
A Second Look At Java

Chapter Fifteen Modern Programming Languages, 2nd ed. 1

Subtype Polymorphism

 Does this declare x to be a reference to an
object of the Person class?

 Not exactly—the type Person may include
references to objects of other classes

  Java has subtype polymorphism

Chapter Fifteen Modern Programming Languages, 2nd ed. 2

Person x;

Outline

  15.2 Implementing interfaces
  15.3 Extending classes
  15.4 Extending and implementing
  15.5 Multiple inheritance
  15.6 Generics

Chapter Fifteen Modern Programming Languages, 2nd ed. 3

Interfaces

 A method prototype just gives the method
name and type—no method body

 An interface in Java is a collection of
method prototypes

Chapter Fifteen Modern Programming Languages, 2nd ed. 4

public interface Drawable {
 void show(int xPos, int yPos);
 void hide();
}

Implementing Interfaces

 A class can declare that it implements a
particular interface

 Then it must provide public method
definitions that match those in the interface

Chapter Fifteen Modern Programming Languages, 2nd ed. 5

Examples

Chapter Fifteen Modern Programming Languages, 2nd ed. 6

public class Icon implements Drawable {
 public void show(int x, int y) {
 … method body …
 }
 public void hide() {
 … method body …
 }
 …more methods and fields…
}

public class Square implements Drawable, Scalable {
 … all required methods of all interfaces implemented …
}

Why Use Interfaces?

 An interface can be implemented by many
classes:

  Interface name can be used as a reference
type:

Chapter Fifteen Modern Programming Languages, 2nd ed. 7

public class Window implements Drawable …
public class MousePointer implements Drawable …
public class Oval implements Drawable …

Drawable d;
d = new Icon("i1.gif");
d.show(0,0);
d = new Oval(20,30);
d.show(0,0);

Polymorphism With Interfaces

 Class of object referred to by d is not
known at compile time

  It is some class that implements
Drawable, so it has show and hide
methods that can be called

Chapter Fifteen Modern Programming Languages, 2nd ed. 8

static void flashoff(Drawable d, int k) {
 for (int i = 0; i < k; i++) {
 d.show(0,0);
 d.hide();
 }
}

A More Complete Example

 A Worklist interface for a collection of
String objects

 Can be added to, removed from, and tested
for emptiness

Chapter Fifteen Modern Programming Languages, 2nd ed. 9

Chapter Fifteen Modern Programming Languages, 2nd ed. 10

public interface Worklist {
 /**
 * Add one String to the worklist.
 * @param item the String to add
 */
 void add(String item);

 /**
 * Test whether there are more elements in the
 * worklist: that is, test whether more elements
 * have been added than have been removed.
 * @return true iff there are more elements
 */
 boolean hasMore();

Chapter Fifteen Modern Programming Languages, 2nd ed. 11

 /**
 * Remove one String from the worklist and return
 * it. There must be at least one element in the
 * worklist.
 * @return the String item removed
 */
 String remove();
}

Interface Documentation
 Comments are especially important in an

interface, since there is no code to help the
reader understand what each method is
supposed to do

 Worklist interface does not specify
ordering: could be a stack, a queue, or
something else

 We will do an implementation as a stack,
implemented using linked lists

Chapter Fifteen Modern Programming Languages, 2nd ed. 12

Chapter Fifteen Modern Programming Languages, 2nd ed. 13

/**
 * A Node is an object that holds a String and a link
 * to the next Node. It can be used to build linked
 * lists of Strings.
 */
public class Node {
 private String data; // Each node has a String...
 private Node link; // and a link to the next Node

 /**
 * Node constructor.
 * @param theData the String to store in this Node
 * @param theLink a link to the next Node
 */
 public Node(String theData, Node theLink) {
 data = theData;
 link = theLink;
 }

Chapter Fifteen Modern Programming Languages, 2nd ed. 14

 /**
 * Accessor for the String data stored in this Node.
 * @return our String item
 */
 public String getData() {
 return data;
 }

 /**
 * Accessor for the link to the next Node.
 * @return the next Node
 */
 public Node getLink() {
 return link;
 }
}

Chapter Fifteen Modern Programming Languages, 2nd ed. 15

/**
 * A Stack is an object that holds a collection of
 * Strings.
 */
public class Stack implements Worklist {
 private Node top = null; // top Node in the stack

 /**
 * Push a String on top of this stack.
 * @param data the String to add
 */
 public void add(String data) {
 top = new Node(data,top);
 }

Chapter Fifteen Modern Programming Languages, 2nd ed. 16

 /**
 * Test whether this stack has more elements.
 * @return true if this stack is not empty
 */
 public boolean hasMore() {
 return (top!=null);
 }

 /**
 * Pop the top String from this stack and return it.
 * This should be called only if the stack is
 * not empty.
 * @return the popped String
 */
 public String remove() {
 Node n = top;
 top = n.getLink();
 return n.getData();
 }
}

A Test

 Output: The cut worm forgives the plow.
 Other implementations of Worklist are

possible: Queue, PriorityQueue, etc.

Chapter Fifteen Modern Programming Languages, 2nd ed. 17

Worklist w;
w = new Stack();
w.add("the plow.");
w.add("forgives ");
w.add("The cut worm ");
System.out.print(w.remove());
System.out.print(w.remove());
System.out.println(w.remove());

Outline

  15.2 Implementing interfaces
  15.3 Extending classes
  15.4 Extending and implementing
  15.5 Multiple inheritance
  15.6 Generics

Chapter Fifteen Modern Programming Languages, 2nd ed. 18

More Polymorphism

 Another, more complex source of
polymorphism

 One class can be derived from another,
using the keyword extends

  For example: a class PeekableStack
that is just like Stack, but also has a
method peek to examine the top element
without removing it

Chapter Fifteen Modern Programming Languages, 2nd ed. 19

Chapter Fifteen Modern Programming Languages, 2nd ed. 20

/**
 * A PeekableStack is an object that does everything a
 * Stack can do, and can also peek at the top element
 * of the stack without popping it off.
 */
public class PeekableStack extends Stack {

 /**
 * Examine the top element on the stack, without
 * popping it off. This should be called only if
 * the stack is not empty.
 * @return the top String from the stack
 */
 public String peek() {
 String s = remove();
 add(s);
 return s;
 }
}

Inheritance

 Because PeekableStack extends
Stack, it inherits all its methods and fields

  (Nothing like this happens with interfaces—
when a class implements an interface, all it
gets is an obligation)

  In addition to inheritance, you also get
polymorphism

Chapter Fifteen Modern Programming Languages, 2nd ed. 21

Chapter Fifteen Modern Programming Languages, 2nd ed. 22

Stack s1 = new PeekableStack();
PeekableStack s2 = new PeekableStack();
s1.add("drive");
s2.add("cart");
System.out.println(s2.peek());

Note that s1.peek() is not legal here, even
though s1 is a reference to a PeekableStack.
It is the static type of the reference, not the
object’s class, that determines the operations Java
will permit.

Question
 Our peek was inefficient:

 Why not just do this?

Chapter Fifteen Modern Programming Languages, 2nd ed. 23

public String peek() {
 String s = remove();
 add(s);
 return s;
}

public String peek() {
 return top.getData();
}

Answer
 The top field of Stack is private
 PeekableStack cannot access it
  For more efficient peek, Stack must

make top visible in classes that extend it
 protected instead of private
 A common design challenge for object-

oriented languages: designing for reuse by
inheritance

Chapter Fifteen Modern Programming Languages, 2nd ed. 24

Inheritance Chains

 A derived class can have more classes
derived from it

 All classes but one are derived from some
class

  If you do not give an extends clause, Java
supplies one: extends Object

 Object is the ultimate base class in Java

Chapter Fifteen Modern Programming Languages, 2nd ed. 25

The Class Object

 All classes are derived, directly or
indirectly, from the predefined class
Object (except Object itself)

 All classes inherit methods from Object:
–  toString, for converting to a String
–  equals, for comparing with other objects
–  hashcode, for computing an int hash code
–  etc.

Chapter Fifteen Modern Programming Languages, 2nd ed. 26

Overriding Inherited Definitions

  Sometimes you want to redefine an
inherited method

 No special construct for this: a new method
definition automatically overrides an
inherited definition of the same name and
type

Chapter Fifteen Modern Programming Languages, 2nd ed. 27

Overriding Example

 The inherited toString just combines the
class name and hash code (in hexadecimal)

  So the code above prints something like:
 Stack@b3d

 A custom toString method in Stack
can override this with a nicer string:

Chapter Fifteen Modern Programming Languages, 2nd ed. 28

System.out.print(new Stack());

public String toString() {
 return "Stack with top at " + top;
}

Inheritance Hierarchies

  Inheritance forms a hierarchy, a tree rooted
at Object

  Sometimes inheritance is one useful class
extending another

  In other cases, it is a way of factoring out
common code from different classes into a
shared base class

Chapter Fifteen Modern Programming Languages, 2nd ed. 29

Chapter Fifteen Modern Programming Languages, 2nd ed. 30

public class Icon {
 private int x,y;
 private int width;
 private int height;
 private Gif image;
 public void move
 (int newX, int newY)
 {
 x = newX;
 y = newY;
 }
 public Gif getImage()
 {
 return image;
 }
}

public class Label {
 private int x,y;
 private int width;
 private int height;
 private String text;
 public void move
 (int newX, int newY)
 {
 x = newX;
 y = newY;
 }
 public String getText()
 {
 return text;
 }
}

Two classes with a lot in common—but neither is a simple
extension of the other.

Chapter Fifteen Modern Programming Languages, 2nd ed. 31

public class Icon
 extends Graphic {
 private Gif image;
 public Gif getImage()
 {
 return image;
 }
}

public class Label
 extends Graphic {
 private String text;
 public String getText()
 {
 return text;
 }
}

Common code and data have been factored out into a common
base class.

public class Graphic {
 protected int x,y;
 protected int width,height;
 public void move(int newX, int newY) {
 x = newX;
 y = newY;
 }
}

A Design Problem

 When you write the same statements
repeatedly, you think: that should be a
method

 When you write the same methods
repeatedly, you think: that should be a
common base class

 The real trick is to see the need for a shared
base class early in the design, before writing
a lot of code that needs to be reorganized

Chapter Fifteen Modern Programming Languages, 2nd ed. 32

Subtypes and Inheritance
 A derived class is a subtype
  From Chapter Six:

 When designing class
hierarchies, think about
inheritance of functionality

 Not all intuitively reasonable
hierarchies work well for
inheriting functionality

Chapter Fifteen Modern Programming Languages, 2nd ed. 33

A subtype is a subset of the values, but it
can support a superset of the operations.

Outline

  15.2 Implementing interfaces
  15.3 Extending classes
  15.4 Extending and implementing
  15.5 Multiple inheritance
  15.6 Generics

Chapter Fifteen Modern Programming Languages, 2nd ed. 34

Extending And Implementing

 Classes can use extends and
implements together

  For every class, the Java language system
keeps track of several properties, including:

Chapter Fifteen Modern Programming Languages, 2nd ed. 35

A: the interfaces it implements
B: the methods it is obliged to define
C: the methods that are defined for it
D: the fields that are defined for it

Simple Cases For A Class
 A method definition affects C only
 A field definition affects D only
 An implements part affects A and B

–  All the interfaces are added to A
–  All the methods in them are added to B

Chapter Fifteen Modern Programming Languages, 2nd ed. 36

A: the interfaces it implements
B: the methods it is obliged to define
C: the methods that are defined for it
D: the fields that are defined for it

Tricky Case For A Class
 An extends part affects all four:

–  All interfaces of the base class are added to A
–  All methods the base class is obliged to define

are added to B
–  All methods of the base class are added to C
–  All fields of the base class are added to D

Chapter Fifteen Modern Programming Languages, 2nd ed. 37

A: the interfaces it implements
B: the methods it is obliged to define
C: the methods that are defined for it
D: the fields that are defined for it

Previous Example

 PeekableStack has:
–  A: Worklist interface, inherited
–  B: obligations for add, hasMore, and
remove, inherited

–  C: methods add, hasMore, and remove,
inherited, plus its own method peek

–  D: field top, inherited

Chapter Fifteen Modern Programming Languages, 2nd ed. 38

public class Stack implements Worklist {…}

public class PeekableStack extends Stack {…}

A Peek At abstract

 Note that C is a superset of B: the class has
definitions of all required methods

  Java ordinarily requires this
 Classes can get out of this by being declared
abstract

 An abstract class is used only as a base
class; no objects of that class are created

 We will not be using abstract classes

Chapter Fifteen Modern Programming Languages, 2nd ed. 39

Outline

  15.2 Implementing interfaces
  15.3 Extending classes
  15.4 Extending and implementing
  15.5 Multiple inheritance
  15.6 Generics

Chapter Fifteen Modern Programming Languages, 2nd ed. 40

Multiple Inheritance
  In some languages (such as C++) a class

can have more than one base class
  Seems simple at first: just inherit fields and

methods from all the base classes
  For example: a multifunction printer

Chapter Fifteen Modern Programming Languages, 2nd ed. 41

Collision Problem
 The different base classes are unrelated, and

may not have been designed to be combined
 Scanner and Fax might both have a

method named transmit
 When MultiFunction.transmit is

called, what should happen?

Chapter Fifteen Modern Programming Languages, 2nd ed. 42

Diamond Problem

 A class may inherit from the same base
class through more than one path

  If A defines a field x, then B has one and so
does C

 Does D get two of them?

Chapter Fifteen Modern Programming Languages, 2nd ed. 43

Solvable, But…

 A language that supports multiple
inheritance must have mechanisms for
handling these problems

 Not all that tricky
 The question is, is the additional power

worth the additional language complexity?
  Java’s designers did not think so

Chapter Fifteen Modern Programming Languages, 2nd ed. 44

Living Without Multiple
Inheritance
 One benefit of multiple inheritance is that a

class can have several unrelated types (like
Copier and Fax)

 This can be done in Java by using
interfaces: a class can implement any
number of interfaces

 Another benefit is inheriting
implementation from multiple base classes

 This is harder to accomplish with Java

Chapter Fifteen Modern Programming Languages, 2nd ed. 45

Forwarding

Chapter Fifteen Modern Programming Languages, 2nd ed. 46

public class MultiFunction {
 private Printer myPrinter;
 private Copier myCopier;
 private Scanner myScanner;
 private Fax myFax;

 public void copy() {
 myCopier.copy();
 }
 public void transmitScanned() {
 myScanner.transmit();
 }
 public void sendFax() {
 myFax.transmit();
 }
 …
}

Outline

  15.1 Implementing interfaces
  15.2 Extending classes
  15.3 Extending and implementing
  15.4 Multiple inheritance
  15.5 Generics

Chapter Fifteen Modern Programming Languages, 2nd ed. 47

An Early Weakness in Java

  Previous Stack example: a stack of strings
 Can’t be reused for stacks of other types
  In ML we used type variables for this:

 Ada and C++ have something similar, but
Java originally did not

Chapter Fifteen Modern Programming Languages, 2nd ed. 48

datatype 'a node =
 NULL |
 CELL of 'a * 'a node;

Living Without Generics

 Until the 2004 additions to Java,
programmers had to work around this

  For example, we could have made a stack
whose element type is Object

 The type Object includes all references,
so this would allow any objects to be placed
in the stack

Chapter Fifteen Modern Programming Languages, 2nd ed. 49

Chapter Fifteen Modern Programming Languages, 2nd ed. 50

public class ObjectNode {
 private Object data;
 private ObjectNode link;
 public ObjectNode(Object theData,
 ObjectNode theLink) {
 data = theData;
 link = theLink;
 }
 public Object getData() {
 return data;
 }
 public ObjectNode getLink() {
 return link;
 }
} Similarly, we could define ObjectStack

(and an ObjectWorklist interface) using
Object in place of String

Weaknesses

 No compile-time type checking on the
element types

 Usually, that kind of code is an error, and
programmers want the compiler to help
identify it

Chapter Fifteen Modern Programming Languages, 2nd ed. 51

ObjectStack s1 = new ObjectStack();
s1.add("hello");
s1.add(s1);

Weaknesses

 To recover the type of the stacked object,
we will have to use an explicit type cast:

 This is a pain to write, and also inefficient
  Java checks at runtime that the type cast is

legal—the object really is a String

Chapter Fifteen Modern Programming Languages, 2nd ed. 52

ObjectStack s1 = new ObjectStack();
s1.add("hello");
String s = (String) s1.remove();

Weaknesses

  Primitive types must first be stored in an
object before being stacked:

 Again, laborious and inefficient
 Integer is a predefined wrapper class
 There is one for every primitive type

Chapter Fifteen Modern Programming Languages, 2nd ed. 53

ObjectStack s2 = new ObjectStack();
s2.add(new Integer(1));
int i = ((Integer) s2.remove()).intValue();

True Generics

  In 2004, Java was extended
  It now has parameterized polymorphic

classes, interfaces, methods, and
constructors

 You can tell them by the distinctive notation
using angle brackets after the type name

Chapter Fifteen Modern Programming Languages, 2nd ed. 54

Chapter Fifteen Modern Programming Languages, 2nd ed. 55

interface Worklist<T> {
 void add(T item);
 boolean hasMore();
 T remove();
}

formal type parameter defines
a type variable T inside this
interface

uses of the type variable T

Worklist<String> w;
…
w.add("Hello");
String s = w.remove();

actual type parameter when
we use the type; now add takes
a String, and remove returns
a String

Chapter Fifteen Modern Programming Languages, 2nd ed. 56

public class Node<T> {
 private T data;
 private Node<T> link;
 public Node(T theData, Node<T> theLink) {
 data = theData;
 link = theLink;
 }
 public T getData() {
 return data;
 }
 public Node<T> getLink() {
 return link;
 }
}

Chapter Fifteen Modern Programming Languages, 2nd ed. 57

public class Stack<T> implements Worklist<T> {
 private Node<T> top = null;
 public void add(T data) {
 top = new Node<T>(data,top);
 }
 public boolean hasMore() {
 return (top!=null);
 }
 public T remove() {
 Node<T> n = top;
 top = n.getLink();
 return n.getData();
 }
}

Using Generic Classes

 Notice the coercions: int to Integer
(“boxing”) and Integer to int
(“unboxing”)

 These also were added in 2004

Chapter Fifteen Modern Programming Languages, 2nd ed. 58

Stack<String> s1 = new Stack<String>();
Stack<Integer> s2 = new Stack<Integer>();
s1.add("hello");
String s = s1.remove();
s2.add(1);
int i = s2.remove();

