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A Little Demo 
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public class Test { 
  public static void main(String[] args) { 
    int i = Integer.parseInt(args[0]); 
    int j = Integer.parseInt(args[1]); 
    System.out.println(i/j); 
  } 
} 

> javac Test.java 
> java Test 6 3 
2 
> 



Exceptions 
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> java Test 
Exception in thread "main"  
java.lang.ArrayIndexOutOfBoundsException: 0 
        at Test.main(Test.java:3) 
> java Test 6 0 
Exception in thread "main"  
        java.lang.ArithmeticException: / by zero 
        at Test.main(Test.java:4) 

In early languages, that’s all that happened: error message, 
core dump, terminate. 

Modern languages like Java support exception handling. 
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Some Predefined Exceptions 
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Java Exception Code to Cause It 

NullPointerException String s = null; 
s.length(); 

ArithmeticException int a = 3; 
int b = 0; 
int q = a/b; 

ArrayIndexOutOfBoundsException int[] a = new int[10]; 
a[10];  

ClassCastException Object x =  
  new Integer(1); 
String s = (String) x; 

StringIndexOutOfBoundsException String s = "Hello"; 
s.charAt(5); 



An Exception Is An Object 
 The names of exceptions are class names, 

like NullPointerException 
 Exceptions are objects of those classes 
  In the previous examples, the Java language 

system automatically creates an object of an 
exception class and throws it 

  If the program does not catch it, it 
terminates with an error message 
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Throwable Classes 
 To be thrown as an exception, an object 

must be of a class that inherits from the 
predefined class Throwable 

 There are four important predefined classes 
in that part of the class hierarchy: 
–  Throwable 
–  Error 
–  Exception 
–  RuntimeException 
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Java will only throw objects 
of a class descended from 
Throwable 

Classes derived from 
Error are used for 
serious, system-
generated errors, like 
OutOfMemoryError, 
that usually cannot be 
recovered from 

Classes derived from 
Exception are used 
for ordinary errors that a 
program might want to 
catch and recover from 

Classes derived from 
RuntimeException are 
used for ordinary system-
generated errors, like 
ArithmeticException 

Exception 

Object 

Throwable 

Error 

RuntimeException 

… 

… 

… 
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The try Statement 

  Simplified… full syntax later 
 The <type> is a throwable class name 
 Does the try part 
 Does the catch part only if the try part 

throws an exception of the given <type> 
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<try-statement> ::= <try-part> <catch-part> 
<try-part> ::= try <compound-statement> 
<catch-part> ::= catch (<type> <variable-name>) 
                 <compound-statement> 



Example 
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public class Test { 
  public static void main(String[] args) { 
    try { 
      int i = Integer.parseInt(args[0]); 
      int j = Integer.parseInt(args[1]); 
      System.out.println(i/j); 
    } 
    catch (ArithmeticException a) { 
      System.out.println("You're dividing by zero!"); 
    } 
  } 
} This will catch and handle any ArithmeticException. 

Other exceptions will still get the language system’s default 
behavior. 



Example 

 Catch type chooses exceptions to catch: 
–  ArithmeticException got zero division 
–  RuntimeException would get both 

examples above 
–  Throwable would get all possible exceptions 
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> java Test 6 3 
2 
> java Test 6 0 
You're dividing by zero! 
> java Test 
Exception in thread "main"  
java.lang.ArrayIndexOutOfBoundsException: 0 
        at Test.main(Test.java:3) 



After The try Statement 

 A try statement can be just another in a 
sequence of statements 

  If no exception occurs in the try part, the 
catch part is not executed 

  If no exception occurs in the try part, or if 
there is an exception which is caught in the 
catch part, execution continues with the 
statement following the try statement 
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Exception Handled 
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System.out.print("1, "); 
try { 
  String s = null; 
  s.length(); 
} 
catch (NullPointerException e) { 
  System.out.print("2, "); 
} 
System.out.println("3"); 

This just prints the line  

 1, 2, 3 



Throw From Called Method 

 The try statement gets a chance to catch 
exceptions thrown while the try part runs 

 That includes exceptions thrown by 
methods called from the try part 
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Example 

  If g throws an ArithmeticException, 
that it does not catch, f will get it 

  In general, the throw and the catch can be 
separated by any number of method 
invocations 
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void f() { 
  try {  
    g();  
  }  
  catch (ArithmeticException a) { 
    …  
  } 
} 



  If z throws an exception 
it does not catch, z’s 
activation stops… 

 …then y gets a chance to 
catch it; if it doesn’t, y’s 
activation stops… 

 …and so on all the way 
back to f 
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Long-Distance Throws 

 That kind of long-distance throw is one of 
the big advantages of exception handling 

 All intermediate activations between the 
throw and the catch are stopped and popped 

  If not throwing or catching, they need not 
know anything about it 
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Multiple catch Parts 

 To catch more than one kind of exception, a 
catch part can specify some general 
superclass like RuntimeException 

 But usually, to handle different kinds of 
exceptions differently, you use multiple 
catch parts 
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<try-statement> ::= <try-part> <catch-parts> 
<try-part> ::= try <compound-statement> 
<catch-parts> ::= <catch-part> <catch-parts> 
            | <catch-part> 
<catch-part> ::= catch (<type> <variable-name>)  
                 <compound-statement> 



Example 
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public static void main(String[] args) { 
  try { 
    int i = Integer.parseInt(args[0]); 
    int j = Integer.parseInt(args[1]); 
    System.out.println(i/j); 
  } 
  catch (ArithmeticException a) { 
    System.out.println("You're dividing by zero!"); 
  } 
  catch (ArrayIndexOutOfBoundsException a) { 
    System.out.println("Requires two parameters."); 
  } 
} This will catch and handle both ArithmeticException 

and ArrayIndexOutOfBoundsException 



Example 
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public static void main(String[] args) { 
  try { 
    int i = Integer.parseInt(args[0]); 
    int j = Integer.parseInt(args[1]); 
    System.out.println(i/j); 
  } 
  catch (ArithmeticException a) { 
    System.out.println("You're dividing by zero!"); 
  } 
  catch (ArrayIndexOutOfBoundsException a) { 
    System.out.println("Requires two parameters."); 
  } 
  catch (RuntimeException a) { 
    System.out.println("Runtime exception."); 
  } 
} 



Overlapping Catch Parts 

  If an exception from the try part matches 
more than one of the catch parts, only the 
first matching catch part is executed 

 A common pattern: catch parts for 
specific cases first, and a more general one 
at the end 

 Note that Java does not allow unreachable 
catch parts, or unreachable code in 
general 
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The throw Statement 

 Most exceptions are thrown automatically 
by the language system 

  Sometimes you want to throw your own 
 The <expression> is a reference to a 

throwable object—usually, a new one: 
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<throw-statement> ::= throw <expression> ; 

throw new NullPointerException(); 



Custom Throwable Classes 
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public class OutOfGas extends Exception { 
} 

System.out.print("1, "); 
try { 
  throw new OutOfGas(); 
} 
catch (OutOfGas e) { 
  System.out.print("2, "); 
} 
System.out.println("3"); 



Using The Exception Object 

 The exception that was thrown is available 
in the catch block—as that parameter 

  It can be used to communicate information 
from the thrower to the catcher 

 All classes derived from Throwable 
inherit a method printStackTrace 

 They also inherit a String field with a 
detailed error message, and a 
getMessage method to access it 
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Example 
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public class OutOfGas extends Exception { 
  public OutOfGas(String details) { 
    super(details); 
  } 
} 

try { 
  throw new OutOfGas("You have run out of gas."); 
} 
catch (OutOfGas e) { 
  System.out.println(e.getMessage()); 
} 

This calls a base-class constructor to 
initialize the field returned by 
getMessage(). 



About super In Constructors 

 The first statement in a constructor can be a 
call to super (with parameters, if needed) 

 That calls a base class constructor 
 Used to initialize inherited fields 
 All constructors (except in Object) start 

with a call to another constructor—if you 
don’t include one, Java calls super() 
implicitly 
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More About Constructors 

 Also, all classes have at least one 
constructor—if you don’t include one, Java 
provides a no-arg constructor implicitly 
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public class OutOfGas extends Exception { 
} 

public class OutOfGas extends Exception { 
  public OutOfGas() { 
    super(); 
  } 
} These are equivalent! 
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public class OutOfGas extends Exception { 
  private int miles; 
  public OutOfGas(String details, int m) { 
    super(details); 
    miles = m; 
  } 
  public int getMiles() { 
    return miles; 
  } 
} 

try { 
  throw new OutOfGas("You have run out of gas.",19); 
} 
catch (OutOfGas e) { 
  System.out.println(e.getMessage()); 
  System.out.println("Odometer: " + e.getMiles()); 
} 
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Checked Exceptions 

 This method will not compile: “The 
exception OutOfGas is not handled” 

  Java has not complained about this in our 
previous examples—why now? 

  Java distinguishes between two kinds of 
exceptions: checked and unchecked 
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void z() { 
  throw new OutOfGas("You have run out of gas.", 19"); 
} 
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The unchecked exceptions classes are Error and 
RuntimeException and their descendants.  All 
others are checked. 

Throwable 

Error 

RuntimeException 

… 

… 

… 

Exception 

checked  
exceptions 

unchecked 
exceptions 



What Gets Checked? 

 A method that can get a checked exception 
is not permitted to ignore it 

  It can catch it 
–  That is, the code that generates the exception 

can be inside a try statement with a catch 
part for that checked exception 

 Or, it can declare that it does not catch it 
–  Using a throws clause 
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The Throws Clause 

 A throws clause lists one or more 
throwable classes separated by commas 

 This one always throws, but in general, the 
throws clause means might throw 

  So any caller of z must catch OutOfGas, 
or place it in its own throws clause 

Chapter Seventeen Modern Programming Languages, 2nd ed. 35 

void z() throws OutOfGas { 
  throw new OutOfGas("You have run out of gas.", 19); 
} 



  If z declares that it 
throws OutOfGas… 

 …then y must catch it, or 
declare it throws it too… 

 …and so on all the way 
back to f 
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Why Use Checked Exceptions 

 The throws clause is like documentation: 
it tells the reader that this exception can 
result from a call of this method 

 But it is verified documentation; if any 
checked exception can result from a method 
call, the compiler will insist it be declared 

 This can make programs easier to read and 
more likely to be correct 

Chapter Seventeen Modern Programming Languages, 2nd ed. 37 



How To Avoid Checked 
Exceptions 
 You can always define your own exceptions 

using a different base class, such as Error 
or Throwable 

 Then they will be unchecked 
 Weigh the advantages carefully 
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Handling Errors 

 Example: popping an empty stack 
 Techniques: 

–  Preconditions only 
–  Total definition 
–  Fatal errors 
–  Error flagging 
–  Using exceptions 
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Preconditions Only 

 Document preconditions necessary to avoid 
errors 

 Caller must ensure these are met, or 
explicitly check if not sure 
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 /** 
   * Pop the top int from this stack and return it. 
   * This should be called only if the stack is 
   * not empty. 
   * @return the popped int 
   */ 
  public int pop() { 
    Node n = top; 
    top = n.getLink(); 
    return n.getData(); 
  } 

if (s.hasMore()) x = s.pop(); 
else … 



Drawbacks 

  If the caller makes a mistake, and pops an 
empty stack: NullPointerException 
–  If that is uncaught, program crashes with an 

unhelpful error message 
–  If caught, program relies on undocumented 

internals; an implementation using an array 
would cause a different exception 
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Total Definition 

 We can change the definition of pop so that 
it always works 

 Define some standard behavior for popping 
an empty stack 

 Like character-by-character file I/O in C: an 
EOF character at the end of the file 

 Like IEEE floating-point: NaN and signed 
infinity results 
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  /** 
   * Pop the top int from this stack and return it. 
   * If the stack is empty we return 0 and leave the 
   * stack empty. 
   * @return the popped int, or 0 if the stack is empty 
   */ 
  public int pop() { 
    Node n = top; 
    if (n==null) return 0; 
    top = n.getLink(); 
    return n.getData(); 
  } 



Drawbacks 

 Can mask important problems 
  If a client pops more than it pushes, this is 

probably a serious bug that should be 
detected and fixed, not concealed 
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Fatal Errors 

 The old-fashioned approach: just crash! 
  Preconditions, plus decisive action 
 At least this does not conceal the problem… 
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   /** 
   * Pop the top int from this stack and return it. 
   * This should be called only if the stack is 
   * not empty.  If called when the stack is empty, 
   * we print an error message and exit the program. 
   * @return the popped int 
   */ 
  public int pop() { 
    Node n = top; 
    if (n==null) { 
      System.out.println("Popping an empty stack!"); 
      System.exit(-1); 
    } 
    top = n.getLink(); 
    return n.getData(); 
  } 



Drawbacks 
 Not an object-oriented style: an object 

should do things to itself, not to the rest of 
the program 

  Inflexible: different clients may want to 
handle the error differently 
–  Terminate 
–  Clean up and terminate 
–  Repair the error and continue 
–  Ignore the error 
–  Etc. 
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Error Flagging 

 The method that detects the error can flag it 
somehow 
–  By returning a special value (like C malloc) 
–  By setting a global variable (like C errno) 
–  By setting an instance variable to be checked 

by a method call (like C ferror(f)) 
 Caller must explicitly test for error 

Chapter Seventeen Modern Programming Languages, 2nd ed. 50 



Chapter Seventeen Modern Programming Languages, 2nd ed. 51 

  /** 
   * Pop the top int from this stack and return it. 
   * This should be called only if the stack is 
   * not empty.  If called when the stack is empty, 
   * we set the error flag and return an undefined 
   * value. 
   * @return the popped int if stack not empty 
   */ 
  public int pop() { 
    Node n = top; 
    if (n==null) { 
      error = true; 
      return 0; 
    } 
    top = n.getLink(); 
    return n.getData(); 
  } 
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  /** 
   * Return the error flag for this stack.  The error 
   * flag is set true if an empty stack is ever popped. 
   * It can be reset to false by calling resetError(). 
   * @return the error flag 
   */ 
  public boolean getError() { 
    return error; 
  } 

  /** 
   * Reset the error flag.  We set it to false. 
   */ 
  public void resetError() { 
    error = false; 
  } 
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  /** 
   * Pop the two top integers from the stack, divide 
   * them, and push their integer quotient.  There 
   * should be at least two integers on the stack 
   * when we are called.  If not, we leave the stack 
   * empty and set the error flag. 
   */ 
  public void divide() { 
    int i = pop(); 
    int j = pop(); 
    if (getError()) return; 
    push(i/j); 
  } The kind of explicit error check required 

by an error flagging technique. 

Note that divide’s caller may also have 
to check it, and its caller, and so on… 



Using Exceptions 

 The method that first finds the error throws 
an exception 

 May be checked or unchecked 
  Part of the documented behavior of the 

method 
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  /** 
   * Pop the top int from this stack and return it. 
   * @return the popped int 
   * @exception EmptyStack if stack is empty 
   */ 
  public int pop() throws EmptyStack { 
    Node n = top; 
    if (n==null) throw new EmptyStack(); 
    top = n.getLink(); 
    return n.getData(); 
  } 
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  /** 
   * Pop the two top integers from the stack, divide 
   * them, and push their integer quotient. 
   * @exception EmptyStack if stack runs out 
   */ 
  public void divide() throws EmptyStack { 
    int i = pop(); 
    int j = pop(); 
    push(i/j); 
  } 

Caller makes no error check—just passes 
the exception along if one occurs 



Advantages 

 Good error message even if uncaught 
 Documented part of the interface 
 Error caught right away, not masked 
 Caller need not explicitly check for error 
 Error can be ignored or handled flexibly 
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The Full try Syntax 

 There is an optional finally part 
 No matter what happens, the finally part 

is always executed at the end of the try 
statement 
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<try-statement> ::= <try-part> <catch-parts> 
              | <try-part> <catch-parts> <finally-part> 
              | <try-part> <finally-part> 
<try-part> ::= try <compound-statement> 
<catch-parts> ::= <catch-part> <catch-parts> | <catch-part> 
<catch-part> ::= catch (<type> <variable-name>)  
                 <compound-statement> 
<finally-part> ::= finally <compound-statement> 



Using finally 

 The finally part is usually used for 
cleanup operations 

 Whether or not there is an exception, the 
file is closed 
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file.open(); 
try { 
  workWith(file); 
} 
finally { 
  file.close(); 
} 



Example 
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System.out.print("1"); 
try { 
  System.out.print("2"); 
  if (true) throw new Exception(); 
  System.out.print("3"); 
} 
catch (Exception e) { 
  System.out.print("4"); 
} 
finally { 
  System.out.print("5"); 
} 
System.out.println("6"); 

What does this print? 

What if we change  
new Exception() to 
new Throwable()? 
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Parts We Skipped 
  Fundamentals 

–  Primitive types: byte, short, long, float 
–  The enum type constructor for enumerations 
–  Various statements: do, for, break, 
continue, switch, assert 

 Refinements 
–  Inner classes: define classes in any scope: 

inside other classes, in blocks, in expressions 
–  Generics: we saw only a quick peek 
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More Parts We Skipped 

  Packages 
–  Classes are grouped into packages 
–  In many Java systems, the source files in a directory 

correspond to a package 
–  Default access (without public, private or 
protected) is package-wide 

  Concurrency 
–  Synchronization constructs for multiple threads 
–  Parts of the API for creating threads 
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More Parts We Skipped 
 The vast API 

 containers (stacks, queues, hash tables, etc.) 
 graphical user interfaces 
 2D and 3D graphics  
 math 
 pattern matching with regular expressions 
 file IO 
 network IO and XML 
 encryption and security 
 remote method invocation 
 interfacing to databases and other tools  
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