
Scope

Chapter Ten Modern Programming Languages, 2nd ed. 1

Reusing Names

  Scope is trivial if you have a unique name
for everything:

 But in modern languages, we often use the
same name over and over:

 How can this work?

Chapter Ten Modern Programming Languages, 2nd ed. 2

fun square n = n * n;
fun double n = n + n;

fun square a = a * a;
fun double b = b + b;

Outline

 Definitions and scope
  Scoping with blocks
  Scoping with labeled namespaces
  Scoping with primitive namespaces
 Dynamic scoping
  Separate compilation

Chapter Ten Modern Programming Languages, 2nd ed. 3

Definitions

 When there are different variables with the
same name, there are different possible
bindings for that name

 Not just variables: type names, constant
names, function names, etc.

 A definition is anything that establishes a
possible binding for a name

Chapter Ten Modern Programming Languages, 2nd ed. 4

Examples

Chapter Ten Modern Programming Languages, 2nd ed. 5

fun square n = n * n;
fun square square = square * square;

const
 Low = 1;
 High = 10;
type
 Ints = array [Low..High] of Integer;
var
 X: Ints;

Scope

 There may be more than one definition for a
given name

 Each occurrence of the name (other than a
definition) has to be bound according to one
of its definitions

 An occurrence of a name is in the scope of a
given definition of that name whenever that
definition governs the binding for that
occurrence

Chapter Ten Modern Programming Languages, 2nd ed. 6

narayans
Highlight

narayans
Sticky Note
Read "usage"

Examples

 Each occurrence must be bound using one
of the definitions

 Which one?
 There are many different ways to solve this

scoping problem
Chapter Ten Modern Programming Languages, 2nd ed. 7

- fun square square = square * square;
val square = fn : int -> int
- square 3;
val it = 9 : int

Outline

 Definitions and scope
  Scoping with blocks
  Scoping with labeled namespaces
  Scoping with primitive namespaces
 Dynamic scoping
  Separate compilation

Chapter Ten Modern Programming Languages, 2nd ed. 8

Blocks

 A block is any language construct that
contains definitions, and also contains the
region of the program where those
definitions apply

Chapter Ten Modern Programming Languages, 2nd ed. 9

let
 val x = 1;
 val y = 2;
in
 x+y
end

Different ML Blocks

 The let is just a block: no other purpose
 A fun definition includes a block:

 Multiple alternatives have multiple blocks:

 Each rule in a match is a block:

Chapter Ten Modern Programming Languages, 2nd ed. 10

fun cube x = x*x*x;

fun f (a::b::_) = a+b
| f [a] = a
| f [] = 0;

case x of (a,0) => a | (_,b) => b

Java Blocks

  In Java and other C-like languages, you can
combine statements into one compound
statement using { and }

 A compound statement also serves as a
block:

Chapter Ten Modern Programming Languages, 2nd ed. 11

while (i < 0) {
 int c = i*i*i;
 p += c;
 q += c;
 i -= step;
}

Nesting

 What happens if a block
contains another block,
and both have definitions
of the same name?

 ML example: what is the
value of this expression:

Chapter Ten Modern Programming Languages, 2nd ed. 12

let
 val n = 1
in
 let
 val n = 2
 in
 n
 end
end

Classic Block Scope Rule

 The scope of a definition is the block
containing that definition, from the point of
definition to the end of the block, minus the
scopes of any redefinitions of the same
name in interior blocks

 That is ML’s rule; most statically scoped,
block-structured languages use this or some
minor variation

Chapter Ten Modern Programming Languages, 2nd ed. 13

Example

Chapter Ten Modern Programming Languages, 2nd ed. 14

let
 val n = 1
in
 let
 val n = 2
 in
 n
 end
end

Scope of this definition is A-B

Scope of this definition is B

A

B

Outline

 Definitions and scope
  Scoping with blocks
  Scoping with labeled namespaces
  Scoping with primitive namespaces
 Dynamic scoping
  Separate compilation

Chapter Ten Modern Programming Languages, 2nd ed. 15

Labeled Namespaces

 A labeled namespace is any language
construct that contains definitions and a
region of the program where those
definitions apply, and also has a name that
can be used to access those definitions from
outside the construct

 ML has one called a structure…

Chapter Ten Modern Programming Languages, 2nd ed. 16

ML Structures

 A little like a block: a can be used
anywhere from definition to the end

 But the definitions are also available
outside, using the structure name: Fred.a
and Fred.f

Chapter Ten Modern Programming Languages, 2nd ed. 17

structure Fred = struct
 val a = 1;
 fun f x = x + a;
end;

Other Labeled Namespaces

 Namespaces that are just namespaces:
–  C++ namespace
–  Modula-3 module
–  Ada package
–  Java package

 Namespaces that serve other purposes too:
–  Class definitions in class-based object-oriented

languages

Chapter Ten Modern Programming Languages, 2nd ed. 18

Example

 The variables min and max would be
visible within the rest of the class

 Also accessible from outside, as
Month.min and Month.max

 Classes serve a different purpose too

Chapter Ten Modern Programming Languages, 2nd ed. 19

public class Month {
 public static int min = 1;
 public static int max = 12;
 …
}

narayans
Sticky Note
public class SupplierBid {
 public static int min = 10;
 public static max = 100;
 ...
}

Namespace Advantages

 Two conflicting goals:
–  Use memorable, simple names like max
–  For globally accessible things, use uncommon

names like maxSupplierBid, names that
will not conflict with other parts of the program

 With namespaces, you can accomplish both:
–  Within the namespace, you can use max
–  From outside, SupplierBid.max

Chapter Ten Modern Programming Languages, 2nd ed. 20

narayans
Sticky Note
Or, monthMax and monthMin

Namespace Refinement

 Most namespace constructs have some way
to allow part of the namespace to be kept
private

 Often a good information hiding technique
  Programs are more maintainable when

scopes are small
  For example, abstract data types reveal a

strict interface while hiding implementation
details…

Chapter Ten Modern Programming Languages, 2nd ed. 21

Example: An Abstract Data Type

Chapter Ten Modern Programming Languages, 2nd ed. 22

namespace dictionary contains
 a constant definition for initialSize
 a type definition for hashTable
 a function definition for hash
 a function definition for reallocate
 a function definition for create
 a function definition for insert
 a function definition for search
 a function definition for delete
end namespace

Interface definitions should be visible

Implementation
definitions
should be hidden

narayans
Comment on Text
Hidden from usage, not from view.

for example, compiler will allow reference to dictionary.create but disallow reference to dictionary.hash

Two Approaches

  In some languages, like C++, the
namespace specifies the visibility of its
components

  In other languages, like ML, a separate
construct defines the interface to a
namespace (a signature in ML)

 And some languages, like Ada and Java,
combine the two approaches

Chapter Ten Modern Programming Languages, 2nd ed. 23

Namespace Specifies Visibility

Chapter Ten Modern Programming Languages, 2nd ed. 24

namespace dictionary contains
 private:
 a constant definition for initialSize
 a type definition for hashTable
 a function definition for hash
 a function definition for reallocate
 public:
 a function definition for create
 a function definition for insert
 a function definition for search
 a function definition for delete
end namespace

Separate Interface

Chapter Ten Modern Programming Languages, 2nd ed. 25

interface dictionary contains
 a function type definition for create
 a function type definition for insert
 a function type definition for search
 a function type definition for delete
end interface

namespace myDictionary implements dictionary contains
 a constant definition for initialSize
 a type definition for hashTable
 a function definition for hash
 a function definition for reallocate
 a function definition for create
 a function definition for insert
 a function definition for search
 a function definition for delete
end namespace

Outline

 Definitions and scope
  Scoping with blocks
  Scoping with labeled namespaces
  Scoping with primitive namespaces
 Dynamic scoping
  Separate compilation

Chapter Ten Modern Programming Languages, 2nd ed. 26

Do Not Try This At Home

  It is legal to have a variable named int
 ML is not confused
 You can even do this (ML understands that
int*int is not a type here):

Chapter Ten Modern Programming Languages, 2nd ed. 27

- val int = 3;
val int = 3 : int

- fun f int = int*int;
val f = fn : int -> int
- f 3;
val it = 9 : int

Primitive Namespaces

 ML’s syntax keeps types and expressions
separated

 ML always knows whether it is looking for
a type or for something else

 There is a separate namespace for types

Chapter Ten Modern Programming Languages, 2nd ed. 28

fun f(int:int) = (int:int)*(int:int);

These are in the
namespace for types

These are in the
ordinary namespace

Primitive Namespaces

 Not explicitly created using the language
(like primitive types)

 They are part of the language definition
  Some languages have several separate

primitive namespaces
  Java: packages, types, methods, variables,

and statement labels are in separate
namespaces

Chapter Ten Modern Programming Languages, 2nd ed. 29

Outline

 Definitions and scope
  Scoping with blocks
  Scoping with labeled namespaces
  Scoping with primitive namespaces
 Dynamic scoping
  Separate compilation

Chapter Ten Modern Programming Languages, 2nd ed. 30

When Is Scoping Resolved?

 All scoping tools we have seen so far are
static

 They answer the question (whether a given
occurrence of a name is in the scope of a
given definition) at compile time

  Some languages postpone the decision until
runtime: dynamic scoping

Chapter Ten Modern Programming Languages, 2nd ed. 31

Dynamic Scoping

 Each function has an environment of
definitions

  If a name that occurs in a function is not
found in its environment, its caller’s
environment is searched

 And if not found there, the search continues
back through the chain of callers

 This generates a rather odd scope rule…

Chapter Ten Modern Programming Languages, 2nd ed. 32

Classic Dynamic Scope Rule

 The scope of a definition is the function
containing that definition, from the point of
definition to the end of the function, along
with any functions when they are called
(even indirectly) from within that scope—
minus the scopes of any redefinitions of the
same name in those called functions

Chapter Ten Modern Programming Languages, 2nd ed. 33

Static Vs. Dynamic

 The scope rules are similar
 Both talk about scope holes—places where

a scope does not reach because of
redefinitions

 But the static rule talks only about regions
of program text, so it can be applied at
compile time

 The dynamic rule talks about runtime
events: “functions when they are called…”

Chapter Ten Modern Programming Languages, 2nd ed. 34

Example

Chapter Ten Modern Programming Languages, 2nd ed. 35

fun g x =
 let
 val inc = 1;
 fun f y = y+inc;
 fun h z =
 let
 val inc = 2;
 in
 f z
 end;
 in
 h x
 end;

What is the value of
g 5 using ML’s classic
block scope rule?

Block Scope (Static)

Chapter Ten Modern Programming Languages, 2nd ed. 36

fun g x =
 let
 val inc = 1;
 fun f y = y+inc;
 fun h z =
 let
 val inc = 2;
 in
 f z
 end;
 in
 h x
 end;

With block scope,
the reference to inc is
bound to the previous
definition in the same
block. The definition in
f’s caller’s environment
is inaccessible.

g 5 = 6 in ML

Dynamic Scope

Chapter Ten Modern Programming Languages, 2nd ed. 37

fun g x =
 let
 val inc = 1;
 fun f y = y+inc;
 fun h z =
 let
 val inc = 2;
 in
 f z
 end;
 in
 h x
 end;

With dynamic scope,
the reference to inc is
bound to the definition
in the caller’s
environment.

g 5 = 7 if ML used
dynamic scope

Where It Arises
 Only in a few languages: some dialects of

Lisp and APL
 Available as an option in Common Lisp
 Drawbacks:

–  Difficult to implement efficiently
–  Creates large and complicated scopes, since

scopes extend into called functions
–  Choice of variable name in caller can affect

behavior of called function

Chapter Ten Modern Programming Languages, 2nd ed. 38

Outline

 Definitions and scope
  Scoping with blocks
  Scoping with labeled namespaces
  Scoping with primitive namespaces
 Dynamic scoping
  Separate compilation

Chapter Ten Modern Programming Languages, 2nd ed. 39

Separate Compilation

 We saw this in the classical sequence of
language system steps

  Parts are compiled separately, then linked
together

  Scope issues extend to the linker: it needs to
connect references to definitions across
separate compilations

 Many languages have special support for
this

Chapter Ten Modern Programming Languages, 2nd ed. 40

C Approach, Compiler Side

 Two different kinds of definitions:
–  Full definition
–  Name and type only: a declaration in C-talk

  If several separate compilations want to use
the same integer variable x:
–  Only one will have the full definition,
int x = 3;

–  All others have the declaration
extern int x;

Chapter Ten Modern Programming Languages, 2nd ed. 41

C Approach, Linker Side

 When the linker runs, it treats a declaration
as a reference to a name defined in some
other file

  It expects to see exactly one full definition
of that name

 Note that the declaration does not say where
to find the definition—it just requires the
linker to find it somewhere

Chapter Ten Modern Programming Languages, 2nd ed. 42

Older Fortran Approach,
Compiler Side
 Older Fortran dialects used COMMON blocks
 All separate compilations define variables

in the normal way
 All separate compilations give the same
COMMON declaration: COMMON A,B,C

Chapter Ten Modern Programming Languages, 2nd ed. 43

Older Fortran Approach,
Linker Side
 The linker allocates just one block of

memory for the COMMON variables: those
from one compilation start at the same
address as those from other compilations

 The linker does not use the local names
  If there is a COMMON A,B,C in one

compilation and a COMMON X,Y,Z in
another, A will be identified with X, B with
Y, and C with Z

Chapter Ten Modern Programming Languages, 2nd ed. 44

Modern Fortran Approach

 A MODULE can define data in one separate
compilation

 A USE statement can import those
definitions into another compilation

 USE says what module to use, but does not
say what the definitions are

  So unlike the C approach, the Fortran
compiler must at least look at the result of
that separate compilation

Chapter Ten Modern Programming Languages, 2nd ed. 45

Trends in Separate Compilation

  In recent languages, separate compilation is
less separate than it used to be
–  Java classes can depend on each other

circularly, so the Java compiler must be able to
compile separate classes simultaneously

–  ML is not really suitable for separate
compilation at all, though CM (a separate tool
in the SML system, the Compilation Manager)
can do it for most ML programs

Chapter Ten Modern Programming Languages, 2nd ed. 46

Conclusion

 Today: four approaches for scoping
 There are many variations, and most

languages employ several at once
 Remember: names do not have scopes,

definitions do!

Chapter Ten Modern Programming Languages, 2nd ed. 47

	Untitled

