
The Tiny Book of Objects

Sridhar Narayan

August 14, 2017

1



Chapter 1

Objects

1.1 Why Objects

Consider the task of writing a computer program that can prompt a user to provide two numbers. The program then adds the numbers provided
and shows the result to the user. A little reflection yields a program that looks something like this (in pseudocode):

Prompt user for first number
Store user input in memory
Prompt user for the second number
Store user input in memory
Add user supplied numbers and store result in memory
Display result

Note that this program can be designed by focusing on the actions thecomputermust take in order to accomplish the goal, i.e. analgorithmic
or machine-centricview. Now, consider the task of writing a computer program that functions as a media player, for example likeiTunes. It is
immediately evident that while the machine-centric view works well for small(er) problems, it is harder to think in terms of what instructions
must be executed by the computer to accomplish a given goal, when the problem is more complex. Thus, for large(r) problems, the algorithmic
approach is less appropriate. Object oriented programmingis better suited to the demands of large(r) software projects.

1.2 What is an object?

An object is anamed chunk ofdataand code. The data characterizes the objects’ structure, whilethe code characterizes its behavior. The name
provides a mechanism for referencing the object, i.e. its data and code.

1.2.1 Object Structure

All objects have properties (attributes) that describe thestructure of the object. For instance, if you were creating aball to be used in an animation,
you may want to define the following properties for the ball:radius, color, position (on the screen). Or, a fraction object may have the properties,
numeratoranddenominator.

1.2.2 Object Behavior

Object behavior answers the question, “What operations areallowed on this object ?”, or “To what messages does this object respond ?” For
instance, the ball in the previous section may respond to themessagesmove, shrink, grow, explode, changeColor etc.A fraction object may allow
operations likeadd, multiplyetc.

1.3 What is a class

There may be many objects of a given kind. For instance, an animation may involve dozens of balls. While each ball can be individually described,
it is easier to develop a generic description for a ball that can be repeatedly used to model each ball. Aclassis agenericdescription of an object,
and all objects areinstancesof some class.

1. All objects of a given class have the same attributes. However, the values of these attributes need not be the same. Thus, all balls have a
radius, but one ball may have a larger radius than another.

2. All objects of a given class have the same behavior, i.e they all respond to the same messages.

1.4 How is a class defined in Java

1.4.1 Defining the structure

The following Java code describes the structure of a ball.

2



public class Ball {

private int radius;
private Point position.
protected Color color;
public static String manufacturer = “Shanghai Ball Factory”;

}

This code fragment says that every instance of this class, i.e. every Ball has a radius, a color, and a position. These are known asinstance
variables,because the variables are specific to each instance of this class.If one were to create 100 instances of Ball, each of those 100 Ball
objects could have a different radius, color, and position.Thestatic keyword declares manufacturer to be a class variable. More on this below.

Java requires that each property bedeclared. Thus, each property must have a name. Also, thetypeof data associated with each property must
be specified. Thus, radius is of typeint(eger). Note that objects may have properties that are defined in terms of other objects. Thus,positionis
of typePoint, where Point is itself a class. An examination of the Point class may reveal,

public class Point {

private int x;
private int y;

}

This shows that big objects can be defined in terms of smaller objects, which, in turn, may be defined in terms of tiny objects. This is a mechanism
for managing complexity.

1.4.2 Defining Behavior

Here are two examples ofmethodsor code that might be found in the class Ball.

public int getRadius() {

return radius;

}
public int setRadius(int currentRadius) {

radius = currentRadius;

}
public static String getManufacturer() {

return manufacturer;

}

Note that methods often access object properties. Two questions arise:

1. Which object properties can a method access, i.e. read or modify? Answer: All properties defined in a class can be accessed by methods
contained inthat class. However, properties markedprivatecan only be accessed by methods contained in that class. Suchproperties are
not visible to methods defined in other classes. Thisencapsulatesthe data within the class. When aprivate datum changes, the source
of the change is in a method in the class, a fact that helps troubleshoot malfunctioning programs. Properties markedpublic are visible in
methods in other classes. More on this below.

2. Since each Ball has its own radius, which object’s radius does thesetRadiusmethod modify? Answer: Methods are invoked when an object
receives the correspondingmessage. Thus, if a Ball namedbouncyBallreceives the messagesetRadius,the corresponding invocation of
setRadiusmodifies thebouncyBall’sradius.

Also note that the two methods are labeledpublic. This says that these methods can be invoked from any method in any class, and this is a typical
practice in object oriented programming. Properties are shielded from methods in other classes by labeling themprivate. Publicmethods then
provideregulated, i.e. controlled, access to these properties.



1.5 Creating Objects

Objects areinstantiated(created) by thenewoperator. Themainmethod below, defined in a class named TestBall, demonstrates this.

public class TestBall {

public static void main(String [] args) {

Ball bouncyBall = new Ball();
bouncyBall.color = Color.RED; //allowed because color is marked public in the class Ball
bouncyBall.setRadius(20); // bouncyBall.radius = 20; is not legal because radius is private

}

}

The main method is the method that isexecuted firstwhen a class is loaded into memory and executed by the Java Virtual Machine (JVM).
However, this is true for only the first class encountered. The JVM may load and execute other classes in this process. For instance, the Ball class
will be loaded before thebouncyBallis instantiated. Itsmainmethod, if defined, will not be executed.

1.6 Dot Notation and the keywordstatic

Note the use of thedot notation to reference methods and properties of objects. Thus, instance variablesand instance methodscan only be
referenced using the formobjectName.propertyNameandobjectName.methodName. Note also that the dot notation is used in the context of the
class Color. The use of the formclassName.propertyNameor className.methodNameis only allowed forclass variablesandclass methods.
Class variables and methods are markedstatic.Class variables and methods differ from instance variablesand methods in several important ways:

1. Class variables and methods exist even if no objects of that class exist. They belong to the class, which, of course, hasan existence separate
from its instances. Indeed, classes exist even if no instances of that class are in existence! Thus, Ball.getManufacturer() is legal at all times
- even if no Ball has been instantiated.

2. There is onlyonecopy of a class variable, whereas there are as many copies of instance variables as there are instances of that class.

3. Class variables and methods can also be accessed through object names, as in bouncyBall.getManufacturer(). The manner of reference, via
the object or the corresponding class, is irrelevant since only ONE COPY of the class data exists.

4. Since class methods can be invoked without reference to any object of the class, they can only contain references to class variables.
Violations of this rule will result in the familiar Java compiler error message, “Static reference to non-static variables...”

1.7 Inheritance

If you wish to define a new class BeachBall, you can define it much like the Ball class since BeachBall’s share properties andbehavior found in
the class Ball. Inheritance provides a mechanism to avoid this obvious duplication.

public class BeachBall extends Ball {
}

Inheritance implies that aBeachBallis-A Ball. That is, a BeachBall is a kind of Ball. The Ball class is theparent class, while the BeachBall
class is the child. Theextends keyword confers upon BeachBall all the attributes and behavior of the class Ball. Thus, BeachBall’s have
radius, color, and a manufacturer’s identity. Any methods defined for a Ball can be used with a BeachBall. New methods, like inflatebelow, and
properties, likenumberOfPanels, can be defined for BeachBall. However, these have no impact on the Ball class. A Ball cannot beinflate(d), and
a Ball does not have the propertynumberOfPanels.

private int numberOfPanels;
public void inflate(int radiusChange) {

radius = radius + radiusChange; //Illegal. Cannot access private variable radius.

}
public void changeColor(Color currentColor) {

color = currentColor; //Legal. color is declared protected in Ball

}

The problem in the previous method will be immediately obvious to the perceptive reader.radius, being private in Ball, is not visible in the
BeachBall class. On the other hand,color, which is declaredprotected,is visible in the child class. Visibility modifiers can thus be summarized.

• private - means only visible in the class in which it is defined - for internal use only.

• protected - means only visible in the class in which it is defined and in all its descendants - for family use only.

• public - means visible in all classes - anywhere and everywhere - foruse by everyone.



1.8 Inheritance has implications

Since a BeachBallis a Ball, the following statement is legal.

Ball bigBouncyBall = new BeachBall();

This can be interpreted as follows. BeachBall is asub-typeof thesuper-typeBall. Without inheritance, variables have only one type, the one they
aredeclared to have, i.e. when they are compiled. This is theircompile-timeor static type1. With inheritance, variables can have a second type,
their run-time or dynamictype. For example, the static type of bigBouncyBall is Ball,whereas its dynamic type is BeachBall. In other words,
the static type of a variable is what you said it would refer to, at compile time. The dynamic type of a variable is what it actually points to at run
time. Thet static type of a variable remains fixed. However, its dynamic type can change as the program executes and is determined by the object
to which the variable refers at any particular moment.

The following statement, however, is not legal.

BeachBall squishyBall = new Ball();

1Not to be confused with the Java keywordstatic. Same word, different meanings.



Index

algorithmic, 2

class, 2
class methods, 4
class variables, 4
compile-time, 5

declared, 3
dot notation, 4
dynamic, 5

Inheritance, 4
instance methods, 4
instance variables, 3
instances, 2
instantiated, 4
is-A, 4

machine-centric, 2
main method, 4
message, 3
methods, 3

private, 3
protected, 4
public, 3

run-time, 5

static, 3-5
sub-type, 5
super-type, 5

6


