
A First Look at ML

Chapter Five Modern Programming Languages, 2nd ed. 1

ML

 Meta Language
 One of the more popular functional

languages (which, admittedly, isn’t saying
much)

 Edinburgh, 1974, Robin Milner’s group
 There are a number of dialects
 We are using Standard ML, but we will just

call it ML from now on

Chapter Five Modern Programming Languages, 2nd ed. 2

Chapter Five Modern Programming Languages, 2nd ed. 3

Standard ML of New Jersey
- 1+2*3;
val it = 7 : int
- 1+2*3
= ;
val it = 7 : int

Type an expression after - prompt; ML replies with value and type

After the expression put a ;. (The ; is not part of the expression.)

If you forget, the next prompt will be =, meaning that ML expects
more input. (You can then type the ; it needs.)

Variable it is a special variable that is bound to the value of the
expression you type

Outline

 Constants
 Operators
 Defining Variables
 Tuples and Lists
 Defining Functions
 ML Types and Type Annotations

Chapter Five Modern Programming Languages, 2nd ed. 4

Chapter Five Modern Programming Languages, 2nd ed. 5

- 1234;
val it = 1234 : int
- 123.4;
val it = 123.4 : real

Integer constants: standard decimal , but use tilde for unary
negation (like ~1)

Real constants: standard decimal notation

Note the type names: int, real

Chapter Five Modern Programming Languages, 2nd ed. 6

- true;
val it = true : bool
- false;
val it = false : bool

Boolean constants true and false

ML is case-sensitive: use true, not True or TRUE

Note type name: bool

Chapter Five Modern Programming Languages, 2nd ed. 7

- "fred";
val it = "fred" : string
- "H";
val it = "H" : string
- #"H";
val it = #"H" : char

String constants: text inside double quotes

Can use C-style escapes: \n, \t, \\, \", etc.

Character constants: put # before a 1-character string

Note type names: string and char

Outline

 Constants
 Operators
 Defining Variables
 Tuples and Lists
 Defining Functions
 ML Types and Type Annotations

Chapter Five Modern Programming Languages, 2nd ed. 8

Chapter Five Modern Programming Languages, 2nd ed. 9

- ~ 1 + 2 - 3 * 4 div 5 mod 6;
val it = ~1 : int
- ~ 1.0 + 2.0 - 3.0 * 4.0 / 5.0;
val it = ~1.4 : real

Standard operators for integers, using ~ for unary negation
and - for binary subtraction

Same operators for reals, but use / for division

Left associative, precedence is {+,-} < {*,/,div,mod} < {~}.

Chapter Five Modern Programming Languages, 2nd ed. 10

- "bibity" ^ "bobity" ^ "boo";
val it = "bibitybobityboo" : string
- 2 < 3;
val it = true : bool
- 1.0 <= 1.0;
val it = true : bool
- #"d" > #"c";
val it = true : bool
- "abce" >= "abd";
val it = false : bool

String concatenation: ^ operator

Ordering comparisons: <, >, <=, >=, apply to string, char,
int and real

Order on strings and characters is lexicographic

Chapter Five Modern Programming Languages, 2nd ed. 11

- 1 = 2;
val it = false : bool
- true <> false;
val it = true : bool
- 1.3 = 1.3;
Error: operator and operand don't agree
 [equality type required]
 operator domain: ''Z * ''Z
 operand: real * real
 in expression:
 1.3 = 1.3

Equality comparisons: = and <>

Most types are equality testable: these are equality types

Type real is not an equality type

Chapter Five Modern Programming Languages, 2nd ed. 12

- 1 < 2 orelse 3 > 4;
val it = true : bool
- 1 < 2 andalso not (3 < 4);
val it = false : bool

Boolean operators: andalso, orelse, not. (And we can
also use = for equivalence and <> for exclusive or.)

Precedence so far: {orelse} < {andalso} <
{=,<>,<,>,<=,>=} < {+,-,^} < {*,/,div,mod} < {~,not}

Chapter Five Modern Programming Languages, 2nd ed. 13

- true orelse 1 div 0 = 0;
val it = true : bool

Note: andalso and orelse are short-circuiting operators: if
the first operand of orelse is true, the second is not evaluated;
likewise if the first operand of andalso is false

Technically, they are not ML operators, but keywords

All true ML operators evaluate all operands

Chapter Five Modern Programming Languages, 2nd ed. 14

- if 1 < 2 then #"x" else #"y";
val it = #"x" : char
- if 1 > 2 then 34 else 56;
val it = 56 : int
- (if 1 < 2 then 34 else 56) + 1;
val it = 35 : int

Conditional expression (not statement) using if … then …
else …

Similar to C's ternary operator: (1<2) ? 'x' : 'y'

Value of the expression is the value of the then part, if the test
part is true, or the value of the else part otherwise

There is no if … then construct

Practice

Chapter Five Modern Programming Languages, 2nd ed. 15

What is the value and ML type for each of these expressions?

1 * 2 + 3 * 4
"abc" ^ "def"
if (1 < 2) then 3.0 else 4.0
1 < 2 orelse (1 div 0) = 0

What is wrong with each of these expressions?

10 / 5
#"a" = #"b" or 1 = 2
1.0 = 1.0
if (1<2) then 3

Chapter Five Modern Programming Languages, 2nd ed. 16

- 1 * 2;
val it = 2 : int
- 1.0 * 2.0;
val it = 2.0 : real
- 1.0 * 2;
Error: operator and operand don't agree
[literal]
 operator domain: real * real
 operand: real * int
 in expression:
 1.0 * 2

The * operator, and others like + and <, are overloaded to have
one meaning on pairs of integers, and another on pairs of reals

ML does not perform implicit type conversion

Chapter Five Modern Programming Languages, 2nd ed. 17

- real(123);
val it = 123.0 : real
- floor(3.6);
val it = 3 : int
- floor 3.6;
val it = 3 : int
- str #"a";
val it = "a" : string

Builtin conversion functions: real (int to real), floor
(real to int), ceil (real to int), round (real to int),
trunc (real to int), ord (char to int), chr (int to
char), str (char to string)

You apply a function to an argument in ML just by putting the
function next to the argument. Parentheses around the argument
are rarely necessary, and the usual ML style is to omit them

Function Associativity
  Function application is left-associative
  So f a b means (f a) b, which means:

–  first apply f to the single argument a;
–  then take the value f returns, which should be

another function;
–  then apply that function to b

 More on how this can be useful later
  For now, just watch out for it

Chapter Five Modern Programming Languages, 2nd ed. 18

Chapter Five Modern Programming Languages, 2nd ed. 19

- square 2+1;
val it = 5 : int
- square (2+1);
val it = 9 : int

Function application has higher precedence than any operator

Be careful!

Practice

Chapter Five Modern Programming Languages, 2nd ed. 20

What if anything is wrong with each of these expressions?

trunc 5
ord "a"
if 0 then 1 else 2
if true then 1 else 2.0
chr(trunc(97.0))
chr(trunc 97.0)
chr trunc 97.0

Outline

 Constants
 Operators
 Defining Variables
 Tuples and Lists
 Defining Functions
 ML Types and Type Annotations

Chapter Five Modern Programming Languages, 2nd ed. 21

Chapter Five Modern Programming Languages, 2nd ed. 22

- val x = 1+2*3;
val x = 7 : int
- x;
val it = 7 : int
- val y = if x = 7 then 1.0 else 2.0;
val y = 1.0 : real

Define a new variable and bind it to a value using val.

Variable names should consist of a letter, followed by zero or
more letters, digits, and/or underscores.

Chapter Five Modern Programming Languages, 2nd ed. 23

- val fred = 23;
val fred = 23 : int
- fred;
val it = 23 : int
- val fred = true;
val fred = true : bool
- fred;
val it = true : bool

You can define a new variable with the same name as an old
one, even using a different type. (This is not particularly
useful.)

This is not the same as assignment. It defines a new variable
but does not change the old one. Any part of the program that
was using the first definition of fred, still is after the second
definition is made.

Practice

Chapter Five Modern Programming Languages, 2nd ed. 24

Suppose we make these ML declarations:

val a = "123";
val b = "456";
val c = a ^ b ^ "789";
val a = 3 + 4;

Then what is the value and type of each of these expressions?

a
b
c

The Inside Story
  In interactive mode, ML wants the input to

be a sequence of declarations
  If you type just an expression exp instead of

a declaration, ML treats it as if you had
typed:

 val it = exp;

Chapter Five Modern Programming Languages, 2nd ed. 25

Garbage Collection
  Sometimes the ML interpreter will print a

line like this, for no apparent reason:
 GC #0.0.0.0.1.3: (0 ms)

 This is what ML says when it is performing
a “garbage collection”: reclaiming pieces of
memory that are no longer being used

 Depending on your installation, you may or
may not see these messages

 We’ll see much more about garbage
collection when we look at Java

  For now, you can ignore these messages
Chapter Five Modern Programming Languages, 2nd ed. 26

Outline

 Constants
 Operators
 Defining Variables
 Tuples and Lists
 Defining Functions
 ML Types and Type Annotations

Chapter Five Modern Programming Languages, 2nd ed. 27

Chapter Five Modern Programming Languages, 2nd ed. 28

- val barney = (1+2, 3.0*4.0, "brown");
val barney = (3,12.0,"brown") : int * real * string
- val point1 = ("red", (300,200));
val point1 = ("red",(300,200)) : string * (int *
int)
- #2 barney;
val it = 12.0 : real
- #1 (#2 point1);
val it = 300 : int

Use parentheses to form tuples

Tuples can contain other tuples

A tuple is like a record with no field names

To get i'th element of a tuple x, use #i x

Chapter Five Modern Programming Languages, 2nd ed. 29

- (1, 2);
val it = (1,2) : int * int
- (1);
val it = 1 : int
- #1 (1, 2);
val it = 1 : int
- #1 (1);
Error: operator and operand don't agree [literal]
 operator domain: {1:'Y; 'Z}
 operand: int
 in expression:
 (fn {1=1,...} => 1) 1

There is no such thing as a tuple of one

Tuple Type Constructor

 ML gives the type of a tuple using * as a
type constructor

  For example, int * bool is the type of pairs
(x,y) where x is an int and y is a bool

 Note that parentheses have structural
significance here: int * (int * bool) is
not the same as (int * int) * bool, and
neither is the same as int * int * bool

Chapter Five Modern Programming Languages, 2nd ed. 30

Chapter Five Modern Programming Languages, 2nd ed. 31

- [1,2,3];
val it = [1,2,3] : int list
- [1.0,2.0];
val it = [1.0,2.0] : real list
- [true];
val it = [true] : bool list
- [(1,2),(1,3)];
val it = [(1,2),(1,3)] : (int * int) list
- [[1,2,3],[1,2]];
val it = [[1,2,3],[1,2]] : int list list

Use square brackets to make lists

Unlike tuples, all elements of a list must be the same type

Chapter Five Modern Programming Languages, 2nd ed. 32

- [];
val it = [] : 'a list
- nil;
val it = [] : 'a list

Empty list is [] or nil

Note the odd type of the empty list: 'a list

Any variable name beginning with an apostrophe is a type
variable; it stands for a type that is unknown

'a list means a list of elements, type unknown

The null test

 null tests whether a given list is empty
 You could also use an equality test, as in
x = []

 However, null x is preferred; we will see
why in a moment

Chapter Five Modern Programming Languages, 2nd ed. 33

- null [];
val it = true : bool
- null [1,2,3];
val it = false : bool

List Type Constructor

 ML gives the type of lists using list as a
type constructor

  For example, int list is the type of lists of
things, each of which is of type int

 A list is not a tuple

Chapter Five Modern Programming Languages, 2nd ed. 34

Chapter Five Modern Programming Languages, 2nd ed. 35

- [1,2,3]@[4,5,6];
val it = [1,2,3,4,5,6] : int list

The @ operator concatenates lists

Operands are two lists of the same type

Note: 1@[2,3,4] is wrong: either use [1]@[2,3,4] or
1::[2,3,4]

Chapter Five Modern Programming Languages, 2nd ed. 36

- val x = #"c"::[];
val x = [#"c"] : char list
- val y = #"b"::x;
val y = [#"b",#"c"] : char list
- val z = #"a"::y;
val z = [#"a",#"b",#"c"] : char list

List-builder (cons) operator is ::

It takes an element of any type, and a list of elements of that
same type, and produces a new list by putting the new element
on the front of the old list

Chapter Five Modern Programming Languages, 2nd ed. 37

- val z = 1::2::3::[];
val z = [1,2,3] : int list
- hd z;
val it = 1 : int
- tl z;
val it = [2,3] : int list
- tl(tl z);
val it = [3] : int list
- tl(tl(tl z));
val it = [] : int list

The :: operator is right-associative

The hd function gets the head of a list: the first element

The tl function gets the tail of a list: the whole list after the
first element

Chapter Five Modern Programming Languages, 2nd ed. 38

- explode "hello";
val it = [#"h",#"e",#"l",#"l",#"o"] : char list
- implode [#"h",#"i"];
val it = "hi" : string

The explode function converts a string to a list of characters,
and the implode function does the reverse

Practice

Chapter Five Modern Programming Languages, 2nd ed. 39

What are the values of these expressions?

#2(3,4,5)
hd(1::2::nil)
hd(tl(#2([1,2],[3,4])));

What is wrong with the following expressions?

1@2
hd(tl(tl [1,2]))
[1]::[2,3]

Outline

 Constants
 Operators
 Defining Variables
 Tuples and Lists
 Defining Functions
 ML Types and Type Annotations

Chapter Five Modern Programming Languages, 2nd ed. 40

Chapter Five Modern Programming Languages, 2nd ed. 41

- fun firstChar s = hd (explode s);
val firstChar = fn : string -> char
- firstChar "abc";
val it = #"a" : char

Define a new function and bind it to a variable using fun

Here fn means a function, the thing itself, considered separately
from any name we've given it. The value of firstChar is a
function whose type is string -> char

It is rarely necessary to declare any types, since ML infers them.
ML can tell that s must be a string, since we used explode
on it, and it can tell that the function result must be a char,
since it is the hd of a char list

Function Definition Syntax

  <function-name> can be any legal ML name
  The simplest <parameter> is just a single variable

name: the formal parameter of the function
  The <expression> is any ML expression; its value

is the value the function returns
  This is a subset of ML function definition syntax;

more in Chapter 7

Chapter Five Modern Programming Languages, 2nd ed. 42

<fun-def> ::=
 fun <function-name> <parameter> = <expression> ;

Function Type Constructor
 ML gives the type of functions using -> as a

type constructor
  For example, int -> real is the type of

a function that takes an int parameter (the
domain type) and produces a real result
(the range type)

Chapter Five Modern Programming Languages, 2nd ed. 43

Chapter Five Modern Programming Languages, 2nd ed. 44

- fun quot(a,b) = a div b;
val quot = fn : int * int -> int
- quot (6,2);
val it = 3 : int
- val pair = (6,2);
val pair = (6,2) : int * int
- quot pair;
val it = 3 : int

All ML functions take exactly one parameter

To pass more than one thing, you can pass a tuple

Chapter Five Modern Programming Languages, 2nd ed. 45

- fun fact n =
= if n = 0 then 1
= else n * fact(n-1);
val fact = fn : int -> int
- fact 5;
val it = 120 : int

Recursive factorial function

Chapter Five Modern Programming Languages, 2nd ed. 46

- fun listsum x =
= if null x then 0
= else hd x + listsum(tl x);
val listsum = fn : int list -> int
- listsum [1,2,3,4,5];
val it = 15 : int

Recursive function to add up the elements of an int list

A common pattern: base case for null x, recursive call
on tl x

Chapter Five Modern Programming Languages, 2nd ed. 47

- fun length x =
= if null x then 0
= else 1 + length (tl x);
val length = fn : 'a list -> int
- length [true,false,true];
val it = 3 : int
- length [4.0,3.0,2.0,1.0];
val it = 4 : int

Recursive function to compute the length of a list

(This is predefined in ML, so you don’t need this definition.)

Note type: this works on any type of list. It is polymorphic.

Chapter Five Modern Programming Languages, 2nd ed. 48

- fun badlength x =
= if x=[] then 0
= else 1 + badlength (tl x);
val badlength = fn : ''a list -> int
- badlength [true,false,true];
val it = 3 : int
- badlength [4.0,3.0,2.0,1.0];
Error: operator and operand don't agree
 [equality type required]

Same as previous example, but with x=[] instead of null x

Type variables that begin with two apostrophes, like ''a, are
restricted to equality types. ML insists on that restriction
because we compared x for equality with the empty list.

That’s why you should use null x instead of x=[]. It avoids
unnecessary type restrictions.

Chapter Five Modern Programming Languages, 2nd ed. 49

- fun reverse L =
= if null L then nil
= else reverse(tl L) @ [hd L];
val reverse = fn : 'a list -> 'a list
- reverse [1,2,3];
val it = [3,2,1] : int list

Recursive function to reverse a list

That pattern again

Outline

 Constants
 Operators
 Defining Variables
 Tuples and Lists
 Defining Functions
 ML Types and Type Annotations

Chapter Five Modern Programming Languages, 2nd ed. 50

ML Types So Far

  So far we have the primitive ML types int,
real, bool, char, and string

 Also we have three type constructors:
–  Tuple types using *
–  List types using list
–  Function types using ->

Chapter Five Modern Programming Languages, 2nd ed. 51

Combining Constructors

 When combining constructors, list has
higher precedence than *, and -> has lower
precedence
–  int * bool list same as
int * (bool list)

–  int * bool list -> real same as
(int * (bool list)) -> real

 Use parentheses as necessary for clarity

Chapter Five Modern Programming Languages, 2nd ed. 52

Chapter Five Modern Programming Languages, 2nd ed. 53

- fun prod(a,b) = a * b;
val prod = fn : int * int -> int

Why int, rather than real?

ML’s default type for * (and +, and –) is
int * int -> int

You can give an explicit type annotation to get real instead…

Chapter Five Modern Programming Languages, 2nd ed. 54

- fun prod(a:real,b:real):real = a*b;
val prod = fn : real * real -> real

Type annotation is a colon followed by a type

Can appear after any variable or expression

These are all equivalent:

fun prod(a,b):real = a * b;
fun prod(a:real,b) = a * b;
fun prod(a,b:real) = a * b;
fun prod(a,b) = (a:real) * b;
fun prod(a,b) = a * b:real;
fun prod(a,b) = (a*b):real;
fun prod((a,b):real * real) = a*b;

Summary
 Constants and primitive types: int, real,
bool, char, string

 Operators: ~, +, -, *, div, mod, /, ^, ::, @,
<, >, <=, >=, =, <>, not, andalso,
orelse

 Conditional expression
  Function application
  Predefined functions: real, floor, ceil,
round, trunc, ord, chr, str, hd, tl,
explode, implode, and null

Chapter Five Modern Programming Languages, 2nd ed. 55

Summary, Continued
 Defining new variable bindings using val
 Tuple construction using (x,y,…,z) and

selection using #n
 List construction using [x,y,…,z]
 Type constructors *, list, and ->
  Function declaration using fun, including

tuple arguments, polymorphic functions,
and recursion

 Type annotations

Chapter Five Modern Programming Languages, 2nd ed. 56

