
SYNTAX AND MEANING OF PROLOG PROGRAMS

2.5 Example: monkey and banana

The monkey and banana problem is often used as a simple example of problem
solving. our Prolog program for this problem will show how the mechanisms of
matching and backtracking can be used in such exercises. We will develop the
program in the non-procedural way, and then study its procedural behaviour in
detail. The program will be compact and illustrative.

We will use the following variation of the problem. There is a monkey at
the door into a room. tn the middle of the room a banana is hanging from the
ceiling. The monkey is hungry and wants to get the banana, but he cannot
stretch high enough from the floor. At the window of the room there is a box
the monkey may use. The monkey can perform the following actions: walk on
the floor, climb the box, push the box around (if it is already at the box) and
grasp the banana if standing on the box directly under the banana. Can the
monkey get the banana?

One important task in programming is that of finding a representation of
the problem in terms of concepts of the programming language used. In our
case we can think of the 'monkey world' as always being in some state that can
change in time. The current state is determined by the positions of the objects.
For example, the initial state of the world is determined by:

(1) Monkey is at door.

(2) Monkey is on floor.
(3) Box is at window.

(4) Monkey does not have banana.

It is convenient to combine all of these four pieces of information into one
structured object. Let us choose the word'state' as the functor to hold the four
components together. Figure 2.12 shows the initial state repreSented as a
structured object.

Our problem can be viewed as a one-person game. Let us now formalize
the rules of the game. First, the goal of the game is a situation in which the
monkey has the banana; that is, any state in which the last component is 'has':

state(-) -, -, has)

state

atdoor onfloor atwindow hasnot

Figure 2.12 The initial state ofthe monkey world represented as a structured object.
The four components are: horizontal position of monkey, vertical position of monkey,
position of box, monkey has or has not the banana.

PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Second, what are the allowed moves that change the world from one state to
another? There are four types of moves:

(1) grasp banana,

(2) climb box,

(3) push box,

(4) walk around.

Not all moves are possible in every possible state of the world. For example,
the move 'grasp' is only possible if the monkey is standing on the box directly
under the banana (which is in the middle of the room) and does not have the
banana yet. Such rules can be formalized in Prolog as a three-place relation
narned move:

mov{ Statel, M, State2)

The three argumentsof the relation specify a move thus:

State2Statgl --------)

M

Statel is the state before the move. M is the move executed and State2 is the
state after the move.

The move 'grasp', with its necessary precondition on the state before the
move, can be defined by the clause:

This fact says that after the move the monkey has
rernained on the box in the middle of the room.

In a similar way we can express the fact that the
walk from any horizontal position Pl to any position
this regardless of the position of the box and whether
All this can be defined by the following Prolog fact:

move(state(Pl, onfloor, B, H),
walk(Pl, P2),
state(P2, onfloor, B, H)).

move(state(middle, onbox,
grasp,
state(middle, onbox,

middle, hasnot),

middle, has)).

Vo Before move
Vo Move
Vo After move

the banana, and he has

monkey on the floor can
P2. The monkey can do
it has the banana or not.

Vo Walk from PL to PZ

Note that this clause says many things, including, for example:

the move executed was 'walk from some position Pl to some position P2'

the monkey is on the floor before and after the move;

o

o

o

o

SYNTAX AND MEANING OF PROLOG PROGRAMS 51

MOYC M

canget canget has

Figure 2.13 Recursive formulation of canget.

the box is at some point B which remained the same after the move;

the 'has banana' status remains the same after the rnove.

The clause actually specifies a
applicable to any situation that
Such a specification is therefore
the concept of Prolog variables

whole set of possible moves because it is
matches the specified state before the move.
sometimes also called a move schema. Due to
such schemas can be easily programmed in

Prolog.
The other two types of moves, 'push' and 'climb', can be similarly

specified.
The main kind of question that our program will have to answer is: Can

the monkey in some initial state S get the banana? This can be formulated as a
predicate

canget(S)

where the argument S is a state of the monkey world. The program for canget
can be based on two observations:

(1) For any state S in which the monkey already has the banana, the predi-
cate canget must certainly be true; no move is needed in this case. This
corresponds to the Prolog fact:

cange(state(-, -, -, has)).

(2) In other cases one or more moves are necessary. The monkey can get the
banana in any state 51 if there is some move M from state 51 to some state
52, such that the monkey can then get the banana in state 52 (in zero or
more moves). This principle is illustrated in Figure 2.I3. A Prolog clause
that corresponds to this rule is:

canget(Sl) :-
move(51, M, S2),
canget(S2).

This completes our program which is shown in Figure 2.14.
The formulation of canget is recursive and is similar to that of the

predecessor relation of Chapter 1 (compare Figures 2.I3 and 1.7). This prin-
ciple is used in Prolog again and again.

52 PR.OLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

% Legal moves

move(state(middle, onbox, middle,
grasp,
state(middle, onbox, middle,

move(state(P, onfloor, P, H),
climb,
state(P, onbox, P, H)).

move(state(Pl, onfloor, Pl, H),
push(Pl, P2),
state(P2, onfloor, P2, H)).

move(state(Pl, onfloor, B, H),
walk(Pl, P2),
state(P2, onfloor, B, H)).

hasnot),
Vo Grasp banana

has)).

Vo Climb box

Vo Push box from Pl to P2

Vo Walk from Pt to P2

Vo canget(State): monkey can get banana in State

canget(state(-, -, -, has)).

canget(Statel) :-
move(Statel, Move, State2),
canget(State2).

can 1: Monkey already has it

can 2: Do some work to get it
Do something

Get it now

Vo

Vo

Vo

Vo

Figure 2.14 A program for the monkey and banana problem.

- We have developed our monkey and banana program in the non-pro-
cedural way. Let us now study its procedural behaviour by considering ttre
following question to the program:

?- canget(state(atdoor, onfloor, atwindow, hasnot)).

Prolog's answer is'yes'. The process carried out by Prolog to reach this answer
proceeds, according to the procedural semantics of Prolog, through a sequence
of goal lists. It involves some search for right moves among the possible
alternative moves. At some point this search will take a wrong move leading to
a dead branch. At this stage, backtracking will help it to recover. Figure 2.15
illustrates this search process.

To answer the question Prolog had to backtrack once only. A right
sequence of moves was found almost straight away. The reason for this
efficiency of the program was the order in which the clauses about the move
relation occurred in the program. The order in our case (luckily) turned out to
be quite suitable. However, less lucky orderings are possible. According to the
rules of the game, the monkey could just as easily try to walk here or there

SYNTAX AND MEANING OF PROLOG PROGRAMS

grasp climb push walk(atdoor, P2)

climb push(P2,P2')

grasp climb walk

grasp

P2' =middle

Figure 2.15 The monkey's search for the banana. The search starts at the top node and
proceeds downwards, as indicated. Alternative moves are tried in the left-to-risht
order. Backtracking occurred once only.

without ever touching the box, or aimlessly push the box around. A more
thorough investigation will reveal, as shown in the following section, that the
ordering of clauses is, in the case of our program, in fact critical.

2.6 Order of clauses and goals

2.6.1 Danger of indefinite looping

Consider the following clause:

p : -p .

This says that 'p is true if p is true'. This is declaratively perfectly correct, but

.53

I
I
I backtrack
I
I
I
I

push

state(atdoor, onfloor, atwindow, hasnot)

state(P2, onfloor, atwindow, hasnot)

state(atwindow, onbox, atwindow, hasnot) state(P2', onfloor, P2', hasnot)

state(P2', onb oxlPz)hasnot)

state(middle, onbox, middle, has)

54 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

procedurally is quite useless. In fact, such a clause can cause problems to
Prolog. Consider the question:

'!- p.

Using the clause above, the goal p is replaced by the same goal p; this will be in
turn replaced by p, etc. In such a case Prolog will enter an infinite loop not
noticing that no progress is being made.

This example is a simple way of getting Prolog to loop indefinitely.
However, similar looping could have occurred in some of our previous example
programs if we changed the order of clauses, or the order of goals in the
clauses. It will be instructive to consider some examples.

In the monkey and banana program, the clauses about the move relation
were ordered thus: grasp, climb, push, walk (perhaps .unclimb' should be
added for completeness). These clauses say that grasping is possible, climbing
is possible, etc. According to the procedural semantics of prolog, the order oi
clauses indicates that the monkey prefers grasping to climbing, climbing to
pushing, etc. This order of preferences in fact helps the monkey to solve the
problem. But what could happen if the order was different? Let us assume that
the 'walk' clause appears first. The execution of our original goal of the
previous section

?- canget(stat{ atdoor, onfloor, atwindow, hasnot)).

would this time produce the following trace. The first four goal lists (with
variables appropriately renamed) are the same as before:

(1) canget(state(atdoor, onfloor, atwindow, hasnot))

The second clause of canget ('c anz') is applied, producing:

(2) move(state(atdoor, onfloor, atwindow, hasnot), M,, S2,),
canget(s2')

By the move walk(atdoor, PZ') we get:

(3) canget(state(Pz', onfloor, atwindow, hasnot))

using the clause 'can?'again the goal list becomes:

(4) move(state(P2', onfloor, atwindow, hasnot), M', s2"),
canget(s2")

Now the difference occurs. The first clause whose head
above is now 'walk' (and not 'climb' as before).

matches the first goal
The instantiation is

SYNTAX AND MEANING OF PROLOG PROGRAMS 55

52" = state(P2", onfloor, atwindow, hasnot). Therefore the goal list becomes:

(5) canget(state(P2", onfloor, atwindow, hasnot))

Applying the clause ocan?'we obtain:

(6) move(state(P2", onfloor, atwindow, hasnot), M"' , 52"'),
canget(s2"')

Again, 'walk' is now tried first, producing:

(7) canget(state(P2"' , onfloor, atwindow, hasnot))

Let us now compare the goals (3), (5) and (7). They are the same apart from
one variable; this variable is, in turn, P', P" and P"'. As we know, the success of
a goal does not depend on particular names of variables in the goal. This means
that from goal list (3) the execution trace shows no progress. We can see, in
fact, that the same two clauses, 'can2' and 'walk', are used repetitively. The
monkey walks around without ever trying to use the box. As there is no
progress made this will (theoretically) go on for ever: Prolog will not realize
that there is no point in continuing along this line.

This example shows Prolog trying to solve a problem in such a way that a
solutiort is never reached, although a solution exists. Such situations are not
unusual in Prolog programming. Infinite loops are, also, not unusual in other
progtamming languages. What l's unusual in comparison with other languages
is that the declarative meaning of a Prolog program may be correct, but the
program is at the same time procedurally incorrect in that it is not able to
produce an answer to a question. In such cases Prolog may not be able to satisfy
a goal because it tries to reach an answer by choosing a wrong path.

A natural question to ask at this point is: Can we not make some more
substantial change to our program so as to drastically prevent any danger of
looping? Or shall we always have to rely just on a suitable ordering of clauses
and goals? As it turns out programs, especially large ones, would be too fragile
if they just had to rely on some suitable ordering. There are several other
methods that preclude infinite loops, and these are much more general and
robust than the ordering method itself. These techniques will be used regularly
later in the book, especially in those chapters that deal with path finding,
problem solvirrg and search.

2.6.2 Program variations through reorderlng of clauses and goals

Already in the example programs of Chapter 1 there was a latent danger of
producing a cycling behaviour. Our program to specify the predecessor relation

PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

in Chapter L was:

predecessor(X, Z) '.

parent(X, Z).

predecessor(X, Z) :-
parent(X, Y),
predecessor(Y, Z\.

Let us analyze some variations of this program. All the variations will clearly
have the same declarative meaning, but not the same procedural meaning.

Vo Four versions of the predecessor program

Vo The original version

predl(X, Z) :-
parent(x, z).

predl(x, z) .-

parent(x, Y),
predl(Y, Z).

vo variation a: swap clauses of the original version

pred2(x, z) ,-

parent(x, Y),
pred2(Y, Z).

pred2(x, z) '-
parent(x, z).

Vo Variation b: swap goals in second clause of the original version

pred3(X, Z) :-
parent(x, z).

pred3(x, z) :-
pred3(X, Y),
parent(Y, Z).

Vo Variation c: swap goals and clauses of the original version

pred4(x, z) .-
pred4(X, Y),
parent(Y, Z).

pred4(x, z) .-
parent(x, z).

Figure 2.16 Four versions of the predecessor program.

