Part 1

Basic Features of Python

write and debug. Errors, when they do occur, tend to be larger and thus easier to find
and eliminate. The difference between a functional and an imperative style is best
illustrated by examples, as we will present shortly.

Mapping, Filtering, and Reduction

The process of transformation can be subdivided into several common forms.
The three most common varieties of transformation are mapping, filtering, and
reduction.

A mapping is a one-to-one transformation. Each element in the source is con-
verted into a new value. The new values are gathered into a collection, leaving the
original collection unchanged. For example, suppose that you begin with the list
[1,2,3,4,5] and map using the transformation x*2+1. The result would be the list
(3,5,7,9,11].

A filtering is the process of testin g each value in a list with a function and retain-
ing only those for which the function is true. If you begin with the list [1, 2, 3, 4, 5]
and filter with a function that returns true on the odd values, the result would be the
list [1, 3, 5].

A reduction is the process of applying a binary function to each member of a list
in a cumulative fashion, If you begin with the list [1, 2, 3, 4, 5] and reduce using the
addition operation, the result would be (T +2)+3)+4)+5), or 15.

Each of these three basic tasks is provided by a function in the Python library.
Notice that the definition of each of these functions refers to invoking another func-
tion as part of the process. The function used in this case is passed as an argument.
A function that uses another function that is passed as an argument is sometimes

referred to as a higher order function.

Lambda Functions

When a function is required as an argument, one possibility is to simply pass the
name of a previously defined function:

def even(x):

return x ¥ 2 == 0
>>>a = [1, 2, 3, 4, 5]
>>> print filter(even, a)
[2, 4]

However, because the functions that are passed as argument to maps, reductions,
and filters are often simple and are usually used nowhere else, it is inconvenient to
require the programmer to define them using the standard def keyword. An alter-
native is a mechanism to define a nameless function as an expression. This type of
expression is termed a Jambda. The followin g example illustrates the syntax;

lambda x, yv : x + v

The body of the lambda function must be a simple expression. Because it must
be written on one line, it cannot contain any complex logic, such as conditional

_7

Chapter 8 Functional Programming

statements or loops. Generally a 1ambda is passed as argument to map, fiJ:ter, or
reduce. The following illustrates the application of each of these functions:

s»>> a = [1, 2, 3, 4, 5]

s>>> print map(lambda x : x * 2 + 1, a)
(3, 5, 7, 9, 11]

s>>> print filter(lambda x: x % 2 == 0, a)
(2, 4]

>>> print reduce(lambda x, y: x + vy, a)
15

Notice that the original list, held in the variable named a, remains unchanged.
The functions map, filter, and reduce produce new lists that are transformations
of the argument. o '

The function £ilter requires an argument that is itself a func{tlon that takes
only one argument and returns a Boolean value. A one-argument function that returns
a Boolean result is termed a predicate.

List Comprehensions

| | An even simpler form of functional programming is proviQed by a list com‘rarelhm'zc-l
] sion. Instead of defining a list by a sequence of elements, lists can be characterize
by a process. This process is described by a series of keywords:

‘ [expr for var in Iist if expr]

Here var is a variable name, and 1ist is an existing sequence. The optllonal itf
part requires an expression that evaluates to true or false. Only thosehe ?men s;
that evaluate to true are examined. To construct the new sequence, eac| le emen
| in the original list is examined. If it passes the if expressmn.test, the .mltlah‘exprfhs-
' sion is evaluated and the resulting value added to the new list. In this _fas ion, 1:
| list completion combines aspects of both a filter and a map. The following examp
illustrates the use of a list:

1, 2, 3, 4, 5]
[x*2 for x in a if x < 4]

>>> a =
>»> print
[z, 4, 8]

List comprehensions are often simpler to read than the fequivalent‘e{ipression
formed using filter and map, in part because lists do not require an explicit lambflla
function. However, both forms are useful, and a Python programmer should be famil-

iar with both. ‘ _ _
List comprehensions are often used as the body of a function. The function defi

nition provides a convenient syntax and a way to prov_ide names to arguments.. TFe
list comprehension is an easy-to-understand way to write the body of the function:

>»>> def listOfSquares(a):

return [x*x for x in a]
>>> listOfSquares([1l, 2, 31)
[1, 4, 9]

4 |

narayans
Sticky Note
In Python 3, this has been moved to the functools module.

import functools
functools.reduce(...)

To see how reduce works, evaluate the following:
functools.reduce(lambda x,y:"("+str(x)+"-"+str(y)+")",[1,2,3],0)

narayans
Sticky Note
Much like the (op +) in SML, you can replace this lambda function with:
import operator
operator.add

