
A First Look At Java

Chapter Thirteen Modern Programming Languages, 2nd ed. 1

Outline

  13.2 Thinking about objects
  13.3 Simple expressions and statements
  13.4 Class definitions
  13.5 About references and pointers
  13.6 Getting started with a Java language

system

Chapter Thirteen Modern Programming Languages, 2nd ed. 2

Example

 Colored points on the screen
 What data goes into making one?

–  Coordinates
–  Color

 What should a point be able to do?
–  Move itself
–  Report its position

Chapter Thirteen Modern Programming Languages, 2nd ed. 3

Chapter Thirteen Modern Programming Languages, 2nd ed. 4

Java Terminology

 Each point is an object
 Each includes three fields
 Each has three methods
 Each is an instance of the

same class

Chapter Thirteen Modern Programming Languages, 2nd ed. 5

Object-Oriented Style

  Solve problems using objects: little bundles
of data that know how to do things to
themselves

 Not the computer knows how to move the
point, but rather the point knows how to
move itself

 Object-oriented languages make this way of
thinking and programming easier

Chapter Thirteen Modern Programming Languages, 2nd ed. 6

Java Class Definitions: A Peek

Chapter Thirteen Modern Programming Languages, 2nd ed. 7

public class Point {
 private int x,y;
 private Color myColor;

 public int currentX() {
 return x;
 }

 public int currentY() {
 return y;
 }

 public void move(int newX, int newY) {
 x = newX;
 y = newY;
 }
}

field definitions

method definitions

Outline

  13.2 Thinking about objects
  13.3 Simple expressions and statements
  13.4 Class definitions
  13.5 About references and pointers
  13.6 Getting started with a Java language

system

Chapter Thirteen Modern Programming Languages, 2nd ed. 8

Primitive Types We Will Use

 int: -231..231-1, written the usual way
 char: 0..216-1, written 'a', '\n', etc.,

using the Unicode character set
 double: IEEE 64-bit standard, written in

decimal (1.2) or scientific (1.2e-5, 1e3)
 boolean: true and false
 Oddities: void and null

Chapter Thirteen Modern Programming Languages, 2nd ed. 9

Primitive Types We Won’t Use

 byte: -27..27-1
 short: -215..215-1
 long: -263..263-1, written with trailing L
 float: IEEE 32-bit standard, written with

trailing F (1.2e-5, 1e3)

Chapter Thirteen Modern Programming Languages, 2nd ed. 10

Constructed Types

 Constructed types are all reference types:
they are references to objects
–  Any class name, like Point
–  Any interface name (Chapter 15)
–  Any array type, like Point[] or int[]

(Chapter 14)

Chapter Thirteen Modern Programming Languages, 2nd ed. 11

Strings

  Predefined but not primitive: a class
String

 A string of characters enclosed in double-
quotes works like a string constant

 But it is actually an instance of the String
class, and object containing the given string
of characters

Chapter Thirteen Modern Programming Languages, 2nd ed. 12

A String Object

Chapter Thirteen Modern Programming Languages, 2nd ed. 13

"Hello there"

Numeric Operators

 int: +, -, *, /, %, unary –

 double: +, -, *, /, unary –

Chapter Thirteen Modern Programming Languages, 2nd ed. 14

Java Expression Value
1+2*3 7
15/7 2
15%7 1

-(5*5) -25

Java Expression Value
13.0*2.0 26.0
15.0/7.0 2.142857142857143

Concatenation

 The + operator has special overloading and
coercion behavior for the class String

Chapter Thirteen Modern Programming Languages, 2nd ed. 15

Java Expression Value
"123"+"456" "123456"

"The answer is " + 4 "The answer is 4"
"" + (1.0/3.0) "0.3333333333333333"

1+"2" "12"
"1"+2+3 "123"
1+2+"3" "33"

Comparisons

 The usual comparison operators <, <=, >=,
and >, on numeric types

 Equality == and inequality != on any type,
including double (unlike ML)

Chapter Thirteen Modern Programming Languages, 2nd ed. 16

Java Expression Value
1<=2 true
1==2 false

true!=false true

Boolean Operators

 && and ||, short-circuiting, like ML’s
andalso and orelse

 !, like ML’s not
 a?b:c, like ML’s if a then b else c

Chapter Thirteen Modern Programming Languages, 2nd ed. 17

Java Expression Value

1<=2 && 2<=3 true

1<2 || 1>2 true

1<2 ? 3 : 4 3

Operators With Side Effects

 An operator has a side effect if it changes
something in the program environment, like
the value of a variable or array element

  In ML, and in Java so far, we have seen
only pure operators—no side effects

 Now: Java operators with side effects

Chapter Thirteen Modern Programming Languages, 2nd ed. 18

Assignment

 a=b: changes a to make it equal to b
 Assignment is an important part of what

makes a language imperative

Chapter Thirteen Modern Programming Languages, 2nd ed. 19

Rvalues and Lvalues

 Why does a=1 make sense, but not 1=a?
 Expressions on the right must have a value:
a, 1, a+1, f() (unless void), etc.

 Expressions on the left must have memory
locations: a or d[2], but not 1 or a+1

 These two attributes of an expression are
sometimes called the rvalue and the lvalue

Chapter Thirteen Modern Programming Languages, 2nd ed. 20

Rvalues and Lvalues

  In most languages, the context decides
whether the language will use the rvalue or
the lvalue of an expression

 A few exceptions:
–  Bliss: x := .y
–  ML: x := !y (both of type 'a ref)

Chapter Thirteen Modern Programming Languages, 2nd ed. 21

More Side Effects

 Compound assignments

  Increment and decrement

Chapter Thirteen Modern Programming Languages, 2nd ed. 22

Long Java Expression Short Java Expression
a=a+b a+=b
a=a-b a-=b
a=a*b a*=b

Long Java Expression Short Java Expression
a=a+1 a++
a=a-1 a--

Values And Side Effects
  Side-effecting expressions have both a

value and a side effect
 Value of x=y is the value of y; side-effect

is to change x to have that value

Chapter Thirteen Modern Programming Languages, 2nd ed. 23

Java Expression Value Side Effect

a+(x=b)+c the sum of a, b and c changes the value of x,
making it equal to b

(a=d)+(b=d)+(c=d) three times the value of d changes the values of
a, b and c, making
them all equal to d

a=b=c the value of c changes the values of a
and b, making them
equal to c

Pre and Post

 Values from increment and decrement
depend on placement

Chapter Thirteen Modern Programming Languages, 2nd ed. 24

Java Expression Value Side Effect
a++ the old value of a adds one to a
++a the new value of a adds one to a
a-- the old value of a subtracts one from a
--a the new value of a subtracts one from a

Instance Method Calls

Chapter Thirteen Modern Programming Languages, 2nd ed. 25

Java Expression Value

s.length() the length of the String s

s.equals(r) true if s and r are equal, false
otherwise

r.equals(s) same

r.toUpperCase() A String object that is an
uppercase version of the String r

r.charAt(3) the char value in position 3 in the
String r (that is, the fourth
character)

r.toUpperCase().charAt(3) the char value in position 3 in the
uppercase version of the String r

Class Method Calls
 Class methods define things the class itself

knows how to do—not objects of the class
 The class just serves as a labeled namespace
 Like ordinary function calls in non-object-

oriented languages

Chapter Thirteen Modern Programming Languages, 2nd ed. 26

Java Expression Value

String.valueOf(1==2) "false"

String.valueOf(5*5) "25"

String.valueOf(1.0/3.0) "0.3333333333333333"

Method Call Syntax

 Three forms:
–  Normal instance method call:

–  Normal class method call

–  Either kind, from within another method of the
same class

Chapter Thirteen Modern Programming Languages, 2nd ed. 27

<method-call> ::= <reference-expression>.<method-name>
 (<parameter-list>)

<method-call> ::= <class-name>.<method-name>
 (<parameter-list>)

<method-call> ::= <method-name>(<parameter-list>)

Object Creation Expressions
 To create a new object that is an instance of

a given class

  Parameters are passed to a constructor—
like a special instance method of the class

Chapter Thirteen Modern Programming Languages, 2nd ed. 28

<creation-expression> ::= new <class-name>
 (<parameter-list>)

Java Expression Value

new String() a new String of length zero

new String(s) a new String that contains a
copy of String s

new String(chars) a new String that contains the
char values from the array

No Object Destruction

 Objects are created with new
 Objects are never explicitly destroyed or

deallocated
 Garbage collection (chapter 14)

Chapter Thirteen Modern Programming Languages, 2nd ed. 29

General Operator Info
 All left-associative, except for assignments
  15 precedence levels

–  Some obvious: * higher than +
–  Others less so: < higher than !=
–  Use parentheses to make code readable

 Many coercions
–  null to any reference type
–  Any value to String for concatenation
–  One reference type to another sometimes

(Chapter 15)

Chapter Thirteen Modern Programming Languages, 2nd ed. 30

Numeric Coercions

  Numeric coercions (for our types):
–  char to int before any operator is applied (except

string concatenation)
–  int to double for binary ops mixing them

Chapter Thirteen Modern Programming Languages, 2nd ed. 31

Java expression value
'a'+'b' 195

1/3 0
1/3.0 0.3333333333333333

1/2+0.0 0.0
1/(2+0.0) 0.5

Boxing and Unboxing Coercions

  Preview: Java supports coercions between
–  most of the primitive types (including int,
char, double, and boolean), and

–  corresponding predefined reference types
(Integer, Character, Double, and
Boolean)

 More about these coercions in Chapter 15

Chapter Thirteen Modern Programming Languages, 2nd ed. 32

Statements
 That’s it for expressions
 Next, statements:

 Expression statements
 Compound statements
 Declaration statements
 The if statement
 The while statement
 The return statement

  Statements are executed for side effects: an
important part of imperative languages

Chapter Thirteen Modern Programming Languages, 2nd ed. 33

Expression Statements

 Any expression followed by a semicolon
 Value of the expression, if any, is discarded
  Java does not allow the expression to be

something without side effects, like x==y

Chapter Thirteen Modern Programming Languages, 2nd ed. 34

<expression-statement> ::= <expression> ;

Java Statement Equivalent Command in English

speed = 0; Store a 0 in speed.

a++; Increase the value of a by 1.

inTheRed = cost > balance; If cost is greater than
balance, set inTheRed to
true, otherwise to false.

Compound Statements

 Do statements
in order

 Also serves as
a block for
scoping

Chapter Thirteen Modern Programming Languages, 2nd ed. 35

<compound-statement> ::= { <statement-list> }
< statement-list> ::= <statement> <statement-list> | <empty>

Java Statement Equivalent Command
in English

{
 a = 0;
 b = 1;
}

Store a zero in a,
then store a 1 in b.

{
 a++;
 b++;
 c++;
}

Increment a, then
increment b, then
increment c.

{ } Do nothing.

Declaration Statements

 Block-scoped definition of a variable

Chapter Thirteen Modern Programming Languages, 2nd ed. 36

<declaration-statement> ::= <declaration> ;
<declaration> ::= <type> <variable-name>
 | <type> <variable-name> = <expression>

boolean done = false; Define a new variable named done
of type boolean, and initialize it
to false.

Point p; Define a new variable named p of
type Point. (Do not initialize it.)

{
 int temp = a;
 a = b;
 b = temp;
}

Swap the values of the integer
variables a and b.

The if Statement

 Dangling else resolved in the usual way

Chapter Thirteen Modern Programming Languages, 2nd ed. 37

<if-statement> ::= if (<expression>) <statement>
 | if (<expression>) <statement> else <statement>

Java Statement Equivalent Command in English

if (i > 0) i--; Decrement i, but only if it is
greater than zero.

if (a < b) b -= a;
else a -= b;

Subtract the smaller of a or b from
the larger.

if (reset) {
 a = b = 0;
 reset = false;
}

If reset is true, zero out a and
b and then set reset to false.

The while Statement

 Evaluate expression; if false do nothing
 Otherwise execute statement, then repeat
  Iteration is another hallmark of imperative

languages
  (Note that this iteration would not make

sense without side effects, since the value of
the expression must change)

  Java also has do and for loops

Chapter Thirteen Modern Programming Languages, 2nd ed. 38

<while-statement> ::= while (<expression>) <statement>

Chapter Thirteen Modern Programming Languages, 2nd ed. 39

Java Statement Equivalent Command in English

while (a<100) a+=5; As long as a is less than 100, keep
adding 5 to a.

while (a!=b)
 if (a < b) b -= a;
 else a -= b;

Subtract the smaller of a or b from
the larger, over and over until they
are equal. (This is Euclid's
algorithm for finding the GCD of
two positive integers.)

while (time>0) {
 simulate();
 time--;
}

As long as time is greater than
zero, call the simulate method
of the current class and then
decrement time.

while (true) work(); Call the work method of the
current class over and over,
forever.

The return Statement

 Methods that return a value must execute a
return statement of the first form

 Methods that do not return a value (methods
with return type void) may execute a
return statement of the second form

Chapter Thirteen Modern Programming Languages, 2nd ed. 40

<return-statement> ::= return <expression>;
 | return;

Outline

  13.2 Thinking about objects
  13.3 Simple expressions and statements
  13.4 Class definitions
  13.5 About references and pointers
  13.6 Getting started with a Java language

system

Chapter Thirteen Modern Programming Languages, 2nd ed. 41

Class Definitions

 We have enough expressions and statements
 Now we will use them to make a definition

of a class
 Example: ConsCell, a class for building

linked lists of integers like ML’s
int list type

Chapter Thirteen Modern Programming Languages, 2nd ed. 42

Chapter Thirteen Modern Programming Languages, 2nd ed. 43

/**
 * A ConsCell is an element in a linked list of
 * ints.
 */
public class ConsCell {
 private int head; // the first item in the list
 private ConsCell tail; // rest of the list, or null

 /**
 * Construct a new ConsCell given its head and tail.
 * @param h the int contents of this cell
 * @param t the next ConsCell in the list, or null
 */
 public ConsCell(int h, ConsCell t) {
 head = h;
 tail = t;
 }

Note comment forms, public and private,
field definitions.
Note constructor definition: access specifier, class
name, parameter list, compound statement

Chapter Thirteen Modern Programming Languages, 2nd ed. 44

 /**
 * Accessor for the head of this ConsCell.
 * @return the int contents of this cell
 */
 public int getHead() {
 return head;
 }

 /**
 * Accessor for the tail of this ConsCell.
 * @return the next ConsCell in the list, or null
 */
 public ConsCell getTail() {
 return tail;
 }

Note method definitions: access specifier, return
type, method name, parameter list, compound
statement

Chapter Thirteen Modern Programming Languages, 2nd ed. 45

 /**
 * Mutator for the tail of this ConsCell.
 * @param t the new tail for this cell
 */
 public void setTail(ConsCell t) {
 tail = t;
 }
}

Note: this mutator gives a way to ask a
ConsCell to change its own tail link. (Not like
anything we did with lists in ML!) This method is
useful for some of the exercises at the end of the
chapter.

Using ConsCell

 Like consing up a list in ML
 But a Java list should be object-oriented:

where ML applies :: to a list, our Java list
should be able to cons onto itself

 And where ML applies length to a list,
Java lists should compute their own length

  So we can’t use null for the empty list

Chapter Thirteen Modern Programming Languages, 2nd ed. 46

val a = []; ConsCell a = null;
val b = 2::a; ConsCell b = new ConsCell(2,a);
val c = 1::b; ConsCell c = new ConsCell(1,b);

Chapter Thirteen Modern Programming Languages, 2nd ed. 47

/**
 * An IntList is a list of ints.
 */
public class IntList {
 private ConsCell start; // list head, or null

 /**
 * Construct a new IntList given its first ConsCell.
 * @param s the first ConsCell in the list, or null
 */
 public IntList(ConsCell s) {
 start = s;
 }

An IntList contains a reference to a list of
ConsCell objects, which will be null if the list
is empty

Chapter Thirteen Modern Programming Languages, 2nd ed. 48

 /**
 * Cons the given element h onto us and return the
 * resulting IntList.
 * @param h the head int for the new list
 * @return the IntList with head h, and us as tail
 */
 public IntList cons (int h) {
 return new IntList(new ConsCell(h,start));
 }

An IntList knows how to cons things onto
itself. It does not change, but it returns a new
IntList with the new element at the front.

Chapter Thirteen Modern Programming Languages, 2nd ed. 49

 /**
 * Get our length.
 * @return our int length
 */
 public int length() {
 int len = 0;
 ConsCell cell = start;
 while (cell != null) { // while not at end of list
 len++;
 cell = cell.getTail();
 }
 return len;
 }
}

An IntList knows how to compute its length

Using IntList

Chapter Thirteen Modern Programming Languages, 2nd ed. 50

ML:

val a = nil;
val b = 2::a;
val c = 1::b;
val x = (length a) + (length b) + (length c);

Java:

IntList a = new IntList(null);
IntList b = a.cons(2);
IntList c = b.cons(1);
int x = a.length() + b.length() + c.length();

Outline

  13.2 Thinking about objects
  13.3 Simple expressions and statements
  13.4 Class definitions
  13.5 About references and pointers
  13.6 Getting started with a Java language

system

Chapter Thirteen Modern Programming Languages, 2nd ed. 51

What Is A Reference?
 A reference is a value that uniquely

identifies a particular object

 What gets passed to the IntList
constructor is not an object—it is a
reference to an object

 What gets stored in start is not a copy of
an object—it is a reference to an object, and
no copy of the object is made

Chapter Thirteen Modern Programming Languages, 2nd ed. 52

 public IntList(ConsCell s) {
 start = s;
 }

Pointers

  If you have been using a language like C or
C++, there is an easy way to think about
references: a reference is a pointer

 That is, a reference is the address of the
object in memory

  Java language systems can implement
references this way

Chapter Thirteen Modern Programming Languages, 2nd ed. 53

But I Thought…

  It is sometimes said that Java is like C++
without pointers

 True from a certain point of view
 C and C++ expose the address nature of

pointers (e.g. in pointer arithmetic)
  Java programs can’t tell how references are

implemented: they are just values that
uniquely identify a particular object

Chapter Thirteen Modern Programming Languages, 2nd ed. 54

C++ Comparison

 A C++ variable can hold an object or a
pointer to an object. There are two selectors:
–  a->x selects method or field x when a is a

pointer to an object
–  a.x selects x when a is an object

 A Java variable cannot hold an object, only a
reference to an object. Only one selector:
–  a.x selects x when a is a reference to an object

Chapter Thirteen Modern Programming Languages, 2nd ed. 55

Comparison

Chapter Thirteen Modern Programming Languages, 2nd ed. 56

C++ Equivalent Java

IntList* p;
p = new IntList(0);
p->length();
p = q;

IntList p;
p = new IntList(null);
p.length();
p = q;

IntList p(0);
p.length();
p = q;

No equivalent.

Outline

  13.2 Thinking about objects
  13.3 Simple expressions and statements
  13.4 Class definitions
  13.5 About references and pointers
  13.6 Getting started with a Java language

system

Chapter Thirteen Modern Programming Languages, 2nd ed. 57

Text Output

 A predefined object: System.out
 Two methods: print(x) to print x, and
println(x) to print x and start a new
line

 Overloaded for all parameter types

Chapter Thirteen Modern Programming Languages, 2nd ed. 58

System.out.println("Hello there");
System.out.print(1.2);

Printing An IntList

Chapter Thirteen Modern Programming Languages, 2nd ed. 59

 /**
 * Print ourself to System.out.
 */
 public void print() {
 System.out.print("[");
 ConsCell a = start;
 while (a != null) {
 System.out.print(a.getHead());
 a = a.getTail();
 if (a != null) System.out.print(",");
 }
 System.out.println("]");
 }

Added to the IntList class definition, this
method gives an IntList the ability to print
itself out

The main Method

 A class can have a main method like this:

 This will be used as the starting point when
the class is run as an application

 Keyword static makes this a class
method; use sparingly!

Chapter Thirteen Modern Programming Languages, 2nd ed. 60

public static void main(String[] args) {
 …
}

A Driver Class

Chapter Thirteen Modern Programming Languages, 2nd ed. 61

public class Driver {
 public static void main(String[] args) {
 IntList a = new IntList(null);
 IntList b = a.cons(2);
 IntList c = b.cons(1);
 int x = a.length() + b.length() + c.length();
 a.print();
 b.print();
 c.print();
 System.out.println(x);
 }
}

Compiling The Program
 Three classes to compile, in three files:

–  ConsCell.java, IntList.java, and
Driver.java

  (File name = class name plus .java—
watch capitalization!)

 Compile with the command javac
–  They can be done one at a time
–  Or, javac Driver.java gets them all

Chapter Thirteen Modern Programming Languages, 2nd ed. 62

Running The Program

 Compiler produces .class files
 Use the Java launcher (java command) to

run the main method in a .class file

Chapter Thirteen Modern Programming Languages, 2nd ed. 63

C:\demo>java Driver
[]
[2]
[1,2]
3

