tax Meets gemantics |
Exercises 41

40 Chapter 3—Where SYT
. Exercises
e o |
e v <mulexp> xercise 1 Start with the grammar G6, repeated here:
\t > Gé6: <exp> ::= <exp> + <mulexp> | <mulexp>
ootex
e e \ , <mulexp> = <mulexp> * <rootexp> | <rootexp>
\ \ <rootexp> ::= (<exp>)
<mulexp> <r00t\exp> c | a| b | c
\ | Modify it in the following ways:
<rootexp> g | s
l subtraction and division operators (- and /) with the custo
a dence and associativity. B
b. Then add a left-associati
| -) ciative operator % i
Although a parser would go through all the steps necessary to find this pars c. Then add a right-associative }z)peratr bet:\lreen R AT
» - i W or = at low
tree, it would not actually construct an explicit rePf"?S@I\’t&hOn ofitt b other operators. e precedence fhan any of the
instead, it would probably construct an AST like st
’ Exercise 2 i
‘) i Gl-Ve an EBNF grammar for each of the languages of Exercise 1. Use
‘I‘ /\ ‘ xtensions wherever possible to simplify the grammars. Includ .
| - 3 ever notes to the reader are required P
/\ quired to make the associativity of the operators clear.
] Exercise 3 Shy
- ow that each of the followi i
| ng grammar i
| g . ' g8 s is ambiguous. (To sh
_— e R i epresentation . i }r) Cgm " that a grammar is ambiguous, you must demonstrate that it can gen oo
hy king and other post-parsing steps can be carried out on the AST. Comp trees for the same string.) e
-chec '
pim n use thge AST as input t0 the machine-code generator, and interpreters can R 5o mar G4, repeated bere
ers ca i o
' out the operad :
interpret the program by traversie " ASI;Sa"?d Ca:g];fth as i:npulz for some little T e e e
. de. Chapter 23 discusses s agalth, ; e e
qmred at each nO i ; finitions of semantics. "
the starting point for some formal definitl | (<exp>)
lalb|ec

interpreters and as
b. This grammar:

[COI“IC‘USlOﬂ . <person> ::= <woman> | <man>
This chapter has Shown that a grammar can do more than Ju defioelt” S}’ﬂ";‘:‘ ;)e ‘ <’:;0man> ::= wilma | betty | <empty>
S O: < =
1angué§;e By defining @ unique parse tree for each progra™” = P treen‘f\:nar man> it -e | bazuey | aampys
a ’ . 6 —a gra i c. :
structure corresponds O fhe computation specified by thiprogiil}fi;re s;smta « meets , ane flouo‘l’:’mg grammar for strings of balanced parentheses. (A language of
can begin {0 define semnantics as well. Parse trees and ASTS are) gui UI;hler of different kinds of balanced parentheses is called a Dg kgf .
ge. This type of language pl . . yck lan-
ics. . plays an interestin i
Sem\;r;t:mist now leave the question of how to define programming 1angu:‘ gefs languages.) gruoledinthe theofy of formal .
§ 50
formally. Defining their syntax is the easy part. After :flemgt somz ;217;{:11; L, Java : <85> :i= <s> <s> | (<s>) | ()
' : s onci m throu ' .
‘o language semantics and experiencing e :
programmmg o we will return in Chapter 23 t0 the question of formally L

and Prolog programming,

defining prograrmning—language semantics.

