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Outline 

  Patterns 
 Local variable definitions 
 A sorting example 
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Two Patterns You Already Know 
 We have seen that ML functions take a 

single parameter: 
 fun f n = n*n; 

 We have also seen how to specify functions 
with more than one input by using tuples: 

 fun f (a, b) = a*b; 
 Both n and (a, b) are patterns.  The n 

matches and binds to any argument, while 
(a,b) matches any 2-tuple and binds a 
and b to its components 

Chapter Seven Modern Programming Languages, 2nd ed. 3 



Underscore As A Pattern 

 The underscore can be used as a pattern 
  It matches anything, but does not bind it to a 

variable 
  Preferred to: 

  fun f x = "yes"; 
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- fun f _ = "yes"; 
val f = fn : 'a -> string 
- f 34.5; 
val it = "yes" : string 
- f []; 
val it = "yes" : string 



Constants As Patterns 

 Any constant of an equality type can be 
used as a pattern 

 But not: 
  fun f 0.0 = "yes"; 
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- fun f 0 = "yes"; 
Warning: match nonexhaustive 
          0 => ... 
val f = fn : int -> string 
- f 0; 
val it = "yes" : string 



Non-Exhaustive Match 
  In that last example, the type of f was  
int -> string, but with a “match non-
exhaustive” warning 

 Meaning: f was defined using a pattern that 
didn’t cover all the domain type (int) 

  So you may get runtime errors like this: 
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- f 0; 
val it = "yes" : string 
- f 1; 
uncaught exception nonexhaustive match failure 



Lists Of Patterns As Patterns 

 You can use a list of patterns as a pattern 
 This example matches any list of length 2 
  It treats a and _ as sub-patterns, binding a 

to the first list element 
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- fun f [a,_] = a; 
Warning: match nonexhaustive 
          a :: _ :: nil => ... 
val f = fn : 'a list -> 'a 
- f [#"f",#"g"]; 
val it = #"f" : char 



Cons Of Patterns As A Pattern 

 You can use a cons of patterns as a pattern 
   x::xs matches any non-empty list, and 

binds x to the head and xs to the tail 
  Parens around x::xs are for precedence 
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- fun f (x::xs) = x; 
Warning: match nonexhaustive 
          x :: xs => ... 
val f = fn : 'a list -> 'a 
- f [1,2,3]; 
val it = 1 : int 



ML Patterns So Far 
  A variable is a pattern that matches anything, and binds to it 
  A _ is a pattern that matches anything 
  A constant (of an equality type) is a pattern that matches 

only that constant 
  A tuple of patterns is a pattern that matches any tuple of the 

right size, whose contents match the sub-patterns 
  A list of patterns is a pattern that matches any list of the 

right size, whose contents match the sub-patterns 
  A cons (::) of patterns is a pattern that matches any non-

empty list whose head and tail match the sub-patterns 
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Multiple Patterns for Functions 

 You can define a function by listing 
alternate patterns 
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- fun f 0 = "zero" 
= |   f 1 = "one"; 
Warning: match nonexhaustive 
          0 => ... 
          1 => ... 
val f = fn : int -> string; 
- f 1; 
val it = "one" : string 



Syntax 

 To list alternate patterns for a function 
 You must repeat the function name in each 

alternative 
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<fun-def> ::= fun <fun-bodies> ; 
<fun-bodies> ::= <fun-body>  
            | <fun-body> '|' <fun-bodies> 
<fun-body> ::= <fun-name> <pattern> = <expression> 



Overlapping Patterns 

  Patterns may overlap 
 ML uses the first match for a given 

argument 
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- fun f 0 = "zero" 
= |   f _ = "non-zero"; 
val f = fn : int -> string; 
- f 0; 
val it = "zero" : string 
- f 34; 
val it = "non-zero" : string 



Pattern-Matching Style 
 These definitions are equivalent: 

 fun f 0 = "zero" 
 |   f _ = "non-zero"; 
 fun f n =  

     if n = 0 then "zero"  
     else "non-zero"; 

 But the pattern-matching style usually 
preferred in ML 

  It often gives shorter and more legible 
functions 
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Pattern-Matching Example 
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fun fact n = 
  if n = 0 then 1 else n * fact(n-1); 

Original (from Chapter 5): 

Rewritten using patterns: 

fun fact 0 = 1 
|   fact n = n * fact(n-1); 



Pattern-Matching Example 
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fun reverse L = 
   if null L then nil 
   else reverse(tl L) @ [hd L]; 

Original (from Chapter 5): 

Improved using patterns: 

fun reverse nil = nil 
|   reverse (first::rest) =  
       reverse rest @ [first]; 



More Examples 
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This structure occurs frequently in recursive functions 
that operate on lists: one alternative for the base case (nil) 
and one alternative for the recursive case (first::rest). 

Adding up all the elements of a list: 

fun f nil = 0 
|   f (first::rest) = first + f rest; 

Counting the true values in a list: 

fun f nil = 0 
|   f (true::rest) = 1 + f rest 
|   f (false::rest) = f rest; 



More Examples 
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Making a new list of integers in which each is one 
greater than in the original list: 

fun f nil = nil 
|   f (first::rest) = first+1 :: f rest; 



A Restriction 

 You can't use the same variable more than 
once in the same pattern 

 This is not legal: 

 You must use this instead: 
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fun f (a,a) = … for pairs of equal elements 
|   f (a,b) = … for pairs of unequal elements 

fun f (a,b) = 
  if (a=b) then … for pairs of equal elements 
  else … for pairs of unequal elements 



The polyEqual Warning 

 Warning for an equality comparison, when 
the runtime type cannot be resolved 

 OK to ignore: this kind of equality test is 
inefficient, but can’t always be avoided 
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- fun eq (a,b) = if a=b then 1 else 0; 
Warning: calling polyEqual 
val eq = fn : ''a * ''a -> int 
- eq (1,3); 
val it = 0 : int 
- eq ("abc","abc"); 
val it = 1 : int            



Patterns Everywhere 

  Patterns are not just for function definition 
 Here we see that you can use them in a val 
 More ways to use patterns, later 
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- val (a,b) = (1,2.3); 
val a = 1 : int 
val b = 2.3 : real 
- val a::b = [1,2,3,4,5]; 
Warning: binding not exhaustive 
          a :: b = ... 
val a = 1 : int 
val b = [2,3,4,5] : int list 



Outline 

  Patterns 
 Local variable definitions 
 A sort example 
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Local Variable Definitions 

 When you use val at the top level to define 
a variable, it is visible from that point 
forward 

 There is a way to restrict the scope of 
definitions: the let expression 
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<let-exp> ::= let <definitions> in <expression> end 



Example with let 

 The value of a let expression is the value 
of the expression in the in part 

 Variables defined with val between the 
let and the in are visible only from the 
point of declaration up to the end 
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- let val x = 1 val y = 2 in x+y end; 
val it = 3 : int; 
- x; 
Error: unbound variable or constructor: x 



Proper Indentation for let 

  For readability, use multiple lines and 
indent let expressions like this 

  Some ML programmers put a semicolon 
after each val declaration in a let 
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let  
  val x = 1  
  val y = 2  
in  
  x+y  
end 



Long Expressions with let 

 The let expression allows you to break up 
long expressions and name the pieces 

 This can make code more readable 
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fun days2ms days = 
  let  
    val hours = days * 24.0  
    val minutes = hours * 60.0 
    val seconds = minutes * 60.0 
  in  
    seconds * 1000.0 
  end; 



Patterns with let 

 By using patterns in the declarations of a 
let, you can get easy “deconstruction” 

 This example takes a list argument and 
returns a pair of lists, with half in each 
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fun halve nil = (nil, nil) 
|   halve [a] = ([a], nil) 
|   halve (a::b::cs) = 
      let 
        val (x, y) = halve cs 
      in 
        (a::x, b::y) 
      end; 



Again, Without Good Patterns 

  In general, if you find yourself using # to 
extract an element from a tuple, think twice 

  Pattern matching usually gives a better 
solution 
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      let 
        val halved = halve cs 
        val x = #1 halved 
        val y = #2 halved 
      in 
        (a::x, b::y) 
      end; 



halve At Work 
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- fun halve nil = (nil, nil) 
= |   halve [a] = ([a], nil) 
= |   halve (a::b::cs) = 
=       let 
=         val (x, y) = halve cs 
=       in 
=         (a::x, b::y) 
=       end; 
val halve = fn : 'a list -> 'a list * 'a list 
- halve [1]; 
val it = ([1],[]) : int list * int list 
- halve [1,2]; 
val it = ([1],[2]) : int list * int list 
- halve [1,2,3,4,5,6]; 
val it = ([1,3,5],[2,4,6]) : int list * int list 



Outline 

  Patterns 
 Local variable definitions 
 A sort example 
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Merge Sort 

 The halve function divides a list into two 
nearly-equal parts 

 This is the first step in a merge sort 
  For practice, we will look at the rest 
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Example: Merge 

 Merges two sorted lists 
 Note: default type for < is int 

Chapter Seven Modern Programming Languages, 2nd ed. 31 

fun merge (nil, ys) = ys 
|   merge (xs, nil) = xs 
|   merge (x::xs, y::ys) = 
      if (x < y) then x :: merge(xs, y::ys) 
      else y :: merge(x::xs, ys); 



Merge At Work 
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- fun merge (nil, ys) = ys 
= |   merge (xs, nil) = xs 
= |   merge (x::xs, y::ys) = 
=       if (x < y) then x :: merge(xs, y::ys) 
=       else y :: merge(x::xs, ys); 
val merge = fn : int list * int list -> int list 
- merge ([2],[1,3]); 
val it = [1,2,3] : int list 
- merge ([1,3,4,7,8],[2,3,5,6,10]); 
val it = [1,2,3,3,4,5,6,7,8,10] : int list 



Example: Merge Sort 

 Merge sort of a list 
 Type is int list -> int list, 

because of type already found for merge 
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fun mergeSort nil = nil 
|   mergeSort [a] = [a] 
|   mergeSort theList = 
      let 
        val (x, y) = halve theList 
      in 
        merge(mergeSort x, mergeSort y) 
      end; 



Merge Sort At Work 
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- fun mergeSort nil = nil 
= |   mergeSort [a] = [a] 
= |   mergeSort theList = 
=       let 
=         val (x, y) = halve theList 
=       in 
=         merge(mergeSort x, mergeSort y) 
=       end; 
val mergeSort = fn : int list -> int list 
- mergeSort [4,3,2,1]; 
val it = [1,2,3,4] : int list 
- mergeSort [4,2,3,1,5,3,6]; 
val it = [1,2,3,3,4,5,6] : int list 



Nested Function Definitions 

  You can define local functions, just like local 
variables, using a let 

  You should do it for helper functions that you 
don't think will be useful by themselves 

  We can hide halve and merge from the rest of 
the program this way 

  Another potential advantage: inner function can 
refer to variables from outer one (as we will see in 
Chapter 12) 
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(* Sort a list of integers. *) 
fun mergeSort nil = nil 
|   mergeSort [e] = [e] 
|   mergeSort theList = 
      let 
        (* From the given list make a pair of lists  
         * (x,y), where half the elements of the  
         * original are in x and half are in y. *) 
        fun halve nil = (nil, nil) 
        |   halve [a] = ([a], nil) 
        |   halve (a::b::cs) = 
              let 
                val (x, y) = halve cs 
              in 
                (a::x, b::y) 
              end; 

continued… 
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        (* Merge two sorted lists of integers into 
         * a single sorted list. *) 
        fun merge (nil, ys) = ys 
        |   merge (xs, nil) = xs 
        |   merge (x::xs, y::ys) = 
              if (x < y) then x :: merge(xs, y::ys) 
              else y :: merge(x::xs, ys); 

        val (x, y) = halve theList 
      in 
        merge(mergeSort x, mergeSort y) 
      end; 



Commenting 

 Everything between (* and *) in ML is a 
comment 

 You should (at least) comment every 
function definition, as in any language 
–  what parameters does it expect  
–  what function does it compute 
–  how does it do it (if non-obvious) 
–  etc. 
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