The Tiny Book of Objects

Sridhar Narayan

August 14, 2017

Chapter 1

Objects

1.1 Why Obijects

Consider the task of writing a computer program that can ptaruser to provide two numbers. The program then adds théensnprovided
and shows the result to the user. A little reflection yieldsagpam that looks something like this (in pseudocode):

Prompt user for first number

Store user input in memory

Prompt user for the second number

Store user input in memory

Add user supplied numbers and store result in memory
Display result

Note that this program can be designed by focusing on therecthecomputemrmust take in order to accomplish the goal, i.e.adgorithmic
or machine-centriziew. Now, consider the task of writing a computer prograat flunctions as a media player, for example likenes It is
immediately evident that while the machine-centric viewkgowell for small(er) problems, it is harder to think in tesrof what instructions
must be executed by the computer to accomplish a given gba&inwhe problem is more complex. Thus, for large(r) problahesalgorithmic
approach is less appropriate. Object oriented programisibetter suited to the demands of large(r) software preject

1.2 Whatis an object?

An object is anamed chunk oflataand code. The data characterizes the objects’ structure, wWieleode characterizes its behavior. The name
provides a mechanism for referencing the object, i.e. ita dad code.

1.2.1 Object Structure

All objects have properties (attributes) that describesthgcture of the object. For instance, if you were creatibglato be used in an animation,
you may want to define the following properties for the beddius, color, position (on the screerr, a fraction object may have the properties,
numeratoranddenominator

1.2.2 Object Behavior

Object behavior answers the question, “What operationsildmered on this object ?”, or “To what messages does thiscblgspond ?” For
instance, the ball in the previous section may respond toéesagemove, shrink, grow, explode, changeColor édraction object may allow
operations likeadd, multiplyetc.

1.3 Whatis a class

There may be many objects of a given kind. For instance, anation may involve dozens of balls. While each ball can b&/iddally described,
it is easier to develop a generic description for a ball thatlwe repeatedly used to model each baltlassis agenericdescription of an object,
and all objects arsstancef some class.

1. All objects of a given class have the same attributes. Mewé¢he values of these attributes need not be the same, dlhballs have a
radius, but one ball may have a larger radius than another.

2. All objects of a given class have the same behavior, iy dleespond to the same messages.

1.4 How is a class defined in Java

1.4.1 Defining the structure

The following Java code describes the structure of a ball.

public class Ball {

private int radius;

private Point position.

prot ect ed Color color;

public static String manufacturer = “Shanghai Ball Factory”;

}

This code fragment says that every instance of this class,eivery Ball has a radius, a color, and a position. These rave/tk asinstance

variables,because the variables are specific to each instance of #sis.tflone were to create 100 instances of Ball, each of those 10@lB

objects could have a different radius, color, and positionThestatic keyword declares manufacturer to be a class variable. Motkis below.
Java requires that each propertydselared Thus, each property must have a name. Alsotytheof data associated with each property must

be specified. Thus, radius is of type(eger). Note that objects may have properties that are deifinerms of other objects. Thuggsitionis

of type Point, where Point is itself a class. An examination of the Poiasslmay reveal,

public class Point {

private int x;
private int vy;

}

This shows that big objects can be defined in terms of smdsfects, which, in turn, may be defined in terms of tiny obje€tsis is a mechanism
for managing complexity.

1.4.2 Defining Behavior

Here are two examples afethodsr code that might be found in the class Ball.

public int getRadius() {

return radius;

}

public int setRadius(int currentRadius) {

radius = currentRadius;

}
public static String getManufacturer() {

return manufacturer;

Note that methods often access object properties. Twoigussirise:

1. Which object properties can a method access, i.e. readdify? Answer: All properties defined in a class can be aamkby methods
contained irthat class. However, properties markpdvate can only be accessed by methods contained in that class.pBopérties are
not visible to methods defined in other classes. HEmisapsulatethe data within the class. Whenpaivate datum changes, the source
of the change is in a method in the class, a fact that helpglishioot malfunctioning programs. Properties manbeblic are visible in
methods in other classes. More on this below.

2. Since each Ball has its own radius, which object’s radaesdhesetRadiusnethod modify? Answer: Methods are invoked when an objec
receives the correspondimgessage Thus, if a Ball namedouncyBallreceives the messagetRadiusthe corresponding invocation of
setRadiusnodifies thebouncyBall'sradius.

Also note that the two methods are labepedblic. This says that these methods can be invoked from any matrardyiclass, and this is a typical
practice in object oriented programming. Properties aielddd from methods in other classes by labeling theivate. Publicmethods then
provideregulated, i.e. controlled, access to these properties.

1.5 Creating Objects

Objects arénstantiated created) by th@ewoperator. Thenainmethod below, defined in a class named TestBall, demonstise

public class TestBall {

public static void main(String [] args) {

Ball bouncyBall = new Ball();
bouncyBal | . col or = Color.RED; //allowed because color is marked public in the class Ball
bouncyBall.setRadius(20); // bouncyBal | .radius = 20; is not |egal because radius is privat

}

The main method is the method that executed firstwhen a class is loaded into memory and executed by the JattsaMWachine (JVM).
However, this is true for only the first class encounterece J¥IM may load and execute other classes in this processnétanice, the Ball class
will be loaded before thbouncyBalis instantiated. Itsnainmethod, if defined, will not be executed.

1.6 Dot Notation and the keywordstatic

Note the use of thelot notation to reference methods and properties of objectsis,Thstance variablesndinstance methodsan only be
referenced using the forobjectName.propertyNanamdobjectName.methodNamote also that the dot notation is used in the context of the
class Color The use of the fornelassName.propertyNamer className.methodNameés only allowed forclass variablesandclass methods.
Class variables and methods are margiadic. Class variables and methods differ from instance varialesnethods in several important ways:

1. Class variables and methods exist even if no objects b€thss exist. They belong to the class, which, of courseahasistence separate
from its instances. Indeed, classes exist even if no instoftthat class are in existence! Thus, Ball.getManufacflis legal at all times
- even if no Ball has been instantiated.

2. There is onlyonecopy of a class variable, whereas there are as many copiestahce variables as there are instances of that class.

3. Class variables and methods can also be accessed thigieghreames, as in bouncyBall.getManufacturer(). The reaofireference, via
the object or the corresponding class, is irrelevant simtg ©ONE COPY of the class data exists.

4. Since class methods can be invoked without referenceytmbject of the class, they can only contain references tssclariables.
Violations of this rule will result in the familiar Java coritgr error message, “Static reference to non-static véegb’

1.7 Inheritance

If you wish to define a new class BeachBall, you can define ithnike the Ball class since BeachBall's share propertieskaidhvior found in
the class Ball. Inheritance provides a mechanism to avasdthvious duplication.

public class BeachBall extends Ball {

}

Inheritance implies that BeachBallis-A Ball. That is, a BeachBall is a kind of Ball. The Ball class is ff@ent classwhile the BeachBall
class is the child. Thext ends keyword confers upon BeachBall all the attributes and bielhaf the class Ball. Thus, BeachBall's have
radius, color, and a manufacturer’s identity. Any methoefinetd for a Ball can be used with a BeachBall. New methodsjtiftate below, and
properties, likenumberOfPanelsan be defined for BeachBall. However, these have no impettteoBall class. A Ball cannot bieflate(d), and

a Ball does not have the propertymberOfPanels

private int numberOfPanels;
public void inflate(int radiusChange) {

radius = radius + radiusChange; //lllegal. Cannot access privat e variable radius.

public void changeColor(Color currentColor) {

color = currentColor; //Legal. color is declared protected in Ball

}

The problem in the previous method will be immediately olngido the perceptive readetadius, being private in Ball, is not visible in the
BeachBall class. On the other had|or, which is declaregbrotectedjs visible in the child class. Visibility modifiers can thue bummarized.

e private - means only visible in the class in which it is defined - foemial use only.
e protected - means only visible in the class in which it is defined and liitsldescendants - for family use only.

e public - means visible in all classes - anywhere and everywhereudeby everyone.

1.8 Inheritance has implications
Since a BeachBaik a Ball, the following statement is legal.
Ball bigBouncyBall = new BeachBall();

This can be interpreted as follows. BeachBall sub-typeof thesuper-typeBall. Without inheritance, variables have only one type,dhe they
aredeclared to have, i.e. when they are compiled. This is tlgimpile-timeor statictypet. With inheritance, variables can have a second type
their run-time or dynamiadype. For example, the static type of bigBouncyBall is Bathereas its dynamic type is BeachBall. In other words.
the static type of a variable is what you said it would referatiocompile time. The dynamic type of a variable is what iuafly points to at run
time. Thet static type of a variable remains fixed. Howewsilynamic type can change as the program executes andiimaetd by the object
to which the variable refers at any particular moment.

The following statement, however, is not legal.

BeachBall squishyBall = new Ball();

INot to be confused with the Java keywatic Same word, different meanings.

Index

algorithmic, 2

class, 2

class methods, 4
class variables, 4
compile-time, 5

declared, 3
dot notation, 4
dynamic, 5

Inheritance, 4
instance methods, 4
instance variables, 3
instances, 2
instantiated, 4

is-A, 4

machine-centric, 2
main method, 4
message, 3
methods, 3

private, 3
protected, 4
public, 3

run-time, 5

static, 3-5
sub-type, 5
super-type, 5

