
Where Syntax Meets Semantics

Chapter Three Modern Programming Languages, 2nd ed. 1

Three “Equivalent” Grammars

Chapter Three Modern Programming Languages, 2nd ed. 2

G1: <subexp> ::= a | b | c | <subexp> - <subexp>

G2: <subexp> ::= <var> - <subexp> | <var>
 <var> ::= a | b | c

G3: <subexp> ::= <subexp> - <var> | <var>
 <var> ::= a | b | c

These grammars all define the same language: the
language of strings that contain one or more as, bs
or cs separated by minus signs. But...

Chapter Three Modern Programming Languages, 2nd ed. 3

Why Parse Trees Matter

 We want the structure of the parse tree to
correspond to the semantics of the string it
generates

 This makes grammar design much harder:
we’re interested in the structure of each
parse tree, not just in the generated string

  Parse trees are where syntax meets
semantics

Chapter Three Modern Programming Languages, 2nd ed. 4

Outline

 Operators
  Precedence
 Associativity
 Other ambiguities: dangling else
 Cluttered grammars
  Parse trees and EBNF
 Abstract syntax trees

Chapter Three Modern Programming Languages, 2nd ed. 5

Operators

  Special syntax for frequently-used simple
operations like addition, subtraction,
multiplication and division

 The word operator refers both to the token
used to specify the operation (like + and *)
and to the operation itself

 Usually predefined, but not always
 Usually a single token, but not always

Chapter Three Modern Programming Languages, 2nd ed. 6

Operator Terminology

 Operands are the inputs to an operator, like
1 and 2 in the expression 1+2

 Unary operators take one operand: -1
 Binary operators take two: 1+2
  Ternary operators take three: a?b:c

Chapter Three Modern Programming Languages, 2nd ed. 7

More Operator Terminology

  In most programming languages, binary
operators use an infix notation: a + b

  Sometimes you see prefix notation: + a b
  Sometimes postfix notation: a b +
 Unary operators, similarly:

–  (Can’t be infix, of course)
–  Can be prefix, as in -1
–  Can be postfix, as in a++

Chapter Three Modern Programming Languages, 2nd ed. 8

Outline

 Operators
  Precedence
 Associativity
 Other ambiguities: dangling else
 Cluttered grammars
  Parse trees and EBNF
 Abstract syntax trees

Chapter Three Modern Programming Languages, 2nd ed. 9

Working Grammar

Chapter Three Modern Programming Languages, 2nd ed. 10

G4: <exp> ::= <exp> + <exp>  
 | <exp> * <exp>
 | (<exp>)
 | a | b | c

This generates a language of arithmetic expressions
using parentheses, the operators + and *, and the
variables a, b and c

Issue #1: Precedence

Chapter Three Modern Programming Languages, 2nd ed. 11

Our grammar generates this tree for a+b*c. In this tree,
the addition is performed before the multiplication,
which is not the usual convention for operator precedence.

Operator Precedence

  Applies when the order of evaluation is not
completely decided by parentheses

  Each operator has a precedence level, and those
with higher precedence are performed before those
with lower precedence, as if parenthesized

  Most languages put * at a higher precedence level
than +, so that

 a+b*c = a+(b*c)

Chapter Three Modern Programming Languages, 2nd ed. 12

Precedence Examples

 C (15 levels of precedence—too many?)

  Pascal (5 levels—not enough?)

  Smalltalk (1 level for all binary operators)

Chapter Three Modern Programming Languages, 2nd ed. 13

a = b < c ? * p + b * c : 1 << d ()

a <= 0 or 100 <= a

a + b * c

Error!

Precedence In The Grammar

Chapter Three Modern Programming Languages, 2nd ed. 14

To fix the precedence problem, we modify the grammar so
that it is forced to put * below + in the parse tree.

G5: <exp> ::= <exp> + <exp> | <mulexp> 
 <mulexp> ::= <mulexp> * <mulexp>
 | (<exp>)
 | a | b | c

G4: <exp> ::= <exp> + <exp>  
 | <exp> * <exp>
 | (<exp>)
 | a | b | c

Correct Precedence

Chapter Three Modern Programming Languages, 2nd ed. 15

Our new grammar generates this tree for a+b*c. It generates
the same language as before, but no longer generates parse
trees with incorrect precedence.

Outline

 Operators
  Precedence
 Associativity
 Other ambiguities: dangling else
 Cluttered grammars
  Parse trees and EBNF
 Abstract syntax trees

Chapter Three Modern Programming Languages, 2nd ed. 16

Issue #2: Associativity

Chapter Three Modern Programming Languages, 2nd ed. 17

Our grammar G5 generates both these trees for a+b+c.
The first one is not the usual convention for operator
associativity.

Operator Associativity

 Applies when the order of evaluation is not
decided by parentheses or by precedence

  Left-associative operators group left to
right: a+b+c+d = ((a+b)+c)+d

 Right-associative operators group right to
left: a+b+c+d = a+(b+(c+d))

 Most operators in most languages are left-
associative, but there are exceptions

Chapter Three Modern Programming Languages, 2nd ed. 18

Associativity Examples

 C

 ML

  Fortran

Chapter Three Modern Programming Languages, 2nd ed. 19

a<<b<<c — most operators are left-associative
a=b=0 — right-associative (assignment)

3-2-1 — most operators are left-associative
1::2::nil — right-associative (list builder)

a/b*c — most operators are left-associative
a**b**c — right-associative (exponentiation)

Associativity In The Grammar

Chapter Three Modern Programming Languages, 2nd ed. 20

To fix the associativity problem, we modify the grammar to
make trees of +s grow down to the left (and likewise for *s)

G5: <exp> ::= <exp> + <exp> | <mulexp> 
 <mulexp> ::= <mulexp> * <mulexp>
 | (<exp>)
 | a | b | c

G6: <exp> ::= <exp> + <mulexp> | <mulexp> 
 <mulexp> ::= <mulexp> * <rootexp> | <rootexp>
 <rootexp> ::= (<exp>)
 | a | b | c

Correct Associativity

Chapter Three Modern Programming Languages, 2nd ed. 21

Our new grammar generates this tree for a+b+c. It generates
the same language as before, but no longer generates trees with
incorrect associativity.

Practice

Chapter Three Modern Programming Languages, 2nd ed. 22

Starting with this grammar:

1.) Add a left-associative & operator, at lower precedence
than any of the others
2.) Then add a right-associative ** operator, at higher
precedence than any of the others

G6: <exp> ::= <exp> + <mulexp> | <mulexp> 
 <mulexp> ::= <mulexp> * <rootexp> | <rootexp>
 <rootexp> ::= (<exp>)
 | a | b | c

Outline

 Operators
  Precedence
 Associativity
 Other ambiguities: dangling else
 Cluttered grammars
  Parse trees and EBNF
 Abstract syntax trees

Chapter Three Modern Programming Languages, 2nd ed. 23

Issue #3: Ambiguity
 G4 was ambiguous: it generated more than

one parse tree for the same string
  Fixing the associativity and precedence

problems eliminated all the ambiguity
 This is usually a good thing: the parse tree

corresponds to the meaning of the program,
and we don’t want ambiguity about that

 Not all ambiguity stems from confusion
about precedence and associativity...

Chapter Three Modern Programming Languages, 2nd ed. 24

Dangling Else In Grammars

Chapter Three Modern Programming Languages, 2nd ed. 25

<stmt> ::= <if-stmt> | s1 | s2
<if-stmt> ::= if <expr> then <stmt> else <stmt>
 | if <expr> then <stmt>
<expr> ::= e1 | e2

This grammar has a classic “dangling-else ambiguity.” The
statement we want derive is

 if e1 then if e2 then s1 else s2

and the next slide shows two different parse trees for it...

Most languages that have
this problem choose this
parse tree: else goes with
nearest unmatched then

Chapter Three Modern Programming Languages, 2nd ed. 26

Eliminating The Ambiguity

Chapter Three Modern Programming Languages, 2nd ed. 27

We want to insist that if this expands into an if, that if must
already have its own else. First, we make a new non-terminal
<full-stmt> that generates everything <stmt> generates, except
that it can not generate if statements with no else:

<stmt> ::= <if-stmt> | s1 | s2
<if-stmt> ::= if <expr> then <stmt> else <stmt>
 | if <expr> then <stmt>
<expr> ::= e1 | e2

<full-stmt> ::= <full-if> | s1 | s2
<full-if> ::= if <expr> then <full-stmt> else <full-stmt>

Eliminating The Ambiguity

Chapter Three Modern Programming Languages, 2nd ed. 28

Then we use the new non-terminal here.

The effect is that the new grammar can match an else part
with an if part only if all the nearer if parts are already
matched.

<stmt> ::= <if-stmt> | s1 | s2
<if-stmt> ::= if <expr> then <full-stmt> else <stmt>
 | if <expr> then <stmt>
<expr> ::= e1 | e2

Correct Parse Tree

Chapter Three Modern Programming Languages, 2nd ed. 29

Dangling Else

 We fixed the grammar, but…
 The grammar trouble reflects a problem

with the language, which we did not change
 A chain of if-then-else constructs can be

very hard for people to read
 Especially true if some but not all of the

else parts are present

Chapter Three Modern Programming Languages, 2nd ed. 30

Practice

Chapter Three Modern Programming Languages, 2nd ed. 31

int a=0;
if (0==0)
 if (0==1) a=1;
else a=2;

What is the value of a after
this fragment executes?

Clearer Styles

Chapter Three Modern Programming Languages, 2nd ed. 32

int a=0;
if (0==0)
 if (0==1) a=1;
 else a=2;

int a=0;
if (0==0) {
 if (0==1) a=1;
 else a=2;
}

Better: correct indentation

Even better: use of a block
reinforces the structure

Languages That Don’t Dangle

  Some languages define if-then-else in a way
that forces the programmer to be more clear
–  Algol does not allow the then part to be

another if statement – though it can be a block
containing an if statement

–  Ada requires each if statement to be
terminated with an end if

–  Python requires nested if statement to be
indented

Chapter Three Modern Programming Languages, 2nd ed. 33

Outline

 Operators
  Precedence
 Associativity
 Other ambiguities: dangling else
 Cluttered grammars
  Parse trees and EBNF
 Abstract syntax trees

Chapter Three Modern Programming Languages, 2nd ed. 34

Clutter
 The new if-then-else grammar is harder for

people to read than the old one
  It has a lot of clutter: more productions and

more non-terminals
  Same with G4, G5 and G6: we eliminated

the ambiguity but made the grammar harder
for people to read

 This is not always the right trade-off

Chapter Three Modern Programming Languages, 2nd ed. 35

Reminder: Multiple Audiences
  In Chapter 2 we saw that grammars have

multiple audiences:
–  Novices want to find out what legal programs

look like
–  Experts—advanced users and language system

implementers—want an exact, detailed definition
–  Tools—parser and scanner generators—want an

exact, detailed definition in a particular,
machine-readable form

 Tools often need ambiguity eliminated, while
people often prefer a more readable grammar

Chapter Three Modern Programming Languages, 2nd ed. 36

Options

 Rewrite grammar to eliminate ambiguity
 Leave ambiguity but explain in

accompanying text how things like
associativity, precedence, and the dangling
else should be parsed

 Do both in separate grammars

Chapter Three Modern Programming Languages, 2nd ed. 37

Outline

 Operators
  Precedence
 Associativity
 Other ambiguities: dangling else
 Cluttered grammars
  Parse trees and EBNF
 Abstract syntax trees

Chapter Three Modern Programming Languages, 2nd ed. 38

EBNF and Parse Trees

 You know that {x} means "zero or more
repetitions of x" in EBNF

  So <exp> ::= <mulexp> {+ <mulexp>}
should mean a <mulexp> followed by zero
or more repetitions of "+ <mulexp>"

 But what then is the associativity of that +
operator? What kind of parse tree would be
generated for a+a+a?

Chapter Three Modern Programming Languages, 2nd ed. 39

EBNF and Associativity
 One approach:

–  Use {} anywhere it helps
–  Add a paragraph of text dealing with

ambiguities, associativity of operators, etc.
 Another approach:

–  Define a convention: for example, that the form
<exp> ::= <mulexp> {+ <mulexp>} will be used
only for left-associative operators

–  Use explicitly recursive rules for anything
unconventional:
 <expa> ::= <expb> [= <expa>]

Chapter Three Modern Programming Languages, 2nd ed. 40

About Syntax Diagrams

  Similar problem: what parse tree is
generated?

 As in EBNF applications, add a paragraph
of text dealing with ambiguities,
associativity, precedence, and so on

Chapter Three Modern Programming Languages, 2nd ed. 41

Outline

 Operators
  Precedence
 Associativity
 Other ambiguities: dangling else
 Cluttered grammars
  Parse trees and EBNF
 Abstract syntax trees

Chapter Three Modern Programming Languages, 2nd ed. 42

Full-Size Grammars

  In any realistically large language, there are
many non-terminals

 Especially true when in the cluttered but
unambiguous form needed by parsing tools

 Extra non-terminals guide construction of
unique parse tree

 Once parse tree is found, such non-
terminals are no longer of interest

Chapter Three Modern Programming Languages, 2nd ed. 43

Abstract Syntax Tree

 Language systems usually store an
abbreviated version of the parse tree called
the abstract syntax tree

 Details are implementation-dependent
 Usually, there is a node for every operation,

with a subtree for every operand

Chapter Three Modern Programming Languages, 2nd ed. 44

Chapter Three Modern Programming Languages, 2nd ed. 45

parse tree

abstract syntax tree

Parsing, Revisited

 When a language system parses a program,
it goes through all the steps necessary to
find the parse tree

 But it usually does not construct an explicit
representation of the parse tree in memory

 Most systems construct an AST instead
 We will see ASTs again in Chapter 23

Chapter Three Modern Programming Languages, 2nd ed. 46

Conclusion
 Grammars define syntax, and more
 They define not just a set of legal programs,

but a parse tree for each program
 The structure of a parse tree corresponds to

the order in which different parts of the
program are to be executed

 Thus, grammars contribute (a little) to the
definition of semantics

Chapter Three Modern Programming Languages, 2nd ed. 47

