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A Type Is A Set 

 When you declare that a variable has a 
certain type, you are saying that the values 
the variable can have are elements of a 
certain set 

 A type is a set of values 
–  plus a low-level representation 
–  plus a collection of operations that can be 

applied to those values 
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int n; 



Today: A Tour Of Types 

 There are too many to cover them all 
  Instead, a short tour of the type menagerie 
 Most ways you can construct a set in 

mathematics are also ways to construct a 
type in some programming language 

 We will organize the tour around that 
connection 
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Outline 
 Type Menagerie 

–  Primitive types 
–  Constructed types 

 Uses For Types 
–  Type annotations and type inference 
–  Type checking 
–  Type equivalence issues 
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Primitive vs. Constructed Types 

  Any type that a program can use but cannot define 
for itself is a primitive type in the language 

  Any type that a program can define for itself (using 
the primitive types) is a constructed type 

  Some primitive types in ML: int, real, char 
–  An ML program cannot define a type named int that 

works like the predefined int 
  A constructed type: int list 

–  Defined using the primitive type int and the list type 
constructor 
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Primitive Types 

 The definition of a language says what the 
primitive types are 

  Some languages define the primitive types 
more strictly than others: 
–  Some define the primitive types exactly (Java) 
–  Others leave some wiggle room—the primitive 

types may be different sets in different 
implementations of the language (C, ML) 
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Comparing Integral Types 
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C: 
char 
unsigned char 
short int 
unsigned short int 
int 
unsigned int 
long int 
unsigned long int 
No standard implementation, 
but longer sizes must 
provide at least as much 
range as shorter sizes. 

Java: 
byte (1-byte signed) 
char (2-byte unsigned) 
short (2-byte signed) 
int (4-byte signed) 
long (8-byte signed) 

Scheme: 
integer 
Integers of unbounded range 



Issues 
  What sets do the primitive types signify? 

–  How much is part of the language specification, how 
much left up to the implementation? 

–  If necessary, how can a program find out?  (INT_MAX 
in C, Int.maxInt in ML, etc.)  

  What operations are supported? 
–  Detailed definitions: rounding, exceptions, etc. 

  The choice of representation is a critical part of 
these decisions 
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Outline 
 Type Menagerie 

–  Primitive types 
–  Constructed types 

 Uses For Types 
–  Type annotations and type inference 
–  Type checking 
–  Type equivalence issues 

Chapter Six Modern Programming Languages, 2nd ed. 9 



Constructed Types 
 Additional types defined using the language 
 Today: enumerations, tuples, arrays, strings, 

lists, unions, subtypes, and function types 
  For each one, there is connection between 

how sets are defined mathematically, and 
how types are defined in programming 
languages 
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Making Sets by Enumeration 

 Mathematically, we can construct sets by 
just listing all the elements: 
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Making Types by Enumeration 

 Many languages support enumerated types: 

 These define a new type (= set) 
 They also define a collection of named 

constants of that type (= elements) 
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C:  enum coin {penny, nickel, dime, quarter}; 
Ada:  type GENDER is (MALE, FEMALE); 
Pascal:  type primaryColors = (red, green, blue); 

ML:  datatype day = M | Tu | W | Th | F | Sa | Su; 



Representing Enumeration 
Values 
 A common representation is to treat the 

values of an enumeration as small integers 
 This may even be exposed to the 

programmer, as it is in C: 
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enum coin { penny = 1, nickel = 5, dime = 10, quarter = 25 }; 

enum escapes { BELL = '\a', BACKSPACE = '\b', TAB = '\t', 
               NEWLINE = '\n', VTAB = '\v', RETURN = '\r' }; 



Operations on Enumeration 
Values 
 Equality test: 

  If the integer nature of the representation is 
exposed, a language will allow some or all 
integer operations: 
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fun isWeekend x = (x = Sa orelse x = Su); 

Pascal:   for C := red to blue do 
P(C) 

C:   int x = penny + nickel + dime; 



Making Sets by Tupling 

 The Cartesian product of two or more sets 
defines sets of tuples: 
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Making Types by Tupling 

  Some languages support pure tuples: 

 Many others support record types, which 
are just tuples with named fields: 
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fun get1 (x : real * real) = #1 x; 

C:   
struct complex { 
  double rp; 
  double ip; 
}; 

ML: 
type complex = { 
  rp:real, 
  ip:real 
}; 
fun getip (x : complex) = #ip x; 



Representing Tuple Values 

 A common representation is to just place 
the elements side-by-side in memory 

 But there are lots of details: 
–  in what order? 
–  with “holes” to align elements (e.g. on word 

boundaries) in memory? 
–  is any or all of this visible to the programmer? 
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Example: ANSI C 
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The members of a structure have addresses increasing in the 
order of their declarations.  A non-field member of a structure is 
aligned at an addressing boundary depending on its type; 
therefore, there may be unnamed holes in a structure.  If a 
pointer to a structure is cast to the type of a pointer to its first 
member, the result refers to the first member… 

Adjacent field members of structures are packed into 
implementation-dependent storage units in an implementation-
dependent direction... 

The C Programming Language, 2nd ed. 
Brian W. Kernighan and Dennis M. Ritchie 



Operations on Tuple Values 

  Selection, of course: 

 Other operations depending on how much 
of the representation is exposed: 
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C:  x.ip 
ML:  #ip x 

C:  double y = *((double *) &x); 
 struct person { 
   char *firstname; 
   char *lastname; 
 } p1 = {"marcia","brady"}; 



Sets Of Vectors 

  Fixed-size vectors: 

 Arbitrary-size vectors: 

Chapter Six Modern Programming Languages, 2nd ed. 20 



Types Related To Vectors 
 Arrays, strings and lists 
 Like tuples, but with many variations 
 One example: indexes 

–  What are the index values? 
–  Is the array size fixed at compile time? 
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Index Values 

  Java, C, C++: 
–  First element of an array a is a[0] 
–  Indexes are always integers starting from 0 

  Pascal is more flexible: 
–  Various index types are possible: integers, 

characters, enumerations, subranges 
–  Starting index chosen by the programmer 
–  Ending index too: size is fixed at compile time 
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Pascal Array Example 
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type 
  LetterCount = array['a'..'z'] of Integer; 
var 
  Counts: LetterCount; 

begin 
  Counts['a'] = 1 
  etc. 



Types Related To Vectors 

 Many variations on vector-related types: 
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What are the index values? 
Is array size fixed at compile time (part of static type)? 
What operations are supported? 
Is redimensioning possible at runtime? 
Are multiple dimensions allowed? 
Is a higher-dimensional array the same as an array of arrays? 
What is the order of elements in memory? 
Is there a separate type for strings (not just array of characters)? 
Is there a separate type for lists? 



Making Sets by Union 

 We can make a new set by taking the union 
of existing sets: 

Chapter Six Modern Programming Languages, 2nd ed. 25 



Making Types by Union 

 Many languages support union types: 
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C: 

union element { 
  int i; 
  float f; 
}; 

ML: 

datatype element = 
  I of int | 
  F of real; 



Representing Union Values 

 You can have the two representations 
overlap each other in memory 

 This representation may or may not be 
exposed to the programmer 
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union element { 
  int i; 
  char *p; 
} u; /* sizeof(u) ==  
        max(sizeof(u.i),sizeof(u.p)) */ 



Strictly Typed Unions 
  In ML, all you can do with a union is 

extract the contents 
 And you have to say what to do with each 

type of value in the union: 
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datatype element = 
  I of int | 
  F of real; 

fun getReal (F x) = x 
  | getReal (I x) = real x;  



Loosely Typed Unions 
  Some languages expose the details of union 

implementation 
  Programs can take advantage of the fact that 

the specific type of a value is lost: 
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union element { 
  int i; 
  float f; 
}; 

union element e; 
e.i = 100; 
float x = e.f; 



What ANSI C Says About This 
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A union may be thought of as a structure all of whose 
members begin at offset 0 and whose size is sufficient to 
contain any of its members.  At most one of the members can 
be stored in a union at any time.  If a pointer to a union is cast 
to the type of a pointer to a member, the result refers to that 
member. 

In general, a member of a union may not be inspected unless 
the value of the union as been assigned using that same 
member. 

The C Programming Language, 2nd ed. 
Brian W. Kernighan and Dennis M. Ritchie 



A Middle Way: Variant Records 
 Union where specific type is linked to the 

value of a field  (“discriminated union”) 
 A variety of languages including Ada and 

Modula-2 
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Ada Variant Record Example 
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type DEVICE is (PRINTER, DISK); 

type PERIPHERAL(Unit: DEVICE) is 
  record 
    HoursWorking: INTEGER; 
    case Unit is 
      when PRINTER => 
        Line_count: INTEGER; 
      when DISK => 
        Cylinder: INTEGER; 
        Track: INTEGER; 
    end case; 
  end record;  



Making Subsets 

 We can define the subset selected by any 
predicate P: 
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Making Subtypes 

  Some languages support subtypes, with more 
or less generality 
–  Less general: Pascal subranges 

type digit = 0..9; 

–  More general: Ada subtypes 
 subtype DIGIT is INTEGER range 0..9; 

 subtype WEEKDAY is DAY range 
MON..FRI; 

–  Most general: Lisp types with predicates 
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Example: Ada Subtypes 

Chapter Six Modern Programming Languages, 2nd ed. 35 

type DEVICE is (PRINTER, DISK); 

type PERIPHERAL(Unit: DEVICE) is 
  record 
    HoursWorking: INTEGER; 
    case Unit is 
      when PRINTER => 
        Line_count: INTEGER; 
      when DISK => 
        Cylinder: INTEGER; 
        Track: INTEGER; 
    end case; 
  end record; 

subtype DISK_UNIT is PERIPHERAL(DISK); 



Example: Lisp Types with 
Predicates 
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(declare (type integer x)) 

(declare (type (or null cons) x)) 

(declare (type (and number (not integer)) x)) 

(declare (type (and integer (satisfies evenp)) x)) 



Representing Subtype Values 

 Usually, we just use the same representation 
for the subtype as for the supertype 

 Questions: 
–  Do you try to shorten it if you can?  Does  
X: 1..9 take the same space as  
X: Integer? 

–  Do you enforce the subtyping?  Is X := 10 
legal?  What about X := X + 1? 
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Operations on Subtype Values 

 Usually, supports all the same operations 
that are supported on the supertype 

 And perhaps additional operations that 
would not make sense on the supertype: 

 function toDigit(X: Digit): Char; 
  Important meditation: 
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A subtype is a subset of values, but it 
can support a superset of operations. 



A Word About Classes 

 This is a key idea of object-oriented 
programming 

  In class-based object-oriented languages, a 
class can be a type: data and operations on 
that data, bundled together 

 A subclass is a subtype: it includes a subset 
of the objects, but supports a superset of the 
operations 

 More about this in Chapter 13 
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Making Sets of Functions 

 We can define the set of functions with a 
given domain and range: 
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Making Types of Functions 

 Most languages have some notion of the 
type of a function: 
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int f(char a, char b) { 
  return a==b; 
} 

fun f(a:char, b:char) = (a = b); ML: 

C: 



Operations on Function Values 

 Of course, we need to call functions 
 We have taken it for granted that other types 

of values could be passed as parameters, 
bound to variables, and so on 

 Can’t take that for granted with function 
values: many languages support nothing 
beyond function call 

 We will see more operations in ML 
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Outline 
 Type Menagerie 

–  Primitive types 
–  Constructed types 

 Uses For Types 
–  Type annotations and type inference 
–  Type checking 
–  Type equivalence issues 
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Type Annotations 
 Many languages require, or at least allow, 

type annotations on variables, functions, … 
 The programmer uses them to supply static 

type information to the language system 
 They are also a form of documentation, and 

make programs easier for people to read 
  Part of the language is syntax for describing 

types (think of *, -> and list in ML) 
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Intrinsic Types 

  Some languages use naming conventions to 
declare the types of variables 
–  Dialects of BASIC: S$ is a string 
–  Dialects of Fortran: I is an integer 

 Like explicit annotations, these supply static 
type information to the language system and 
the human reader 
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Extreme Type Inference 

 ML takes type inference to extremes 
  Infers a static type for every expression and 

for every function 
 Usually requires no annotations 
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Simple Type Inference 

 Most languages require some simple kinds 
of type inference 

 Constants usually have static types 
–  Java: 10 has type int, 10L has type long 

 Expressions may have static types, inferred 
from operators and types of operands 
–  Java: if a is double, a*0 is double (0.0) 
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Outline 
 Type Menagerie 

–  Primitive types 
–  Constructed types 

 Uses For Types 
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–  Type checking 
–  Type equivalence issues 
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Static Type Checking 

  Static type checking determines a type for 
everything before running the program: 
variables, functions, expressions, everything 

 Compile-time error messages when static 
types are not consistent 
–  Operators: 1+"abc" 
–  Functions: round("abc") 
–  Statements: if "abc" then … 

 Most modern languages are statically typed 
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Dynamic Typing 

  In some languages, programs are not 
statically type-checked before being run 

 They are usually still dynamically type-
checked 

 At runtime, the language system checks that 
operands are of suitable types for operators 

Chapter Six Modern Programming Languages, 2nd ed. 50 



Example: Lisp 

 This Lisp function adds two numbers: 

  It won’t work if a or b is not a number 
 An improper call, like (f nil nil), is 

not caught at compile time 
  It is caught at runtime – that is dynamic 

typing 
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(defun f (a b) (+ a b)) 



It Still Uses Types 

 Although dynamic typing does not type 
everything at compile time, it still uses 
types 

  In a way, it uses them even more than static 
typing 

  It needs to have types to check at runtime 
  So the language system must store type 

information with values in memory 
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Static And Dynamic Typing 
 Not quite a black-and-white picture 
  Statically typed languages often use some 

dynamic typing 
–  Subtypes can cause this 
–  Everything is typed at compile time, but 

compile-time type may have subtypes 
–  At runtime, it may be necessary to check a 

value’s membership in a subtype 
–  This problem arises in object-oriented 

languages especially – more in Chapter 13 
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Static And Dynamic Typing 

 Dynamically typed languages often use 
some static typing 
–  Static types can be inferred for parts of Lisp 

programs, using constant types and declarations 
–  Lisp compilers can use static type information 

to generate better code, eliminating runtime 
type checks 
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Explicit Runtime Type Tests 

  Some languages allow explicit runtime type 
tests: 
–  Java: test object type with instanceof 

operator 
–  Modula-3: branch on object type with 
typecase statement 

 These require type information to be present 
at runtime, even when the language is 
mostly statically typed 
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Strong Typing, Weak Typing 

  The purpose of type-checking is to prevent the 
application of operations to incorrect types of 
operands 

  In some languages, like ML and Java, the type-
checking is thorough enough to guarantee this—
that’s strong typing 

  Many languages (like C) fall short of this: there 
are holes in the type system that add flexibility but 
weaken the guarantee 
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Outline 
 Type Menagerie 

–  Primitive types 
–  Constructed types 

 Uses For Types 
–  Type declarations and inference 
–  Static and dynamic typing 
–  Type equivalence issues 
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Type Equivalence 

 When are two types the same? 
 An important question for static and 

dynamic type checking 
  For instance, a language might permit a:=b 

if b has “the same” type as a 
 Different languages decide type equivalence 

in different ways 
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Type Equivalence 
 Name equivalence: types are the same if and 

only if they have the same name 
  Structural equivalence: types are the same if 

and only if they are built from the same 
primitive types using the same type 
constructors in the same order 

 Not the only two ways to decide 
equivalence, just the two easiest to explain 

 Languages often use odd variations or 
combinations 
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Type Equivalence Example 

 What happens if you try to pass f a 
parameter of type irpair2? 
–  Name equivalence does not permit this: 
irpair2 and irpair1 are different names 

–  Structural equivalence does permit this, since 
the types are constructed identically 

 ML does permit it 
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type irpair1 = int * real; 
type irpair2 = int * real; 
fun f(x:irpair1) = #1 x; 



Type Equivalence Example 

 What happens if you try to assign 
Counts1 to Counts2? 
–  Name equivalence does not permit this: the 

types of Counts1 and Counts2 are unnamed 
–  Structural equivalence does permit this, since 

the types are constructed identically 
 Most Pascal systems do not permit it 
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var 
  Counts1: array['a'..'z'] of Integer; 
  Counts2: array['a'..'z'] of Integer; 



Conclusion 

  A key question for type systems: how much of the 
representation is exposed? 

  Some programmers prefer languages like C that 
expose many implementation details 
–  They offer the power to cut through type abstractions, 

when it is useful or efficient or fun to do so 
  Others prefer languages like ML that hide all 

implementation details (abstract types) 
–  Clean, mathematical interfaces make it easier to write 

correct programs, and to prove them correct 
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