
A Second Look At ML

Chapter Seven Modern Programming Languages, 2nd ed. 1

Outline

  Patterns
 Local variable definitions
 A sorting example

Chapter Seven Modern Programming Languages, 2nd ed. 2

Two Patterns You Already Know
 We have seen that ML functions take a

single parameter:
 fun f n = n*n;

 We have also seen how to specify functions
with more than one input by using tuples:

 fun f (a, b) = a*b;
 Both n and (a, b) are patterns. The n

matches and binds to any argument, while
(a,b) matches any 2-tuple and binds a
and b to its components

Chapter Seven Modern Programming Languages, 2nd ed. 3

Underscore As A Pattern

 The underscore can be used as a pattern
  It matches anything, but does not bind it to a

variable
  Preferred to:

 fun f x = "yes";

Chapter Seven Modern Programming Languages, 2nd ed. 4

- fun f _ = "yes";
val f = fn : 'a -> string
- f 34.5;
val it = "yes" : string
- f [];
val it = "yes" : string

Constants As Patterns

 Any constant of an equality type can be
used as a pattern

 But not:
 fun f 0.0 = "yes";

Chapter Seven Modern Programming Languages, 2nd ed. 5

- fun f 0 = "yes";
Warning: match nonexhaustive
 0 => ...
val f = fn : int -> string
- f 0;
val it = "yes" : string

Non-Exhaustive Match
  In that last example, the type of f was
int -> string, but with a “match non-
exhaustive” warning

 Meaning: f was defined using a pattern that
didn’t cover all the domain type (int)

  So you may get runtime errors like this:

Chapter Seven Modern Programming Languages, 2nd ed. 6

- f 0;
val it = "yes" : string
- f 1;
uncaught exception nonexhaustive match failure

Lists Of Patterns As Patterns

 You can use a list of patterns as a pattern
 This example matches any list of length 2
  It treats a and _ as sub-patterns, binding a

to the first list element

Chapter Seven Modern Programming Languages, 2nd ed. 7

- fun f [a,_] = a;
Warning: match nonexhaustive
 a :: _ :: nil => ...
val f = fn : 'a list -> 'a
- f [#"f",#"g"];
val it = #"f" : char

Cons Of Patterns As A Pattern

 You can use a cons of patterns as a pattern
  x::xs matches any non-empty list, and

binds x to the head and xs to the tail
  Parens around x::xs are for precedence

Chapter Seven Modern Programming Languages, 2nd ed. 8

- fun f (x::xs) = x;
Warning: match nonexhaustive
 x :: xs => ...
val f = fn : 'a list -> 'a
- f [1,2,3];
val it = 1 : int

ML Patterns So Far
  A variable is a pattern that matches anything, and binds to it
  A _ is a pattern that matches anything
  A constant (of an equality type) is a pattern that matches

only that constant
  A tuple of patterns is a pattern that matches any tuple of the

right size, whose contents match the sub-patterns
  A list of patterns is a pattern that matches any list of the

right size, whose contents match the sub-patterns
  A cons (::) of patterns is a pattern that matches any non-

empty list whose head and tail match the sub-patterns

Chapter Seven Modern Programming Languages, 2nd ed. 9

Multiple Patterns for Functions

 You can define a function by listing
alternate patterns

Chapter Seven Modern Programming Languages, 2nd ed. 10

- fun f 0 = "zero"
= | f 1 = "one";
Warning: match nonexhaustive
 0 => ...
 1 => ...
val f = fn : int -> string;
- f 1;
val it = "one" : string

Syntax

 To list alternate patterns for a function
 You must repeat the function name in each

alternative

Chapter Seven Modern Programming Languages, 2nd ed. 11

<fun-def> ::= fun <fun-bodies> ;
<fun-bodies> ::= <fun-body>
 | <fun-body> '|' <fun-bodies>
<fun-body> ::= <fun-name> <pattern> = <expression>

Overlapping Patterns

  Patterns may overlap
 ML uses the first match for a given

argument

Chapter Seven Modern Programming Languages, 2nd ed. 12

- fun f 0 = "zero"
= | f _ = "non-zero";
val f = fn : int -> string;
- f 0;
val it = "zero" : string
- f 34;
val it = "non-zero" : string

Pattern-Matching Style
 These definitions are equivalent:

 fun f 0 = "zero"
 | f _ = "non-zero";
 fun f n =

 if n = 0 then "zero"
 else "non-zero";

 But the pattern-matching style usually
preferred in ML

  It often gives shorter and more legible
functions

Chapter Seven Modern Programming Languages, 2nd ed. 13

Pattern-Matching Example

Chapter Seven Modern Programming Languages, 2nd ed. 14

fun fact n =
 if n = 0 then 1 else n * fact(n-1);

Original (from Chapter 5):

Rewritten using patterns:

fun fact 0 = 1
| fact n = n * fact(n-1);

Pattern-Matching Example

Chapter Seven Modern Programming Languages, 2nd ed. 15

fun reverse L =
 if null L then nil
 else reverse(tl L) @ [hd L];

Original (from Chapter 5):

Improved using patterns:

fun reverse nil = nil
| reverse (first::rest) =
 reverse rest @ [first];

More Examples

Chapter Seven Modern Programming Languages, 2nd ed. 16

This structure occurs frequently in recursive functions
that operate on lists: one alternative for the base case (nil)
and one alternative for the recursive case (first::rest).

Adding up all the elements of a list:

fun f nil = 0
| f (first::rest) = first + f rest;

Counting the true values in a list:

fun f nil = 0
| f (true::rest) = 1 + f rest
| f (false::rest) = f rest;

More Examples

Chapter Seven Modern Programming Languages, 2nd ed. 17

Making a new list of integers in which each is one
greater than in the original list:

fun f nil = nil
| f (first::rest) = first+1 :: f rest;

A Restriction

 You can't use the same variable more than
once in the same pattern

 This is not legal:

 You must use this instead:

Chapter Seven Modern Programming Languages, 2nd ed. 18

fun f (a,a) = … for pairs of equal elements
| f (a,b) = … for pairs of unequal elements

fun f (a,b) =
 if (a=b) then … for pairs of equal elements
 else … for pairs of unequal elements

The polyEqual Warning

 Warning for an equality comparison, when
the runtime type cannot be resolved

 OK to ignore: this kind of equality test is
inefficient, but can’t always be avoided

Chapter Seven Modern Programming Languages, 2nd ed. 19

- fun eq (a,b) = if a=b then 1 else 0;
Warning: calling polyEqual
val eq = fn : ''a * ''a -> int
- eq (1,3);
val it = 0 : int
- eq ("abc","abc");
val it = 1 : int

Patterns Everywhere

  Patterns are not just for function definition
 Here we see that you can use them in a val
 More ways to use patterns, later

Chapter Seven Modern Programming Languages, 2nd ed. 20

- val (a,b) = (1,2.3);
val a = 1 : int
val b = 2.3 : real
- val a::b = [1,2,3,4,5];
Warning: binding not exhaustive
 a :: b = ...
val a = 1 : int
val b = [2,3,4,5] : int list

Outline

  Patterns
 Local variable definitions
 A sort example

Chapter Seven Modern Programming Languages, 2nd ed. 21

Local Variable Definitions

 When you use val at the top level to define
a variable, it is visible from that point
forward

 There is a way to restrict the scope of
definitions: the let expression

Chapter Seven Modern Programming Languages, 2nd ed. 22

<let-exp> ::= let <definitions> in <expression> end

Example with let

 The value of a let expression is the value
of the expression in the in part

 Variables defined with val between the
let and the in are visible only from the
point of declaration up to the end

Chapter Seven Modern Programming Languages, 2nd ed. 23

- let val x = 1 val y = 2 in x+y end;
val it = 3 : int;
- x;
Error: unbound variable or constructor: x

Proper Indentation for let

  For readability, use multiple lines and
indent let expressions like this

  Some ML programmers put a semicolon
after each val declaration in a let

Chapter Seven Modern Programming Languages, 2nd ed. 24

let
 val x = 1
 val y = 2
in
 x+y
end

Long Expressions with let

 The let expression allows you to break up
long expressions and name the pieces

 This can make code more readable

Chapter Seven Modern Programming Languages, 2nd ed. 25

fun days2ms days =
 let
 val hours = days * 24.0
 val minutes = hours * 60.0
 val seconds = minutes * 60.0
 in
 seconds * 1000.0
 end;

Patterns with let

 By using patterns in the declarations of a
let, you can get easy “deconstruction”

 This example takes a list argument and
returns a pair of lists, with half in each

Chapter Seven Modern Programming Languages, 2nd ed. 26

fun halve nil = (nil, nil)
| halve [a] = ([a], nil)
| halve (a::b::cs) =
 let
 val (x, y) = halve cs
 in
 (a::x, b::y)
 end;

Again, Without Good Patterns

  In general, if you find yourself using # to
extract an element from a tuple, think twice

  Pattern matching usually gives a better
solution

Chapter Seven Modern Programming Languages, 2nd ed. 27

 let
 val halved = halve cs
 val x = #1 halved
 val y = #2 halved
 in
 (a::x, b::y)
 end;

halve At Work

Chapter Seven Modern Programming Languages, 2nd ed. 28

- fun halve nil = (nil, nil)
= | halve [a] = ([a], nil)
= | halve (a::b::cs) =
= let
= val (x, y) = halve cs
= in
= (a::x, b::y)
= end;
val halve = fn : 'a list -> 'a list * 'a list
- halve [1];
val it = ([1],[]) : int list * int list
- halve [1,2];
val it = ([1],[2]) : int list * int list
- halve [1,2,3,4,5,6];
val it = ([1,3,5],[2,4,6]) : int list * int list

Outline

  Patterns
 Local variable definitions
 A sort example

Chapter Seven Modern Programming Languages, 2nd ed. 29

Merge Sort

 The halve function divides a list into two
nearly-equal parts

 This is the first step in a merge sort
  For practice, we will look at the rest

Chapter Seven Modern Programming Languages, 2nd ed. 30

Example: Merge

 Merges two sorted lists
 Note: default type for < is int

Chapter Seven Modern Programming Languages, 2nd ed. 31

fun merge (nil, ys) = ys
| merge (xs, nil) = xs
| merge (x::xs, y::ys) =
 if (x < y) then x :: merge(xs, y::ys)
 else y :: merge(x::xs, ys);

Merge At Work

Chapter Seven Modern Programming Languages, 2nd ed. 32

- fun merge (nil, ys) = ys
= | merge (xs, nil) = xs
= | merge (x::xs, y::ys) =
= if (x < y) then x :: merge(xs, y::ys)
= else y :: merge(x::xs, ys);
val merge = fn : int list * int list -> int list
- merge ([2],[1,3]);
val it = [1,2,3] : int list
- merge ([1,3,4,7,8],[2,3,5,6,10]);
val it = [1,2,3,3,4,5,6,7,8,10] : int list

Example: Merge Sort

 Merge sort of a list
 Type is int list -> int list,

because of type already found for merge
Chapter Seven Modern Programming Languages, 2nd ed. 33

fun mergeSort nil = nil
| mergeSort [a] = [a]
| mergeSort theList =
 let
 val (x, y) = halve theList
 in
 merge(mergeSort x, mergeSort y)
 end;

Merge Sort At Work

Chapter Seven Modern Programming Languages, 2nd ed. 34

- fun mergeSort nil = nil
= | mergeSort [a] = [a]
= | mergeSort theList =
= let
= val (x, y) = halve theList
= in
= merge(mergeSort x, mergeSort y)
= end;
val mergeSort = fn : int list -> int list
- mergeSort [4,3,2,1];
val it = [1,2,3,4] : int list
- mergeSort [4,2,3,1,5,3,6];
val it = [1,2,3,3,4,5,6] : int list

Nested Function Definitions

  You can define local functions, just like local
variables, using a let

  You should do it for helper functions that you
don't think will be useful by themselves

  We can hide halve and merge from the rest of
the program this way

  Another potential advantage: inner function can
refer to variables from outer one (as we will see in
Chapter 12)

Chapter Seven Modern Programming Languages, 2nd ed. 35

Chapter Seven Modern Programming Languages, 2nd ed. 36

(* Sort a list of integers. *)
fun mergeSort nil = nil
| mergeSort [e] = [e]
| mergeSort theList =
 let
 (* From the given list make a pair of lists
 * (x,y), where half the elements of the
 * original are in x and half are in y. *)
 fun halve nil = (nil, nil)
 | halve [a] = ([a], nil)
 | halve (a::b::cs) =
 let
 val (x, y) = halve cs
 in
 (a::x, b::y)
 end;

continued…

Chapter Seven Modern Programming Languages, 2nd ed. 37

 (* Merge two sorted lists of integers into
 * a single sorted list. *)
 fun merge (nil, ys) = ys
 | merge (xs, nil) = xs
 | merge (x::xs, y::ys) =
 if (x < y) then x :: merge(xs, y::ys)
 else y :: merge(x::xs, ys);

 val (x, y) = halve theList
 in
 merge(mergeSort x, mergeSort y)
 end;

Commenting

 Everything between (* and *) in ML is a
comment

 You should (at least) comment every
function definition, as in any language
–  what parameters does it expect
–  what function does it compute
–  how does it do it (if non-obvious)
–  etc.

Chapter Seven Modern Programming Languages, 2nd ed. 38

