
A Third Look At Java

Chapter Seventeen Modern Programming Languages, 2nd ed. 1

A Little Demo

Chapter Seventeen Modern Programming Languages, 2nd ed. 2

public class Test {
 public static void main(String[] args) {
 int i = Integer.parseInt(args[0]);
 int j = Integer.parseInt(args[1]);
 System.out.println(i/j);
 }
}

> javac Test.java
> java Test 6 3
2
>

Exceptions

Chapter Seventeen Modern Programming Languages, 2nd ed. 3

> java Test
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 0
 at Test.main(Test.java:3)
> java Test 6 0
Exception in thread "main"
 java.lang.ArithmeticException: / by zero
 at Test.main(Test.java:4)

In early languages, that’s all that happened: error message,
core dump, terminate.

Modern languages like Java support exception handling.

Outline

  17.2 Throwable classes
  17.3 Catching exceptions
  17.4 Throwing exceptions
  17.5 Checked exceptions
  17.6 Error handling
  17.7 Finally
  17.8 Farewell to Java

Chapter Seventeen Modern Programming Languages, 2nd ed. 4

Some Predefined Exceptions

Chapter Seventeen Modern Programming Languages, 2nd ed. 5

Java Exception Code to Cause It

NullPointerException String s = null;
s.length();

ArithmeticException int a = 3;
int b = 0;
int q = a/b;

ArrayIndexOutOfBoundsException int[] a = new int[10];
a[10];

ClassCastException Object x =
 new Integer(1);
String s = (String) x;

StringIndexOutOfBoundsException String s = "Hello";
s.charAt(5);

An Exception Is An Object
 The names of exceptions are class names,

like NullPointerException
 Exceptions are objects of those classes
  In the previous examples, the Java language

system automatically creates an object of an
exception class and throws it

  If the program does not catch it, it
terminates with an error message

Chapter Seventeen Modern Programming Languages, 2nd ed. 6

Throwable Classes
 To be thrown as an exception, an object

must be of a class that inherits from the
predefined class Throwable

 There are four important predefined classes
in that part of the class hierarchy:
–  Throwable
–  Error
–  Exception
–  RuntimeException

Chapter Seventeen Modern Programming Languages, 2nd ed. 7

Chapter Seventeen Modern Programming Languages, 2nd ed. 8

Java will only throw objects
of a class descended from
Throwable

Classes derived from
Error are used for
serious, system-
generated errors, like
OutOfMemoryError,
that usually cannot be
recovered from

Classes derived from
Exception are used
for ordinary errors that a
program might want to
catch and recover from

Classes derived from
RuntimeException are
used for ordinary system-
generated errors, like
ArithmeticException

Exception

Object

Throwable

Error

RuntimeException

…

…

…

Outline

  17.2 Throwable classes
  17.3 Catching exceptions
  17.4 Throwing exceptions
  17.5 Checked exceptions
  17.6 Error handling
  17.7 Finally
  17.8 Farewell to Java

Chapter Seventeen Modern Programming Languages, 2nd ed. 9

The try Statement

  Simplified… full syntax later
 The <type> is a throwable class name
 Does the try part
 Does the catch part only if the try part

throws an exception of the given <type>

Chapter Seventeen Modern Programming Languages, 2nd ed. 10

<try-statement> ::= <try-part> <catch-part>
<try-part> ::= try <compound-statement>
<catch-part> ::= catch (<type> <variable-name>)
 <compound-statement>

Example

Chapter Seventeen Modern Programming Languages, 2nd ed. 11

public class Test {
 public static void main(String[] args) {
 try {
 int i = Integer.parseInt(args[0]);
 int j = Integer.parseInt(args[1]);
 System.out.println(i/j);
 }
 catch (ArithmeticException a) {
 System.out.println("You're dividing by zero!");
 }
 }
} This will catch and handle any ArithmeticException.

Other exceptions will still get the language system’s default
behavior.

Example

 Catch type chooses exceptions to catch:
–  ArithmeticException got zero division
–  RuntimeException would get both

examples above
–  Throwable would get all possible exceptions

Chapter Seventeen Modern Programming Languages, 2nd ed. 12

> java Test 6 3
2
> java Test 6 0
You're dividing by zero!
> java Test
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 0
 at Test.main(Test.java:3)

After The try Statement

 A try statement can be just another in a
sequence of statements

  If no exception occurs in the try part, the
catch part is not executed

  If no exception occurs in the try part, or if
there is an exception which is caught in the
catch part, execution continues with the
statement following the try statement

Chapter Seventeen Modern Programming Languages, 2nd ed. 13

Exception Handled

Chapter Seventeen Modern Programming Languages, 2nd ed. 14

System.out.print("1, ");
try {
 String s = null;
 s.length();
}
catch (NullPointerException e) {
 System.out.print("2, ");
}
System.out.println("3");

This just prints the line

 1, 2, 3

Throw From Called Method

 The try statement gets a chance to catch
exceptions thrown while the try part runs

 That includes exceptions thrown by
methods called from the try part

Chapter Seventeen Modern Programming Languages, 2nd ed. 15

Example

  If g throws an ArithmeticException,
that it does not catch, f will get it

  In general, the throw and the catch can be
separated by any number of method
invocations

Chapter Seventeen Modern Programming Languages, 2nd ed. 16

void f() {
 try {
 g();
 }
 catch (ArithmeticException a) {
 …
 }
}

  If z throws an exception
it does not catch, z’s
activation stops…

 …then y gets a chance to
catch it; if it doesn’t, y’s
activation stops…

 …and so on all the way
back to f

Chapter Seventeen Modern Programming Languages, 2nd ed. 17

Long-Distance Throws

 That kind of long-distance throw is one of
the big advantages of exception handling

 All intermediate activations between the
throw and the catch are stopped and popped

  If not throwing or catching, they need not
know anything about it

Chapter Seventeen Modern Programming Languages, 2nd ed. 18

Multiple catch Parts

 To catch more than one kind of exception, a
catch part can specify some general
superclass like RuntimeException

 But usually, to handle different kinds of
exceptions differently, you use multiple
catch parts

Chapter Seventeen Modern Programming Languages, 2nd ed. 19

<try-statement> ::= <try-part> <catch-parts>
<try-part> ::= try <compound-statement>
<catch-parts> ::= <catch-part> <catch-parts>
 | <catch-part>
<catch-part> ::= catch (<type> <variable-name>)
 <compound-statement>

Example

Chapter Seventeen Modern Programming Languages, 2nd ed. 20

public static void main(String[] args) {
 try {
 int i = Integer.parseInt(args[0]);
 int j = Integer.parseInt(args[1]);
 System.out.println(i/j);
 }
 catch (ArithmeticException a) {
 System.out.println("You're dividing by zero!");
 }
 catch (ArrayIndexOutOfBoundsException a) {
 System.out.println("Requires two parameters.");
 }
} This will catch and handle both ArithmeticException

and ArrayIndexOutOfBoundsException

Example

Chapter Seventeen Modern Programming Languages, 2nd ed. 21

public static void main(String[] args) {
 try {
 int i = Integer.parseInt(args[0]);
 int j = Integer.parseInt(args[1]);
 System.out.println(i/j);
 }
 catch (ArithmeticException a) {
 System.out.println("You're dividing by zero!");
 }
 catch (ArrayIndexOutOfBoundsException a) {
 System.out.println("Requires two parameters.");
 }
 catch (RuntimeException a) {
 System.out.println("Runtime exception.");
 }
}

Overlapping Catch Parts

  If an exception from the try part matches
more than one of the catch parts, only the
first matching catch part is executed

 A common pattern: catch parts for
specific cases first, and a more general one
at the end

 Note that Java does not allow unreachable
catch parts, or unreachable code in
general

Chapter Seventeen Modern Programming Languages, 2nd ed. 22

Outline

  17.2 Throwable classes
  17.3 Catching exceptions
  17.4 Throwing exceptions
  17.5 Checked exceptions
  17.6 Error handling
  17.7 Finally
  17.8 Farewell to Java

Chapter Seventeen Modern Programming Languages, 2nd ed. 23

The throw Statement

 Most exceptions are thrown automatically
by the language system

  Sometimes you want to throw your own
 The <expression> is a reference to a

throwable object—usually, a new one:

Chapter Seventeen Modern Programming Languages, 2nd ed. 24

<throw-statement> ::= throw <expression> ;

throw new NullPointerException();

Custom Throwable Classes

Chapter Seventeen Modern Programming Languages, 2nd ed. 25

public class OutOfGas extends Exception {
}

System.out.print("1, ");
try {
 throw new OutOfGas();
}
catch (OutOfGas e) {
 System.out.print("2, ");
}
System.out.println("3");

Using The Exception Object

 The exception that was thrown is available
in the catch block—as that parameter

  It can be used to communicate information
from the thrower to the catcher

 All classes derived from Throwable
inherit a method printStackTrace

 They also inherit a String field with a
detailed error message, and a
getMessage method to access it

Chapter Seventeen Modern Programming Languages, 2nd ed. 26

Example

Chapter Seventeen Modern Programming Languages, 2nd ed. 27

public class OutOfGas extends Exception {
 public OutOfGas(String details) {
 super(details);
 }
}

try {
 throw new OutOfGas("You have run out of gas.");
}
catch (OutOfGas e) {
 System.out.println(e.getMessage());
}

This calls a base-class constructor to
initialize the field returned by
getMessage().

About super In Constructors

 The first statement in a constructor can be a
call to super (with parameters, if needed)

 That calls a base class constructor
 Used to initialize inherited fields
 All constructors (except in Object) start

with a call to another constructor—if you
don’t include one, Java calls super()
implicitly

Chapter Seventeen Modern Programming Languages, 2nd ed. 28

More About Constructors

 Also, all classes have at least one
constructor—if you don’t include one, Java
provides a no-arg constructor implicitly

Chapter Seventeen Modern Programming Languages, 2nd ed. 29

public class OutOfGas extends Exception {
}

public class OutOfGas extends Exception {
 public OutOfGas() {
 super();
 }
} These are equivalent!

Chapter Seventeen Modern Programming Languages, 2nd ed. 30

public class OutOfGas extends Exception {
 private int miles;
 public OutOfGas(String details, int m) {
 super(details);
 miles = m;
 }
 public int getMiles() {
 return miles;
 }
}

try {
 throw new OutOfGas("You have run out of gas.",19);
}
catch (OutOfGas e) {
 System.out.println(e.getMessage());
 System.out.println("Odometer: " + e.getMiles());
}

Outline

  17.2 Throwable classes
  17.3 Catching exceptions
  17.4 Throwing exceptions
  17.5 Checked exceptions
  17.6 Error handling
  17.7 Finally
  17.8 Farewell to Java

Chapter Seventeen Modern Programming Languages, 2nd ed. 31

Checked Exceptions

 This method will not compile: “The
exception OutOfGas is not handled”

  Java has not complained about this in our
previous examples—why now?

  Java distinguishes between two kinds of
exceptions: checked and unchecked

Chapter Seventeen Modern Programming Languages, 2nd ed. 32

void z() {
 throw new OutOfGas("You have run out of gas.", 19");
}

Chapter Seventeen Modern Programming Languages, 2nd ed. 33

The unchecked exceptions classes are Error and
RuntimeException and their descendants. All
others are checked.

Throwable

Error

RuntimeException

…

…

…

Exception

checked
exceptions

unchecked
exceptions

What Gets Checked?

 A method that can get a checked exception
is not permitted to ignore it

  It can catch it
–  That is, the code that generates the exception

can be inside a try statement with a catch
part for that checked exception

 Or, it can declare that it does not catch it
–  Using a throws clause

Chapter Seventeen Modern Programming Languages, 2nd ed. 34

The Throws Clause

 A throws clause lists one or more
throwable classes separated by commas

 This one always throws, but in general, the
throws clause means might throw

  So any caller of z must catch OutOfGas,
or place it in its own throws clause

Chapter Seventeen Modern Programming Languages, 2nd ed. 35

void z() throws OutOfGas {
 throw new OutOfGas("You have run out of gas.", 19);
}

  If z declares that it
throws OutOfGas…

 …then y must catch it, or
declare it throws it too…

 …and so on all the way
back to f

Chapter Seventeen Modern Programming Languages, 2nd ed. 36

Why Use Checked Exceptions

 The throws clause is like documentation:
it tells the reader that this exception can
result from a call of this method

 But it is verified documentation; if any
checked exception can result from a method
call, the compiler will insist it be declared

 This can make programs easier to read and
more likely to be correct

Chapter Seventeen Modern Programming Languages, 2nd ed. 37

How To Avoid Checked
Exceptions
 You can always define your own exceptions

using a different base class, such as Error
or Throwable

 Then they will be unchecked
 Weigh the advantages carefully

Chapter Seventeen Modern Programming Languages, 2nd ed. 38

Outline

  17.2 Throwable classes
  17.3 Catching exceptions
  17.4 Throwing exceptions
  17.5 Checked exceptions
  17.6 Error handling
  17.7 Finally
  17.8 Farewell to Java

Chapter Seventeen Modern Programming Languages, 2nd ed. 39

Handling Errors

 Example: popping an empty stack
 Techniques:

–  Preconditions only
–  Total definition
–  Fatal errors
–  Error flagging
–  Using exceptions

Chapter Seventeen Modern Programming Languages, 2nd ed. 40

Preconditions Only

 Document preconditions necessary to avoid
errors

 Caller must ensure these are met, or
explicitly check if not sure

Chapter Seventeen Modern Programming Languages, 2nd ed. 41

Chapter Seventeen Modern Programming Languages, 2nd ed. 42

 /**
 * Pop the top int from this stack and return it.
 * This should be called only if the stack is
 * not empty.
 * @return the popped int
 */
 public int pop() {
 Node n = top;
 top = n.getLink();
 return n.getData();
 }

if (s.hasMore()) x = s.pop();
else …

Drawbacks

  If the caller makes a mistake, and pops an
empty stack: NullPointerException
–  If that is uncaught, program crashes with an

unhelpful error message
–  If caught, program relies on undocumented

internals; an implementation using an array
would cause a different exception

Chapter Seventeen Modern Programming Languages, 2nd ed. 43

Total Definition

 We can change the definition of pop so that
it always works

 Define some standard behavior for popping
an empty stack

 Like character-by-character file I/O in C: an
EOF character at the end of the file

 Like IEEE floating-point: NaN and signed
infinity results

Chapter Seventeen Modern Programming Languages, 2nd ed. 44

Chapter Seventeen Modern Programming Languages, 2nd ed. 45

 /**
 * Pop the top int from this stack and return it.
 * If the stack is empty we return 0 and leave the
 * stack empty.
 * @return the popped int, or 0 if the stack is empty
 */
 public int pop() {
 Node n = top;
 if (n==null) return 0;
 top = n.getLink();
 return n.getData();
 }

Drawbacks

 Can mask important problems
  If a client pops more than it pushes, this is

probably a serious bug that should be
detected and fixed, not concealed

Chapter Seventeen Modern Programming Languages, 2nd ed. 46

Fatal Errors

 The old-fashioned approach: just crash!
  Preconditions, plus decisive action
 At least this does not conceal the problem…

Chapter Seventeen Modern Programming Languages, 2nd ed. 47

Chapter Seventeen Modern Programming Languages, 2nd ed. 48

 /**
 * Pop the top int from this stack and return it.
 * This should be called only if the stack is
 * not empty. If called when the stack is empty,
 * we print an error message and exit the program.
 * @return the popped int
 */
 public int pop() {
 Node n = top;
 if (n==null) {
 System.out.println("Popping an empty stack!");
 System.exit(-1);
 }
 top = n.getLink();
 return n.getData();
 }

Drawbacks
 Not an object-oriented style: an object

should do things to itself, not to the rest of
the program

  Inflexible: different clients may want to
handle the error differently
–  Terminate
–  Clean up and terminate
–  Repair the error and continue
–  Ignore the error
–  Etc.

Chapter Seventeen Modern Programming Languages, 2nd ed. 49

Error Flagging

 The method that detects the error can flag it
somehow
–  By returning a special value (like C malloc)
–  By setting a global variable (like C errno)
–  By setting an instance variable to be checked

by a method call (like C ferror(f))
 Caller must explicitly test for error

Chapter Seventeen Modern Programming Languages, 2nd ed. 50

Chapter Seventeen Modern Programming Languages, 2nd ed. 51

 /**
 * Pop the top int from this stack and return it.
 * This should be called only if the stack is
 * not empty. If called when the stack is empty,
 * we set the error flag and return an undefined
 * value.
 * @return the popped int if stack not empty
 */
 public int pop() {
 Node n = top;
 if (n==null) {
 error = true;
 return 0;
 }
 top = n.getLink();
 return n.getData();
 }

Chapter Seventeen Modern Programming Languages, 2nd ed. 52

 /**
 * Return the error flag for this stack. The error
 * flag is set true if an empty stack is ever popped.
 * It can be reset to false by calling resetError().
 * @return the error flag
 */
 public boolean getError() {
 return error;
 }

 /**
 * Reset the error flag. We set it to false.
 */
 public void resetError() {
 error = false;
 }

Chapter Seventeen Modern Programming Languages, 2nd ed. 53

 /**
 * Pop the two top integers from the stack, divide
 * them, and push their integer quotient. There
 * should be at least two integers on the stack
 * when we are called. If not, we leave the stack
 * empty and set the error flag.
 */
 public void divide() {
 int i = pop();
 int j = pop();
 if (getError()) return;
 push(i/j);
 } The kind of explicit error check required

by an error flagging technique.

Note that divide’s caller may also have
to check it, and its caller, and so on…

Using Exceptions

 The method that first finds the error throws
an exception

 May be checked or unchecked
  Part of the documented behavior of the

method

Chapter Seventeen Modern Programming Languages, 2nd ed. 54

Chapter Seventeen Modern Programming Languages, 2nd ed. 55

 /**
 * Pop the top int from this stack and return it.
 * @return the popped int
 * @exception EmptyStack if stack is empty
 */
 public int pop() throws EmptyStack {
 Node n = top;
 if (n==null) throw new EmptyStack();
 top = n.getLink();
 return n.getData();
 }

Chapter Seventeen Modern Programming Languages, 2nd ed. 56

 /**
 * Pop the two top integers from the stack, divide
 * them, and push their integer quotient.
 * @exception EmptyStack if stack runs out
 */
 public void divide() throws EmptyStack {
 int i = pop();
 int j = pop();
 push(i/j);
 }

Caller makes no error check—just passes
the exception along if one occurs

Advantages

 Good error message even if uncaught
 Documented part of the interface
 Error caught right away, not masked
 Caller need not explicitly check for error
 Error can be ignored or handled flexibly

Chapter Seventeen Modern Programming Languages, 2nd ed. 57

Outline

  17.2 Throwable classes
  17.3 Catching exceptions
  17.4 Throwing exceptions
  17.5 Checked exceptions
  17.6 Error handling
  17.7 Finally
  17.8 Farewell to Java

Chapter Seventeen Modern Programming Languages, 2nd ed. 58

The Full try Syntax

 There is an optional finally part
 No matter what happens, the finally part

is always executed at the end of the try
statement

Chapter Seventeen Modern Programming Languages, 2nd ed. 59

<try-statement> ::= <try-part> <catch-parts>
 | <try-part> <catch-parts> <finally-part>
 | <try-part> <finally-part>
<try-part> ::= try <compound-statement>
<catch-parts> ::= <catch-part> <catch-parts> | <catch-part>
<catch-part> ::= catch (<type> <variable-name>)
 <compound-statement>
<finally-part> ::= finally <compound-statement>

Using finally

 The finally part is usually used for
cleanup operations

 Whether or not there is an exception, the
file is closed

Chapter Seventeen Modern Programming Languages, 2nd ed. 60

file.open();
try {
 workWith(file);
}
finally {
 file.close();
}

Example

Chapter Seventeen Modern Programming Languages, 2nd ed. 61

System.out.print("1");
try {
 System.out.print("2");
 if (true) throw new Exception();
 System.out.print("3");
}
catch (Exception e) {
 System.out.print("4");
}
finally {
 System.out.print("5");
}
System.out.println("6");

What does this print?

What if we change
new Exception() to
new Throwable()?

Outline

  17.2 Throwable classes
  17.3 Catching exceptions
  17.4 Throwing exceptions
  17.5 Checked exceptions
  17.6 Error handling
  17.7 Finally
  17.8 Farewell to Java

Chapter Seventeen Modern Programming Languages, 2nd ed. 62

Parts We Skipped
  Fundamentals

–  Primitive types: byte, short, long, float
–  The enum type constructor for enumerations
–  Various statements: do, for, break,
continue, switch, assert

 Refinements
–  Inner classes: define classes in any scope:

inside other classes, in blocks, in expressions
–  Generics: we saw only a quick peek

Chapter Seventeen Modern Programming Languages, 2nd ed. 63

More Parts We Skipped

  Packages
–  Classes are grouped into packages
–  In many Java systems, the source files in a directory

correspond to a package
–  Default access (without public, private or
protected) is package-wide

  Concurrency
–  Synchronization constructs for multiple threads
–  Parts of the API for creating threads

Chapter Seventeen Modern Programming Languages, 2nd ed. 64

More Parts We Skipped
 The vast API

 containers (stacks, queues, hash tables, etc.)
 graphical user interfaces
 2D and 3D graphics
 math
 pattern matching with regular expressions
 file IO
 network IO and XML
 encryption and security
 remote method invocation
 interfacing to databases and other tools

Chapter Seventeen Modern Programming Languages, 2nd ed. 65

