(4, &x);
}

void plus(int a, by-reference int b) {
 b += a;
}
void f() {
 int x = 3;
 plus(4, x);
}

C implementation

By-reference = address by value

Previous example

Aliasing

 When two expressions have the same
lvalue, they are aliases of each other

 There are obvious cases:

  Passing by reference leads to less obvious
cases…

Chapter Eighteen Modern Programming Languages, 2nd ed. 28

ConsCell x = new ConsCell(0,null);
ConsCell y = x;

A[i]=A[j]+A[k];

Example

Chapter Eighteen Modern Programming Languages, 2nd ed. 29

void sigsum(by-reference int n,
 by-reference int ans) {
 ans = 0;
 int i = 1;
 while (i <= n) ans += i++;
}

int f() {
 int x,y;
 x = 10;
 sigsum(x,y);
 return y;
}

int g() {
 int x;
 x = 10;
 sigsum(x,x);
 return x;
}

Chapter Eighteen Modern Programming Languages, 2nd ed. 30

void sigsum(by-reference int n,
 by-reference int ans) {
 ans = 0;
 int i = 1;
 while (i <= n) ans += i++;
}

int g() {
 int x;
 x = 10;
 sigsum(x,x);
 return x;
}

When sigsum
is starting

previous
activation record

return address

x: 10

previous
activation record

return address

n:

current
activation record

ans:

i: ?

result: ?

By Macro Expansion

 Like C macros
 Natural implementation: textual substitution

before compiling

Chapter Eighteen Modern Programming Languages, 2nd ed. 31

For passing parameters by macro expansion, the body
of the macro is evaluated in the caller’s context. Each
actual parameter is evaluated on every use of the
corresponding formal parameter, in the context of that
occurrence of that formal parameter (which is itself in
the caller’s context).

Macro Expansions In C

 An extra step in the classical sequence
 Macro expansion before compilation

Chapter Eighteen Modern Programming Languages, 2nd ed. 32

#define MIN(X,Y) ((X)<(Y)?(X):(Y))
a = MIN(b,c);

a = ((b)<(c)?(b):(c))

source
file:

expanded
source:

editor pre-processor compiler
source

file
expanded

source
assembly-
language

file

Preprocessing

 Replace each use of the macro with a copy
of the macro body, with actuals substituted
for formals

 An old technique, used in assemblers before
the days of high-level languages

  It has some odd effects…

Chapter Eighteen Modern Programming Languages, 2nd ed. 33

Repeated Evaluation

 Each actual parameter is re-evaluated every
time it is used

Chapter Eighteen Modern Programming Languages, 2nd ed. 34

#define MIN(X,Y) ((X)<(Y)?(X):(Y))
a = MIN(b++,c++);

a = ((b++)<(c++)?(b++):(c++))

source
file:

expanded
source:

Capture Example

Chapter Eighteen Modern Programming Languages, 2nd ed. 35

#define intswap(X,Y) {int temp=X; X=Y; Y=temp;}
int main() {
 int temp=1, b=2;
 intswap(temp,b);
 printf("%d, %d\n", temp, b);
}

int main() {
 int temp=1, b=2;
 {int temp= temp ; temp = b ; b =temp;} ;
 printf("%d, %d\n", temp, b);
}

source
file:

expanded
source:

Capture
  In a program fragment, any occurrence of a

variable that is not statically bound is free
 When a fragment is moved to a different

context, its free variables can become bound
 This phenomenon is called capture:

–  Free variables in the actuals can be captured by
definitions in the macro body

–  Also, free variables in the macro body can be
captured by definitions in the caller

Chapter Eighteen Modern Programming Languages, 2nd ed. 36

By Name

 Like macro expansion without capture
 Algol 60 and others
 Now unpopular

Chapter Eighteen Modern Programming Languages, 2nd ed. 37

For passing parameters by name, each actual
parameter is evaluated in the caller’s context, on every
use of the corresponding formal parameter.

Implementing By-Name

 The actual parameter is treated like a little
anonymous function

 Whenever the called method needs the
value of the formal (either rvalue or lvalue)
it calls the function to get it

 The function must be passed with its nesting
link, so it can be evaluated in the caller’s
context

Chapter Eighteen Modern Programming Languages, 2nd ed. 38

Chapter Eighteen Modern Programming Languages, 2nd ed. 39

void f(by-name int a, by-name int b) {
 b=5;
 b=a;
}

int g() {
 int i = 3;
 f(i+1,i);
 return i;
}

When f is
starting

i

previous
activation record

return address

i: 3

previous
activation record

return address

current
activation record

a:

b:

result: ?

i+1

Comparison

 Like macro expansion, by-name parameters
are re-evaluated every time they are used

  (Can be useful, but more often this is
merely wasteful)

 Unlike macro expansion, there is no
possibility of capture

Chapter Eighteen Modern Programming Languages, 2nd ed. 40

By Need

 Used in lazy functional languages (Haskell)
 Avoids wasteful recomputations of by-name

Chapter Eighteen Modern Programming Languages, 2nd ed. 41

For passing parameters by need, each actual parameter
is evaluated in the caller’s context, on the first use of
the corresponding formal parameter. The value of the
actual parameter is then cached, so that subsequent
uses of the corresponding formal parameter do not
cause reevaluation.

Chapter Eighteen Modern Programming Languages, 2nd ed. 42

void f(by-need int a, by-need int b) {
 b=a;
 b=a;
}

void g() {
 int i = 3;
 f(i+1,i);
 return i;
}

When f is
starting

i

previous
activation record

return address

i: 3

previous
activation record

return address

current
activation record

a:

b:

result: ?

i+1

Laziness

Chapter Eighteen Modern Programming Languages, 2nd ed. 43

boolean andand(by-need boolean a,
 by-need boolean b) {
 if (!a) return false;
 else return b;
}

boolean g() {
 while (true) {
 }
 return true;
}

void f() {
 andand(false,g());
}

Here, andand is short-circuiting,
like ML’s andalso and Java’s &&
operators.

The method f will terminate.

Same behavior for by-name and
macro expansion.

Outline

  18.2 Parameter correspondence
  Implementation techniques

–  18.3 By value
–  18.4 By result
–  18.5 By value-result
–  18.6 By reference
–  18.7 By macro expansion
–  18.8 By name
–  18.9 By need

  18.10 Specification issues

Chapter Eighteen Modern Programming Languages, 2nd ed. 44

Specification Issues

 Are these just implementation techniques,
or part of the language specification?

 Depends on the language:
–  Without side-effects, parameter-passing

technique may be undetectable by the
programmer

–  Even with side effects, some languages specify
the parameter passing technique only partially

Chapter Eighteen Modern Programming Languages, 2nd ed. 45

Without Side Effects

 Big question: are parameters always
evaluated (eager evaluation), or only if they
are really needed (lazy evaluation)?

 Cost model may also be used by the
programmer (more in Chapter 21):
–  Is re-evaluation of a formal expensive?
–  Does parameter-passing take time proportional

to the size of the object?

Chapter Eighteen Modern Programming Languages, 2nd ed. 46

With Side Effects

 A program can detect which parameter-
passing technique is being used by the
language system

 But it may be an implementation detail that
programs are not supposed to depend on—it
may not be part of the specification of the
language

 Case in point: Ada

Chapter Eighteen Modern Programming Languages, 2nd ed. 47

Ada Modes

 Three parameter-passing modes:
–  in: these can be read in the called method, but

not assigned—like constants
–  out: these must be assigned and cannot be read
–  in out: may be read and/or assigned

 Ada specification intentionally leaves some
flexibility for implementations

Chapter Eighteen Modern Programming Languages, 2nd ed. 48

Ada Implementations

 Copying is specified for scalar values:
–  in = value, out = result, in out = value/

result
 Aggregates like arrays and records may be

passed by reference instead
 Any program that can detect the difference

(like some of our earlier examples) is not a
legal Ada program

Chapter Eighteen Modern Programming Languages, 2nd ed. 49

Conclusion
 Today:

–  How to match formals with actuals
–  Seven different parameter-passing techniques
–  Ideas about where to draw the line between

language definition and implementation detail
 These are not the only schemes that have

been tried, just some of the most common
 The CS corollary of Murphy’s Law:

Chapter Eighteen Modern Programming Languages, 2nd ed. 50

Inside every little problem there is a big
problem waiting to get out

