
Types

Chapter Six Modern Programming Languages, 2nd ed. 1

A Type Is A Set

 When you declare that a variable has a
certain type, you are saying that the values
the variable can have are elements of a
certain set

 A type is a set of values
–  plus a low-level representation
–  plus a collection of operations that can be

applied to those values
Chapter Six Modern Programming Languages, 2nd ed. 2

int n;

Today: A Tour Of Types

 There are too many to cover them all
  Instead, a short tour of the type menagerie
 Most ways you can construct a set in

mathematics are also ways to construct a
type in some programming language

 We will organize the tour around that
connection

Chapter Six Modern Programming Languages, 2nd ed. 3

Outline
 Type Menagerie

–  Primitive types
–  Constructed types

 Uses For Types
–  Type annotations and type inference
–  Type checking
–  Type equivalence issues

Chapter Six Modern Programming Languages, 2nd ed. 4

Primitive vs. Constructed Types

  Any type that a program can use but cannot define
for itself is a primitive type in the language

  Any type that a program can define for itself (using
the primitive types) is a constructed type

  Some primitive types in ML: int, real, char
–  An ML program cannot define a type named int that

works like the predefined int
  A constructed type: int list

–  Defined using the primitive type int and the list type
constructor

Chapter Six Modern Programming Languages, 2nd ed. 5

Primitive Types

 The definition of a language says what the
primitive types are

  Some languages define the primitive types
more strictly than others:
–  Some define the primitive types exactly (Java)
–  Others leave some wiggle room—the primitive

types may be different sets in different
implementations of the language (C, ML)

Chapter Six Modern Programming Languages, 2nd ed. 6

Comparing Integral Types

Chapter Six Modern Programming Languages, 2nd ed. 7

C:
char
unsigned char
short int
unsigned short int
int
unsigned int
long int
unsigned long int
No standard implementation,
but longer sizes must
provide at least as much
range as shorter sizes.

Java:
byte (1-byte signed)
char (2-byte unsigned)
short (2-byte signed)
int (4-byte signed)
long (8-byte signed)

Scheme:
integer
Integers of unbounded range

Issues
  What sets do the primitive types signify?

–  How much is part of the language specification, how
much left up to the implementation?

–  If necessary, how can a program find out? (INT_MAX
in C, Int.maxInt in ML, etc.)

  What operations are supported?
–  Detailed definitions: rounding, exceptions, etc.

  The choice of representation is a critical part of
these decisions

Chapter Six Modern Programming Languages, 2nd ed. 8

Outline
 Type Menagerie

–  Primitive types
–  Constructed types

 Uses For Types
–  Type annotations and type inference
–  Type checking
–  Type equivalence issues

Chapter Six Modern Programming Languages, 2nd ed. 9

Constructed Types
 Additional types defined using the language
 Today: enumerations, tuples, arrays, strings,

lists, unions, subtypes, and function types
  For each one, there is connection between

how sets are defined mathematically, and
how types are defined in programming
languages

Chapter Six Modern Programming Languages, 2nd ed. 10

Making Sets by Enumeration

 Mathematically, we can construct sets by
just listing all the elements:

Chapter Six Modern Programming Languages, 2nd ed. 11

Making Types by Enumeration

 Many languages support enumerated types:

 These define a new type (= set)
 They also define a collection of named

constants of that type (= elements)

Chapter Six Modern Programming Languages, 2nd ed. 12

C: enum coin {penny, nickel, dime, quarter};
Ada: type GENDER is (MALE, FEMALE);
Pascal: type primaryColors = (red, green, blue);

ML: datatype day = M | Tu | W | Th | F | Sa | Su;

Representing Enumeration
Values
 A common representation is to treat the

values of an enumeration as small integers
 This may even be exposed to the

programmer, as it is in C:

Chapter Six Modern Programming Languages, 2nd ed. 13

enum coin { penny = 1, nickel = 5, dime = 10, quarter = 25 };

enum escapes { BELL = '\a', BACKSPACE = '\b', TAB = '\t',
 NEWLINE = '\n', VTAB = '\v', RETURN = '\r' };

Operations on Enumeration
Values
 Equality test:

  If the integer nature of the representation is
exposed, a language will allow some or all
integer operations:

Chapter Six Modern Programming Languages, 2nd ed. 14

fun isWeekend x = (x = Sa orelse x = Su);

Pascal: for C := red to blue do
P(C)

C: int x = penny + nickel + dime;

Making Sets by Tupling

 The Cartesian product of two or more sets
defines sets of tuples:

Chapter Six Modern Programming Languages, 2nd ed. 15

Making Types by Tupling

  Some languages support pure tuples:

 Many others support record types, which
are just tuples with named fields:

Chapter Six Modern Programming Languages, 2nd ed. 16

fun get1 (x : real * real) = #1 x;

C:
struct complex {
 double rp;
 double ip;
};

ML:
type complex = {
 rp:real,
 ip:real
};
fun getip (x : complex) = #ip x;

Representing Tuple Values

 A common representation is to just place
the elements side-by-side in memory

 But there are lots of details:
–  in what order?
–  with “holes” to align elements (e.g. on word

boundaries) in memory?
–  is any or all of this visible to the programmer?

Chapter Six Modern Programming Languages, 2nd ed. 17

Example: ANSI C

Chapter Six Modern Programming Languages, 2nd ed. 18

The members of a structure have addresses increasing in the
order of their declarations. A non-field member of a structure is
aligned at an addressing boundary depending on its type;
therefore, there may be unnamed holes in a structure. If a
pointer to a structure is cast to the type of a pointer to its first
member, the result refers to the first member…

Adjacent field members of structures are packed into
implementation-dependent storage units in an implementation-
dependent direction...

The C Programming Language, 2nd ed.
Brian W. Kernighan and Dennis M. Ritchie

Operations on Tuple Values

  Selection, of course:

 Other operations depending on how much
of the representation is exposed:

Chapter Six Modern Programming Languages, 2nd ed. 19

C: x.ip
ML: #ip x

C: double y = *((double *) &x);
 struct person {
 char *firstname;
 char *lastname;
 } p1 = {"marcia","brady"};

Sets Of Vectors

  Fixed-size vectors:

 Arbitrary-size vectors:

Chapter Six Modern Programming Languages, 2nd ed. 20

Types Related To Vectors
 Arrays, strings and lists
 Like tuples, but with many variations
 One example: indexes

–  What are the index values?
–  Is the array size fixed at compile time?

Chapter Six Modern Programming Languages, 2nd ed. 21

Index Values

  Java, C, C++:
–  First element of an array a is a[0]
–  Indexes are always integers starting from 0

  Pascal is more flexible:
–  Various index types are possible: integers,

characters, enumerations, subranges
–  Starting index chosen by the programmer
–  Ending index too: size is fixed at compile time

Chapter Six Modern Programming Languages, 2nd ed. 22

Pascal Array Example

Chapter Six Modern Programming Languages, 2nd ed. 23

type
 LetterCount = array['a'..'z'] of Integer;
var
 Counts: LetterCount;

begin
 Counts['a'] = 1
 etc.

Types Related To Vectors

 Many variations on vector-related types:

Chapter Six Modern Programming Languages, 2nd ed. 24

What are the index values?
Is array size fixed at compile time (part of static type)?
What operations are supported?
Is redimensioning possible at runtime?
Are multiple dimensions allowed?
Is a higher-dimensional array the same as an array of arrays?
What is the order of elements in memory?
Is there a separate type for strings (not just array of characters)?
Is there a separate type for lists?

Making Sets by Union

 We can make a new set by taking the union
of existing sets:

Chapter Six Modern Programming Languages, 2nd ed. 25

Making Types by Union

 Many languages support union types:

Chapter Six Modern Programming Languages, 2nd ed. 26

C:

union element {
 int i;
 float f;
};

ML:

datatype element =
 I of int |
 F of real;

Representing Union Values

 You can have the two representations
overlap each other in memory

 This representation may or may not be
exposed to the programmer

Chapter Six Modern Programming Languages, 2nd ed. 27

union element {
 int i;
 char *p;
} u; /* sizeof(u) ==
 max(sizeof(u.i),sizeof(u.p)) */

Strictly Typed Unions
  In ML, all you can do with a union is

extract the contents
 And you have to say what to do with each

type of value in the union:

Chapter Six Modern Programming Languages, 2nd ed. 28

datatype element =
 I of int |
 F of real;

fun getReal (F x) = x
 | getReal (I x) = real x;

Loosely Typed Unions
  Some languages expose the details of union

implementation
  Programs can take advantage of the fact that

the specific type of a value is lost:

Chapter Six Modern Programming Languages, 2nd ed. 29

union element {
 int i;
 float f;
};

union element e;
e.i = 100;
float x = e.f;

What ANSI C Says About This

Chapter Six Modern Programming Languages, 2nd ed. 30

A union may be thought of as a structure all of whose
members begin at offset 0 and whose size is sufficient to
contain any of its members. At most one of the members can
be stored in a union at any time. If a pointer to a union is cast
to the type of a pointer to a member, the result refers to that
member.

In general, a member of a union may not be inspected unless
the value of the union as been assigned using that same
member.

The C Programming Language, 2nd ed.
Brian W. Kernighan and Dennis M. Ritchie

A Middle Way: Variant Records
 Union where specific type is linked to the

value of a field (“discriminated union”)
 A variety of languages including Ada and

Modula-2

Chapter Six Modern Programming Languages, 2nd ed. 31

Ada Variant Record Example

Chapter Six Modern Programming Languages, 2nd ed. 32

type DEVICE is (PRINTER, DISK);

type PERIPHERAL(Unit: DEVICE) is
 record
 HoursWorking: INTEGER;
 case Unit is
 when PRINTER =>
 Line_count: INTEGER;
 when DISK =>
 Cylinder: INTEGER;
 Track: INTEGER;
 end case;
 end record;

Making Subsets

 We can define the subset selected by any
predicate P:

Chapter Six Modern Programming Languages, 2nd ed. 33

Making Subtypes

  Some languages support subtypes, with more
or less generality
–  Less general: Pascal subranges

type digit = 0..9;

–  More general: Ada subtypes
 subtype DIGIT is INTEGER range 0..9;

 subtype WEEKDAY is DAY range
MON..FRI;

–  Most general: Lisp types with predicates

Chapter Six Modern Programming Languages, 2nd ed. 34

Example: Ada Subtypes

Chapter Six Modern Programming Languages, 2nd ed. 35

type DEVICE is (PRINTER, DISK);

type PERIPHERAL(Unit: DEVICE) is
 record
 HoursWorking: INTEGER;
 case Unit is
 when PRINTER =>
 Line_count: INTEGER;
 when DISK =>
 Cylinder: INTEGER;
 Track: INTEGER;
 end case;
 end record;

subtype DISK_UNIT is PERIPHERAL(DISK);

Example: Lisp Types with
Predicates

Chapter Six Modern Programming Languages, 2nd ed. 36

(declare (type integer x))

(declare (type (or null cons) x))

(declare (type (and number (not integer)) x))

(declare (type (and integer (satisfies evenp)) x))

Representing Subtype Values

 Usually, we just use the same representation
for the subtype as for the supertype

 Questions:
–  Do you try to shorten it if you can? Does
X: 1..9 take the same space as
X: Integer?

–  Do you enforce the subtyping? Is X := 10
legal? What about X := X + 1?

Chapter Six Modern Programming Languages, 2nd ed. 37

Operations on Subtype Values

 Usually, supports all the same operations
that are supported on the supertype

 And perhaps additional operations that
would not make sense on the supertype:

 function toDigit(X: Digit): Char;
  Important meditation:

Chapter Six Modern Programming Languages, 2nd ed. 38

A subtype is a subset of values, but it
can support a superset of operations.

A Word About Classes

 This is a key idea of object-oriented
programming

  In class-based object-oriented languages, a
class can be a type: data and operations on
that data, bundled together

 A subclass is a subtype: it includes a subset
of the objects, but supports a superset of the
operations

 More about this in Chapter 13
Chapter Six Modern Programming Languages, 2nd ed. 39

Making Sets of Functions

 We can define the set of functions with a
given domain and range:

Chapter Six Modern Programming Languages, 2nd ed. 40

Making Types of Functions

 Most languages have some notion of the
type of a function:

Chapter Six Modern Programming Languages, 2nd ed. 41

int f(char a, char b) {
 return a==b;
}

fun f(a:char, b:char) = (a = b); ML:

C:

Operations on Function Values

 Of course, we need to call functions
 We have taken it for granted that other types

of values could be passed as parameters,
bound to variables, and so on

 Can’t take that for granted with function
values: many languages support nothing
beyond function call

 We will see more operations in ML

Chapter Six Modern Programming Languages, 2nd ed. 42

Outline
 Type Menagerie

–  Primitive types
–  Constructed types

 Uses For Types
–  Type annotations and type inference
–  Type checking
–  Type equivalence issues

Chapter Six Modern Programming Languages, 2nd ed. 43

Type Annotations
 Many languages require, or at least allow,

type annotations on variables, functions, …
 The programmer uses them to supply static

type information to the language system
 They are also a form of documentation, and

make programs easier for people to read
  Part of the language is syntax for describing

types (think of *, -> and list in ML)

Chapter Six Modern Programming Languages, 2nd ed. 44

Intrinsic Types

  Some languages use naming conventions to
declare the types of variables
–  Dialects of BASIC: S$ is a string
–  Dialects of Fortran: I is an integer

 Like explicit annotations, these supply static
type information to the language system and
the human reader

Chapter Six Modern Programming Languages, 2nd ed. 45

Extreme Type Inference

 ML takes type inference to extremes
  Infers a static type for every expression and

for every function
 Usually requires no annotations

Chapter Six Modern Programming Languages, 2nd ed. 46

Simple Type Inference

 Most languages require some simple kinds
of type inference

 Constants usually have static types
–  Java: 10 has type int, 10L has type long

 Expressions may have static types, inferred
from operators and types of operands
–  Java: if a is double, a*0 is double (0.0)

Chapter Six Modern Programming Languages, 2nd ed. 47

Outline
 Type Menagerie

–  Primitive types
–  Constructed types

 Uses For Types
–  Type annotations and type inference
–  Type checking
–  Type equivalence issues

Chapter Six Modern Programming Languages, 2nd ed. 48

Static Type Checking

  Static type checking determines a type for
everything before running the program:
variables, functions, expressions, everything

 Compile-time error messages when static
types are not consistent
–  Operators: 1+"abc"
–  Functions: round("abc")
–  Statements: if "abc" then …

 Most modern languages are statically typed
Chapter Six Modern Programming Languages, 2nd ed. 49

Dynamic Typing

  In some languages, programs are not
statically type-checked before being run

 They are usually still dynamically type-
checked

 At runtime, the language system checks that
operands are of suitable types for operators

Chapter Six Modern Programming Languages, 2nd ed. 50

Example: Lisp

 This Lisp function adds two numbers:

  It won’t work if a or b is not a number
 An improper call, like (f nil nil), is

not caught at compile time
  It is caught at runtime – that is dynamic

typing

Chapter Six Modern Programming Languages, 2nd ed. 51

(defun f (a b) (+ a b))

It Still Uses Types

 Although dynamic typing does not type
everything at compile time, it still uses
types

  In a way, it uses them even more than static
typing

  It needs to have types to check at runtime
  So the language system must store type

information with values in memory

Chapter Six Modern Programming Languages, 2nd ed. 52

Static And Dynamic Typing
 Not quite a black-and-white picture
  Statically typed languages often use some

dynamic typing
–  Subtypes can cause this
–  Everything is typed at compile time, but

compile-time type may have subtypes
–  At runtime, it may be necessary to check a

value’s membership in a subtype
–  This problem arises in object-oriented

languages especially – more in Chapter 13

Chapter Six Modern Programming Languages, 2nd ed. 53

Static And Dynamic Typing

 Dynamically typed languages often use
some static typing
–  Static types can be inferred for parts of Lisp

programs, using constant types and declarations
–  Lisp compilers can use static type information

to generate better code, eliminating runtime
type checks

Chapter Six Modern Programming Languages, 2nd ed. 54

Explicit Runtime Type Tests

  Some languages allow explicit runtime type
tests:
–  Java: test object type with instanceof

operator
–  Modula-3: branch on object type with
typecase statement

 These require type information to be present
at runtime, even when the language is
mostly statically typed

Chapter Six Modern Programming Languages, 2nd ed. 55

Strong Typing, Weak Typing

  The purpose of type-checking is to prevent the
application of operations to incorrect types of
operands

  In some languages, like ML and Java, the type-
checking is thorough enough to guarantee this—
that’s strong typing

  Many languages (like C) fall short of this: there
are holes in the type system that add flexibility but
weaken the guarantee

Chapter Six Modern Programming Languages, 2nd ed. 56

Outline
 Type Menagerie

–  Primitive types
–  Constructed types

 Uses For Types
–  Type declarations and inference
–  Static and dynamic typing
–  Type equivalence issues

Chapter Six Modern Programming Languages, 2nd ed. 57

Type Equivalence

 When are two types the same?
 An important question for static and

dynamic type checking
  For instance, a language might permit a:=b

if b has “the same” type as a
 Different languages decide type equivalence

in different ways

Chapter Six Modern Programming Languages, 2nd ed. 58

Type Equivalence
 Name equivalence: types are the same if and

only if they have the same name
  Structural equivalence: types are the same if

and only if they are built from the same
primitive types using the same type
constructors in the same order

 Not the only two ways to decide
equivalence, just the two easiest to explain

 Languages often use odd variations or
combinations

Chapter Six Modern Programming Languages, 2nd ed. 59

Type Equivalence Example

 What happens if you try to pass f a
parameter of type irpair2?
–  Name equivalence does not permit this:
irpair2 and irpair1 are different names

–  Structural equivalence does permit this, since
the types are constructed identically

 ML does permit it

Chapter Six Modern Programming Languages, 2nd ed. 60

type irpair1 = int * real;
type irpair2 = int * real;
fun f(x:irpair1) = #1 x;

Type Equivalence Example

 What happens if you try to assign
Counts1 to Counts2?
–  Name equivalence does not permit this: the

types of Counts1 and Counts2 are unnamed
–  Structural equivalence does permit this, since

the types are constructed identically
 Most Pascal systems do not permit it

Chapter Six Modern Programming Languages, 2nd ed. 61

var
 Counts1: array['a'..'z'] of Integer;
 Counts2: array['a'..'z'] of Integer;

Conclusion

  A key question for type systems: how much of the
representation is exposed?

  Some programmers prefer languages like C that
expose many implementation details
–  They offer the power to cut through type abstractions,

when it is useful or efficient or fun to do so
  Others prefer languages like ML that hide all

implementation details (abstract types)
–  Clean, mathematical interfaces make it easier to write

correct programs, and to prove them correct

Chapter Six Modern Programming Languages, 2nd ed. 62

