
A Third Look At ML 

Chapter Nine Modern Programming Languages, 2nd ed. 1 



Outline 

 More pattern matching 
  Function values and anonymous functions 
 Higher-order functions and currying 
  Predefined higher-order functions 

Chapter Nine Modern Programming Languages, 2nd ed. 2 



More Pattern-Matching 

 Last time we saw pattern-matching in 
function definitions: 
–  fun f 0 = "zero" 
|   f _ = "non-zero"; 

  Pattern-matching occurs in several other 
kinds of ML expressions: 
–  case n of 
  0 => "zero" | 
  _ => "non-zero"; 

Chapter Nine Modern Programming Languages, 2nd ed. 3 



Match Syntax 

  A rule is a piece of ML syntax that looks like this: 

  A match consists of one or more rules separated 
by a vertical bar, like this: 

  Each rule in a match must have the same type of 
expression on the right-hand side 

  A match is not an expression by itself, but forms a 
part of several kinds of ML expressions 

Chapter Nine Modern Programming Languages, 2nd ed. 4 

<rule> ::= <pattern> => <expression> 

<match> ::= <rule> | <rule> '|' <match> 



Case Expressions 

  The syntax is  

  This is a very powerful case construct—unlike 
many languages, it does more than just compare 
with constants 

Chapter Nine Modern Programming Languages, 2nd ed. 5 

- case 1+1 of 
=    3 => "three" | 
=    2 => "two" | 
=    _ => "hmm"; 
val it = "two" : string 

<case-expr> ::= case <expression> of <match> 



Example 

Chapter Nine Modern Programming Languages, 2nd ed. 6 

case x of 
  _::_::c::_ => c | 
  _::b::_ => b | 
  a::_ => a | 
  nil => 0  

The value of this expression is the third element 
of the list x, if it has at least three, or the second  
element if x has only two, or the first element if  
x has only one, or 0 if x is empty. 



Generalizes if 

 The two expressions above are equivalent 
  So if-then-else is really just a special 

case of case 

Chapter Nine Modern Programming Languages, 2nd ed. 7 

if exp1 then exp2 else exp3 

case exp1 of 
  true => exp2 | 
  false => exp3 



Outline 

 More pattern matching 
  Function values and anonymous functions 
 Higher-order functions and currying 
  Predefined higher-order functions 

Chapter Nine Modern Programming Languages, 2nd ed. 8 



Predefined Functions 

 When an ML language system starts, there 
are many predefined variables 

  Some are bound to functions: 

Chapter Nine Modern Programming Languages, 2nd ed. 9 

- ord; 
val it = fn : char -> int 
- ~; 
val it = fn : int -> int 



Defining Functions 

 We have seen the fun notation for defining 
new named functions 

 You can also define new names for old 
functions, using val just as for other kinds 
of values: 

Chapter Nine Modern Programming Languages, 2nd ed. 10 

- val x = ~; 
val x = fn : int -> int 
- x 3; 
val it = ~3 : int 



Function Values 

  Functions in ML do not have names 
  Just like other kinds of values, function 

values may be given one or more names by 
binding them to variables 

 The fun syntax does two separate things: 
–  Creates a new function value 
–  Binds that function value to a name 

Chapter Nine Modern Programming Languages, 2nd ed. 11 



Anonymous Functions 

 Named function: 

 Anonymous function: 

Chapter Nine Modern Programming Languages, 2nd ed. 12 

- fun f x = x + 2; 
val f = fn : int -> int 
- f 1; 
val it = 3 : int 

- fn x => x + 2; 
val it = fn : int -> int 
- (fn x => x + 2) 1; 
val it = 3 : int 



The fn Syntax 

  Another use of the match syntax 

  Using fn, we get an expression whose value is an 
(anonymous) function 

  We can define what fun does in terms of val 
and fn 

  These two definitions have the same effect: 
–  fun f x = x + 2 
–  val f = fn x => x + 2 

Chapter Nine Modern Programming Languages, 2nd ed. 13 

<fun-expr> ::= fn <match> 



Using Anonymous Functions 
 One simple application: when you need a 

small function in just one place 
 Without fn: 

 With fn: 

Chapter Nine Modern Programming Languages, 2nd ed. 14 

- fun intBefore (a,b) = a < b; 
val intBefore = fn : int * int -> bool 
- quicksort ([1,4,3,2,5], intBefore); 
val it = [1,2,3,4,5] : int list 

- quicksort ([1,4,3,2,5], fn (a,b) => a<b); 
val it = [1,2,3,4,5] : int list 
- quicksort ([1,4,3,2,5], fn (a,b) => a>b); 
val it = [5,4,3,2,1] : int list 



The op keyword 

 Binary operators are special functions 
  Sometimes you want to treat them like plain 

functions: to pass <, for example, as an 
argument of type int * int -> bool 

 The keyword op before an operator gives 
you the underlying function 

Chapter Nine Modern Programming Languages, 2nd ed. 15 

- op *; 
val it = fn : int * int -> int 
- quicksort ([1,4,3,2,5], op <); 
val it = [1,2,3,4,5] : int list 



Outline 

 More pattern matching 
  Function values and anonymous functions 
 Higher-order functions and currying 
  Predefined higher-order functions 

Chapter Nine Modern Programming Languages, 2nd ed. 16 



Higher-order Functions 
  Every function has an order: 

–  A function that does not take any functions as 
parameters, and does not return a function value, has 
order 1 

–  A function that takes a function as a parameter or 
returns a function value has order n+1, where n is the 
order of its highest-order parameter or returned value 

  The quicksort we just saw is a second-order 
function 

Chapter Nine Modern Programming Languages, 2nd ed. 17 



Practice 

Chapter Nine Modern Programming Languages, 2nd ed. 18 

What is the order of functions with each of the  
following ML types? 

int * int -> bool 
int list * (int * int -> bool) -> int list 
int -> int -> int 
(int -> int) * (int -> int) -> (int -> int) 
int -> bool -> real -> string 

What can you say about the order of a function with this type? 

('a -> 'b) * ('c -> 'a) -> 'c -> 'b 



Currying 

 We've seen how to get two parameters into 
a function by passing a 2-tuple: 

 fun f (a,b) = a + b; 
 Another way is to write a function that takes 

the first argument, and returns another 
function that takes the second argument: 

 fun g a = fn b => a+b; 

 The general name for this is currying 

Chapter Nine Modern Programming Languages, 2nd ed. 19 



Curried Addition 

  Remember that function application is left-
associative 

  So g 2 3 means ((g 2) 3) 

Chapter Nine Modern Programming Languages, 2nd ed. 20 

- fun f (a,b) = a+b; 
val f = fn : int * int -> int 
- fun g a = fn b => a+b; 
val g = fn : int -> int -> int 
- f(2,3); 
val it = 5 : int 
- g 2 3; 
val it = 5 : int 



Advantages 
 No tuples: we get to write g 2 3 instead of 
f(2,3) 

 But the real advantage: we get to specialize 
functions for particular initial parameters 

Chapter Nine Modern Programming Languages, 2nd ed. 21 

- val add2 = g 2; 
val add2 = fn : int -> int 
- add2 3; 
val it = 5 : int 
- add2 10; 
val it = 12 : int 



Advantages: Example 
 Like the previous quicksort 
 But now, the comparison function is a first, 

curried parameter 

Chapter Nine Modern Programming Languages, 2nd ed. 22 

- quicksort (op <) [1,4,3,2,5]; 
val it = [1,2,3,4,5] : int list 
- val sortBackward = quicksort (op >); 
val sortBackward = fn : int list -> int list 
- sortBackward [1,4,3,2,5]; 
val it = [5,4,3,2,1] : int list 



Multiple Curried Parameters 

 Currying generalizes to any number of 
parameters 

Chapter Nine Modern Programming Languages, 2nd ed. 23 

- fun f (a,b,c) = a+b+c; 
val f = fn : int * int * int -> int 
- fun g a = fn b => fn c => a+b+c; 
val g = fn : int -> int -> int -> int 
- f (1,2,3); 
val it = 6 : int 
- g 1 2 3; 
val it = 6 : int 



Notation For Currying 

  There is a much simpler notation for currying (on 
the next slide) 

  The long notation we have used so far makes the 
little intermediate anonymous functions explicit 

  But as long as you understand how it works, the 
simpler notation is much easier to read and write 

Chapter Nine Modern Programming Languages, 2nd ed. 24 

fun g a = fn b => fn c => a+b+c; 



Easier Notation for Currying 
  Instead of writing: 

 fun f a = fn b => a+b; 
 We can just write: 

 fun f a b = a+b; 
 This generalizes for any number of curried 

arguments 

Chapter Nine Modern Programming Languages, 2nd ed. 25 

- fun f a b c d = a+b+c+d; 
val f = fn : int -> int -> int -> int -> int 



Outline 

 More pattern matching 
  Function values and anonymous functions 
 Higher-order functions and currying 
  Predefined higher-order functions 

Chapter Nine Modern Programming Languages, 2nd ed. 26 



Predefined Higher-Order 
Functions 
 We will use three important predefined 

higher-order functions: 
–  map 
–  foldr 
–  foldl 

 Actually, foldr and foldl are very similar, 
as you might guess from the names 

Chapter Nine Modern Programming Languages, 2nd ed. 27 



The map Function 

 Used to apply a function to every element of 
a list, and collect a list of results 

Chapter Nine Modern Programming Languages, 2nd ed. 28 

- map ~ [1,2,3,4]; 
val it = [~1,~2,~3,~4] : int list 
- map (fn x => x+1) [1,2,3,4]; 
val it = [2,3,4,5] : int list 
- map (fn x => x mod 2 = 0) [1,2,3,4]; 
val it = [false,true,false,true] : bool list 
- map (op +) [(1,2),(3,4),(5,6)]; 
val it = [3,7,11] : int list 



The map Function Is Curried 

Chapter Nine Modern Programming Languages, 2nd ed. 29 

- map; 
val it = fn : ('a -> 'b) -> 'a list -> 'b list 
- val f = map (op +); 
val f = fn : (int * int) list -> int list 
- f [(1,2),(3,4)]; 
val it = [3,7] : int list 



The foldr Function 

  Used to combine all the elements of a list 
  For example, to add up all the elements of a list x, 

we could write foldr (op +) 0 x 
  It takes a function f, a starting value c, and a list x 

= [x1, …, xn] and computes: 

  So foldr (op +) 0 [1,2,3,4] evaluates 
as 1+(2+(3+(4+0)))=10 

Chapter Nine Modern Programming Languages, 2nd ed. 30 



Examples 

Chapter Nine Modern Programming Languages, 2nd ed. 31 

- foldr (op +) 0 [1,2,3,4]; 
val it = 10 : int 
- foldr (op * ) 1 [1,2,3,4]; 
val it = 24 : int 
- foldr (op ^) "" ["abc","def","ghi"]; 
val it = "abcdefghi" : string 
- foldr (op ::) [5] [1,2,3,4]; 
val it = [1,2,3,4,5] : int list 



The foldr Function Is Curried 

Chapter Nine Modern Programming Languages, 2nd ed. 32 

- foldr; 
val it = fn : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b 
- foldr (op +); 
val it = fn : int -> int list -> int 
- foldr (op +) 0; 
val it = fn : int list -> int 
- val addup = foldr (op +) 0; 
val addup = fn : int list -> int 
- addup [1,2,3,4,5]; 
val it = 15 : int 



The foldl Function 

  Used to combine all the elements of a list 
  Same results as foldr in some cases 

Chapter Nine Modern Programming Languages, 2nd ed. 33 

- foldl (op +) 0 [1,2,3,4]; 
val it = 10 : int 
- foldl (op * ) 1 [1,2,3,4]; 
val it = 24 : int 



The foldl Function 

  To add up all the elements of a list x, we could 
write foldl (op +) 0 x 

  It takes a function f, a starting value c, and a list x 
= [x1, …, xn] and computes: 

  So foldl (op +) 0 [1,2,3,4] evaluates 
as 4+(3+(2+(1+0)))=10 

  Remember, foldr did 1+(2+(3+(4+0)))=10 

Chapter Nine Modern Programming Languages, 2nd ed. 34 



The foldl Function 
  foldl starts at the left, foldr starts at the 
right 

  Difference does not matter when the function is 
associative and commutative, like + and * 

  For other operations, it does matter 

Chapter Nine Modern Programming Languages, 2nd ed. 35 

- foldr (op ^) "" ["abc","def","ghi"]; 
val it = "abcdefghi" : string 
- foldl (op ^) "" ["abc","def","ghi"]; 
val it = "ghidefabc" : string 
- foldr (op -) 0 [1,2,3,4]; 
val it = ~2 : int 
- foldl (op -) 0 [1,2,3,4]; 
val it = 2 : int 


