
USING STRUCTURES: EXAMPLE PROGRAMS 109

not attack each other. It will be interesting to compare various ideas for
programming this problem. Therefore we will present three programs based on
somewhat different representations of the problem.

4.5.1 Program 1

First we have to choose a representation of the board position. One natural
choice is to represent the position by a list of eight items, each of them
corresponding to one queen. Each item in the list will specify a square of the
board on which the corresponding queen is sitting. Further, each square can be
specified by a pair of coordinates (X and Y) on the board, where each
coordinate is an integer between 1 and 8. In the program we can write such a
pair as

X/Y

where, of course, the '/' operator is not meant to indicate division,

combines both coordinates together into a square. Figure 4.6

solution of the eight queens problem and its list representation.

Having chosen this representation, the problem is to find such a list of the
form

Ix1/Y1, X2N2, X3/Y3, ..., X8/Y8l

which satisfies the no-attack requirement. Our procedure solution will have to
search for a proper instantiation of the variables Xl, Y l, Xz,Y 2, . .., X8, Y8. As
we know that all the queens will have to be in different columns to prevent
vertical attacks, we can immediately constrain the choice and so make the
search task easier. We can thus fix the X-coordinates so that the solution list
will fit the following, more specific template:

form

[1 /Y1 ,2N2,3N3, . . . , 8 /Y8 l

I 8

This position can be specified byFigure 4.6
the list Ul4,

but simply
shows one

8
7
6
5
4
3
2
1

A solution to the eight
212, 317, 413, 516, 6lg,

queens problem.
715 ,9 /g l .

110 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

We are interested in the solution on a board of size 8 by 8. However, in
programming, in general, the key to the solution is often in considering a more
general problem. Paradoxically, it is often the case that the solution for the
more general problem is easier to formulate than that for the more specific,
original problem; then the original problem is simply solved as a special case of
the more general problem.

The creative part of the problem is to find the
the original problem. In our case, a good idea is to
queens (the number of columns in the list) from 8
zero. The solution relation can then be formulated

case I The list of queens is empty: the empty
because there is no attack.

correct gene ralization of
generalize the number of
to any number, including
by considering two cases:

list is certainly a solution

Case 2 The list of queens is non-empty: then it looks like this:

t X/Y I Othersl

In case 2, the first queen is at some square)vy and the other queens are at
squares specified by the list others. If this is to be a solution then ihe following
conditions must hold:

(1) There must be no attack between the queens in the list others; that is,
Others itself must also be a solution.

(2) X and Y must be integers between 1 and g.

(3) A queen at square X/y must not attack any of the queens in the l,st
Others.

To program the first condition we can simply use the solution relation itself.
The second condition can be specified as follows: y will have to be a member of
the list of integers between I and 8 - that is, 11,2,3,4,5,6,7,g1. On the other
hand, we do not have to worry about X since the solution list will have to match
the template in which the X-coordinates are already specified. So X will be
guaranteed to have a proper value between I and s. *e can implement the
third condition as another relation, noaffack. All this can then be written in
Prolog as follows:

solution(pUY I Othersl) :-
solution(Others),
member(Y, 11,2,3,4,5,6,7,91),
mattacK)UY, Others).

It now remains to define the noattack relation:

noattack(Q, Qlist)

Again, this can be broken down into two cases:

USING STRUCTURES: EXAMPLE PROGRAMS 11I

(1) If the list Qlist is empty then the relation is certainly true because there is
no queen to be attacked.

(2) If Qlist is not empty then it has the form I Ql I Qlistl] and two conditions
must be satisfied:

(a) the queen at Q must not attack the queen at Q1., and
(b) the queen at Q must not attack any of the queens in Qlistl.

To specify that a queen at some square does not attack another square is easy:
the two squares must not be in the same row, the same column or the same
diagonal. our solution template guarantees that all the queens are in different
columns, so it only remains to specify explicitly that:

the Y-coordinates of the queens are different, and

they are not in the same.diagonal, either upward or downward; that is,
the distance between the squares in the X-direction must not be equal to
that in the Y-direction.

Figure 4.7 shows the complete program. To alleviate its use a template list has

o

o

solution([]).

solution([X/Y I Others]) '-

solution(Others),
member(Y, f1,2,3,4,5,6,7,8J),
noattack(X/Y, Others).

noattack(-, [J).

noattack(>(N, [Xl/Yl I Othersl)
f : \ - Y l ,
Yl-Y : \ : Xl-X,
Y1-Y - \ : X-Xl,
noattack(X/Y, Others).

member(X, [X I Ll).

m e m b e r (X , [Y t L l) : -
member(X, L).

Vo A solution template

Vo First queen at X/Y, other queens at Others

First queen does not attack others

Nothing to attack

Different Y-coordinates

Different diagonals

Vo

%

:-

Vo
7o

template([INI,2N2,3/Y3 ,4N4,5/Y5 ,6N6,7 N7,8/Y8J).

Figure 4.7 Program 1 for the eight queens problem.

rt2 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

been added. This list can be retrieved in a question for generating solutions. So
we can now ask

?- template(S), solution(S).

and the program will generate solutions as follows:

s
S

S

: t
: t
: t

U4, 212, 317, 413, 516, 6lg, 715, g/1];

U5, 212, 314, 417, 513, 6lg, 716,9/11;

ll3, a5, 312, 4lg, 516, 614, 717, g/11;

Exercise

4.6 when searching for a solution, the program of Figure 4.7 explores
alternative values for the Y-coordinates of the queens. At which place in
the program is the order of alternatives defined? How can we easily
modify the program to change the order? Experiment with different
orders with the view of studying the executional efficiency of the
program.

4.5.2 Prognm 2

In the board representation of program 1, each solution had the form

[1/Y1, 2N2,3N3,. . . , g/Ygl

because the queens were simply placed in consecutive columns. No informa-
tion is lost if the X-coordinates were omitted. So a more economical
representation of the board position can be used, retaining only the y-coordi-
nates of the queens:

lY l ,Y2, Y3, . . . , Yg l

To prevent the horizontal attacks, no two queens can be in the same row. This
imposes a constraint on the Y-coordinates. The queens have to occupy all the
rows L,2, ...,8. The choice that remains istheorder of these eight numbers.
Each solution is therefore represented by a permutation of the list

fL,2,3,4,5,6,7,91

Such a permutation, S, is a solution if all the queens are safe. So we can write:

solution(S) :-
permutation(ft,2,3,4,5,6,7, 81, S),
safe(S).

