
A Second Look At Java 
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Subtype Polymorphism 

 Does this declare x to be a reference to an 
object of the Person class? 

 Not exactly—the type Person may include 
references to objects of other classes  

  Java has subtype polymorphism 
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Person x; 
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Interfaces 

 A method prototype just gives the method 
name and type—no method body 

 An interface in Java is a collection of 
method prototypes 
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public interface Drawable { 
  void show(int xPos, int yPos); 
  void hide(); 
} 



Implementing Interfaces 

 A class can declare that it implements a 
particular interface 

 Then it must provide public method 
definitions that match those in the interface 
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Examples 
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public class Icon implements Drawable { 
  public void show(int x, int y) { 
    … method body … 
  } 
  public void hide() { 
    … method body … 
  } 
  …more methods and fields… 
} 

public class Square implements Drawable, Scalable { 
 … all required methods of all interfaces implemented … 
} 



Why Use Interfaces? 

 An interface can be implemented by many 
classes: 

  Interface name can be used as a reference 
type: 
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public class Window implements Drawable … 
public class MousePointer implements Drawable … 
public class Oval implements Drawable … 

Drawable d; 
d = new Icon("i1.gif"); 
d.show(0,0); 
d = new Oval(20,30); 
d.show(0,0); 



Polymorphism With Interfaces 

 Class of object referred to by d is not 
known at compile time 

  It is some class that implements 
Drawable, so it has show and hide 
methods that can be called 
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static void flashoff(Drawable d, int k) { 
  for (int i = 0; i < k; i++) { 
    d.show(0,0); 
    d.hide(); 
  } 
} 



A More Complete Example 

 A Worklist interface for a collection of 
String objects 

 Can be added to, removed from, and tested 
for emptiness 

Chapter Fifteen Modern Programming Languages, 2nd ed. 9 



Chapter Fifteen Modern Programming Languages, 2nd ed. 10 

public interface Worklist { 
  /** 
   * Add one String to the worklist. 
   * @param item the String to add 
   */ 
  void add(String item); 

  /** 
   * Test whether there are more elements in the 
   * worklist:  that is, test whether more elements 
   * have been added than have been removed. 
   * @return true iff there are more elements 
   */ 
  boolean hasMore(); 
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  /** 
   * Remove one String from the worklist and return  
   * it.  There must be at least one element in the 
   * worklist. 
   * @return the String item removed 
   */ 
  String remove(); 
} 



Interface Documentation 
 Comments are especially important in an 

interface, since there is no code to help the 
reader understand what each method is 
supposed to do 

 Worklist interface does not specify 
ordering: could be a stack, a queue, or 
something else 

 We will do an implementation as a stack, 
implemented using linked lists 
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/** 
 * A Node is an object that holds a String and a link 
 * to the next Node.  It can be used to build linked 
 * lists of Strings. 
 */ 
public class Node { 
  private String data; // Each node has a String... 
  private Node link;   // and a link to the next Node 

  /** 
   * Node constructor. 
   * @param theData the String to store in this Node 
   * @param theLink a link to the next Node 
   */ 
  public Node(String theData, Node theLink) { 
    data = theData; 
    link = theLink; 
  } 
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  /** 
   * Accessor for the String data stored in this Node. 
   * @return our String item 
   */ 
  public String getData() { 
    return data; 
  } 

  /** 
   * Accessor for the link to the next Node. 
   * @return the next Node 
   */ 
  public Node getLink() { 
    return link; 
  } 
} 
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/** 
 * A Stack is an object that holds a collection of 
 * Strings. 
 */ 
public class Stack implements Worklist { 
  private Node top = null; // top Node in the stack 

  /** 
   * Push a String on top of this stack. 
   * @param data the String to add 
   */ 
  public void add(String data) { 
    top = new Node(data,top); 
  } 
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  /** 
   * Test whether this stack has more elements. 
   * @return true if this stack is not empty 
   */ 
  public boolean hasMore() { 
    return (top!=null); 
  } 

  /** 
   * Pop the top String from this stack and return it. 
   * This should be called only if the stack is 
   * not empty. 
   * @return the popped String 
   */ 
  public String remove() { 
    Node n = top; 
    top = n.getLink(); 
    return n.getData(); 
  } 
} 



A Test 

 Output: The cut worm forgives the plow. 
 Other implementations of Worklist are 

possible: Queue, PriorityQueue, etc. 
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Worklist w; 
w = new Stack(); 
w.add("the plow."); 
w.add("forgives "); 
w.add("The cut worm "); 
System.out.print(w.remove()); 
System.out.print(w.remove()); 
System.out.println(w.remove()); 
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More Polymorphism 

 Another, more complex source of 
polymorphism 

 One class can be derived from another, 
using the keyword extends 

  For example: a class PeekableStack 
that is just like Stack, but also has a 
method peek to examine the top element 
without removing it 
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/** 
 * A PeekableStack is an object that does everything a 
 * Stack can do, and can also peek at the top element 
 * of the stack without popping it off. 
 */ 
public class PeekableStack extends Stack { 

  /** 
   * Examine the top element on the stack, without 
   * popping it off.  This should be called only if 
   * the stack is not empty. 
   * @return the top String from the stack 
   */ 
  public String peek() { 
    String s = remove(); 
    add(s); 
    return s; 
  } 
} 



Inheritance 

 Because PeekableStack extends 
Stack, it inherits all its methods and fields 

  (Nothing like this happens with interfaces—
when a class implements an interface, all it 
gets is an obligation) 

  In addition to inheritance, you also get 
polymorphism 
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Stack s1 = new PeekableStack(); 
PeekableStack s2 = new PeekableStack(); 
s1.add("drive"); 
s2.add("cart"); 
System.out.println(s2.peek()); 

Note that s1.peek() is not legal here, even 
though s1 is a reference to a PeekableStack.  
It is the static type of the reference, not the 
object’s class, that determines the operations Java 
will permit. 



Question 
 Our peek was inefficient: 

 Why not just do this? 
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public String peek() { 
  String s = remove(); 
  add(s); 
  return s; 
} 

public String peek() { 
  return top.getData(); 
} 



Answer 
 The top field of Stack is private 
 PeekableStack cannot access it 
  For more efficient peek, Stack must 

make top visible in classes that extend it 
 protected instead of private 
 A common design challenge for object-

oriented languages: designing for reuse by 
inheritance 
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Inheritance Chains 

 A derived class can have more classes 
derived from it 

 All classes but one are derived from some 
class 

  If you do not give an extends clause, Java 
supplies one: extends Object 

 Object is the ultimate base class in Java 
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The Class Object 

 All classes are derived, directly or 
indirectly, from the predefined class 
Object (except Object itself) 

 All classes inherit methods from Object: 
–  toString, for converting to a String 
–  equals, for comparing with other objects 
–  hashcode, for computing an int hash code 
–  etc. 
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Overriding Inherited Definitions 

  Sometimes you want to redefine an 
inherited method 

 No special construct for this: a new method 
definition automatically overrides an 
inherited definition of the same name and 
type 
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Overriding Example 

 The inherited toString just combines the 
class name and hash code (in hexadecimal) 

  So the code above prints something like: 
 Stack@b3d 

 A custom toString method in Stack 
can override this with a nicer string: 
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System.out.print(new Stack()); 

public String toString() { 
  return "Stack with top at " + top; 
} 



Inheritance Hierarchies 

  Inheritance forms a hierarchy, a tree rooted 
at Object 

  Sometimes inheritance is one useful class 
extending another 

  In other cases, it is a way of factoring out 
common code from different classes into a 
shared base class 
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public class Icon { 
  private int x,y;  
  private int width; 
  private int height; 
  private Gif image; 
  public void move 
     (int newX, int newY) 
  { 
    x = newX; 
    y = newY; 
  }  
  public Gif getImage()  
  { 
    return image; 
  } 
} 

public class Label { 
  private int x,y;  
  private int width; 
  private int height; 
  private String text; 
  public void move 
     (int newX, int newY) 
  { 
    x = newX; 
    y = newY;  
  }  
  public String getText() 
  { 
    return text;  
  } 
} 

Two classes with a lot in common—but neither is a simple 
extension of the other. 
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public class Icon 
    extends Graphic { 
  private Gif image; 
  public Gif getImage()  
  { 
    return image; 
  } 
} 

public class Label  
    extends Graphic { 
  private String text; 
  public String getText() 
  { 
    return text;  
  } 
} 

Common code and data have been factored out into a common 
base class. 

public class Graphic { 
  protected int x,y;  
  protected int width,height; 
  public void move(int newX, int newY) { 
    x = newX; 
    y = newY;  
  }  
}  



A Design Problem 

 When you write the same statements 
repeatedly, you think: that should be a 
method 

 When you write the same methods 
repeatedly, you think: that should be a 
common base class 

 The real trick is to see the need for a shared 
base class early in the design, before writing 
a lot of code that needs to be reorganized 
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Subtypes and Inheritance 
 A derived class is a subtype 
  From Chapter Six: 

 When designing class 
hierarchies, think about 
inheritance of functionality 

 Not all intuitively reasonable 
hierarchies work well for 
inheriting functionality 
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A subtype is a subset of the values, but it 
can support a superset of the operations. 
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Extending And Implementing 

 Classes can use extends and 
implements together 

  For every class, the Java language system 
keeps track of several properties, including: 
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A:  the interfaces it implements 
B:  the methods it is obliged to define 
C:  the methods that are defined for it 
D:  the fields that are defined for it 



Simple Cases For A Class 
 A method definition affects C only 
 A field definition affects D only 
 An implements part affects A and B 

–  All the interfaces are added to A 
–  All the methods in them are added to B 
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A:  the interfaces it implements 
B:  the methods it is obliged to define 
C:  the methods that are defined for it 
D:  the fields that are defined for it 



Tricky Case For A Class 
 An extends part affects all four: 

–  All interfaces of the base class are added to A 
–  All methods the base class is obliged to define 

are added to B 
–  All methods of the base class are added to C 
–  All fields of the base class are added to D 
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A:  the interfaces it implements 
B:  the methods it is obliged to define 
C:  the methods that are defined for it 
D:  the fields that are defined for it 



Previous Example 

 PeekableStack has: 
–  A:  Worklist interface, inherited 
–  B:  obligations for add, hasMore, and 
remove, inherited 

–  C:  methods add, hasMore, and remove, 
inherited, plus its own method peek 

–  D:  field top, inherited 
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public class Stack implements Worklist {…} 

public class PeekableStack extends Stack {…} 



A Peek At abstract 

 Note that C is a superset of B: the class has 
definitions of all required methods 

  Java ordinarily requires this 
 Classes can get out of this by being declared 
abstract 

 An abstract class is used only as a base 
class; no objects of that class are created 

 We will not be using abstract classes 
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Multiple Inheritance 
  In some languages (such as C++) a class 

can have more than one base class 
  Seems simple at first: just inherit fields and 

methods from all the base classes 
  For example: a multifunction printer 
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Collision Problem 
 The different base classes are unrelated, and 

may not have been designed to be combined 
 Scanner and Fax might both have a 

method named transmit 
 When MultiFunction.transmit is 

called, what should happen? 
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Diamond Problem 

 A class may inherit from the same base 
class through more than one path 

  If A defines a field x, then B has one and so 
does C 

 Does D get two of them? 
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Solvable, But… 

 A language that supports multiple 
inheritance must have mechanisms for 
handling these problems 

 Not all that tricky 
 The question is, is the additional power 

worth the additional language complexity? 
  Java’s designers did not think so 
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Living Without Multiple 
Inheritance 
 One benefit of multiple inheritance is that a 

class can have several unrelated types (like 
Copier and Fax) 

 This can be done in Java by using 
interfaces: a class can implement any 
number of interfaces 

 Another benefit is inheriting 
implementation from multiple base classes 

 This is harder to accomplish with Java 
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Forwarding 
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public class MultiFunction { 
  private Printer myPrinter; 
  private Copier myCopier; 
  private Scanner myScanner; 
  private Fax myFax; 

  public void copy() { 
    myCopier.copy(); 
  } 
  public void transmitScanned() { 
    myScanner.transmit(); 
  } 
  public void sendFax() { 
    myFax.transmit(); 
  } 
  … 
} 
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An Early Weakness in Java 

  Previous Stack example: a stack of strings 
 Can’t be reused for stacks of other types 
  In ML we used type variables for this: 

 Ada and C++ have something similar, but 
Java originally did not 
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datatype 'a node =  
  NULL |  
  CELL of 'a * 'a node; 



Living Without Generics 

 Until the 2004 additions to Java, 
programmers had to work around this 

  For example, we could have made a stack 
whose element type is Object 

 The type Object includes all references, 
so this would allow any objects to be placed 
in the stack 
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public class ObjectNode { 
  private Object data; 
  private ObjectNode link;  
  public ObjectNode(Object theData,  
       ObjectNode theLink) { 
    data = theData; 
    link = theLink; 
  } 
  public Object getData() { 
    return data; 
  } 
  public ObjectNode getLink() { 
    return link; 
  } 
} Similarly, we could define ObjectStack 

(and an ObjectWorklist interface) using 
Object in place of String 



Weaknesses 

 No compile-time type checking on the 
element types 

 Usually, that kind of code is an error, and 
programmers want the compiler to help 
identify it 
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ObjectStack s1 = new ObjectStack(); 
s1.add("hello"); 
s1.add(s1); 



Weaknesses 

 To recover the type of the stacked object, 
we will have to use an explicit type cast: 

 This is a pain to write, and also inefficient 
  Java checks at runtime that the type cast is 

legal—the object really is a String 
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ObjectStack s1 = new ObjectStack(); 
s1.add("hello"); 
String s = (String) s1.remove(); 



Weaknesses 

  Primitive types must first be stored in an 
object before being stacked: 

 Again, laborious and inefficient 
 Integer is a predefined wrapper class  
 There is one for every primitive type 
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ObjectStack s2 = new ObjectStack(); 
s2.add(new Integer(1)); 
int i = ((Integer) s2.remove()).intValue(); 



True Generics 

  In 2004, Java was extended 
  It now has parameterized polymorphic 

classes, interfaces, methods, and 
constructors 

 You can tell them by the distinctive notation 
using angle brackets after the type name 
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interface Worklist<T> { 
  void add(T item); 
  boolean hasMore(); 
  T remove(); 
}  

formal type parameter defines 
a type variable T inside this 
interface 

uses of the type variable T 

Worklist<String> w; 
… 
w.add("Hello"); 
String s = w.remove(); 

actual type parameter when 
we use the type; now add takes 
a String, and remove returns 
a String 
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public class Node<T> { 
  private T data; 
  private Node<T> link;  
  public Node(T theData, Node<T> theLink) { 
    data = theData; 
    link = theLink; 
  } 
  public T getData() { 
    return data; 
  } 
  public Node<T> getLink() { 
    return link; 
  } 
} 
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public class Stack<T> implements Worklist<T> { 
  private Node<T> top = null; 
  public void add(T data) { 
    top = new Node<T>(data,top); 
  } 
  public boolean hasMore() { 
    return (top!=null); 
  } 
  public T remove() { 
    Node<T> n = top; 
    top = n.getLink(); 
    return n.getData(); 
  } 
} 



Using Generic Classes 

 Notice the coercions: int to Integer 
(“boxing”) and Integer to int 
(“unboxing”) 

 These also were added in 2004 
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Stack<String> s1 = new Stack<String>(); 
Stack<Integer> s2 = new Stack<Integer>(); 
s1.add("hello"); 
String s = s1.remove(); 
s2.add(1); 
int i = s2.remove(); 


