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Preface

This book is based on typical lecture notes from a Calculus III course, which
the author has taught for many years at UNCW. The course website is located
at

http://people.uncw.edu/lugo/courses/M261

At this site, under the heading “Course Handouts”, there is a copy of a
set of actual lecture notes. The book is typeset in Latex using the Miktex
editor. Mathematical graphics were created with Maple and Mathematica. The
material is self-contained and includes all the standard topics usually covered in
a third semester calculus course. The manuscript includes an array of examples
on each topic to illustrate some variety of the types of problems students need
to master. As of this edition, there is no list of exercises at the end of each
section; for now, we refer the student to any fat calculus text for extra problems.
As soon as time permits, problem sets will be added. After reading these notes,
students should not have any difficulty working out any of the typical problems
expected as background for students in science and engineering.

Calculus was co-invented by Newton for the main purpose of explaining
Kepler’s laws of celestial mechanics. Most of the other ideas in calculus were
developed from physics as well. It is the opinion of this author, that it is a
mistake to teach calculus devoid of the physical and historical context from
which it was developed. Thus, Whenever it is appropriate, snippets of physics
will be inserted into the narrative in a effort to enrich the meaning of the
concepts. The expectation is that students in the course will read the book
thoroughly and, at bare minimum, work out on their own, the examples shown
in the text. Many significant concepts which in typical calculus textbooks are
buried in the “advanced problems” are included in these notes as part of the
content.

When it is pedagogically advantageous, we either deviate slightly from the
traditional order of topics, or use an alternative presentation that students
might find more efficient and comprehensible. Occasionally, we sacrifice some
rigor for the sake of clarity and ease of applications. For example, we do not
present a rigorous proof the chain rule, nor do we expect students to establish
if a function is differentiable. Instead we rely on the intuitive notions of the
differential invented by Newton and Leibnitz to motivate most topics. We
also introduce elementary differential forms to augment understanding of the
change of variables, surface area, and the theorems and Stokes and Gauss. We

x
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advocate that differential forms become part of the regular curriculum for all
third semester calculus course. As it is the case with most standard textbooks,
some optional material such as a section on the derivation of Kepler’s laws
is included to be covered at the discretion of the instructor. It is sad that
the latter, being the reason why Newton co-invented calculus, is considered
optional in the standard calculus curriculum. The chapter on Kepler’s laws is
not optional for this author.

Gabriel Lugo (2024)



Chapter 1

Vectors and the Geometry
of Space

1.1 Euclidean Space

1.1.1 Points and Planes

1.1.1 Definition Euclidean n-space Rn is defined as the set of n-tuples
P (p1, p2, . . . , pn), where pi ∈ R, for each i = 1, 2, . . . , n.

In this course we will be primarily concerned with Euclidean 3-space R3.
For visualization purposes, let O be an arbitrary point which we will call the
origin. Through the origin, we draw three mutually perpendicular copies of
the real line. We call the three copies of the real line the coordinate axes. By
default, we denote the axes x, y and z respectively, making sure the axes are
always oriented according to the right hand rule - namely, if one places the
palm of the right hand along the positive direction of the x-axis and curls the
hand toward the positive direction of the y axis, then the thumb points in the
direction of the positive z-axis. The ticks on the axes can be scaled as needed
to adjust the “window” size, as shown in figure 1.1. In this picture, we have
made the common choice to render the x-axis by perspective, sticking out of
the “board.” The three planes spanned by the coordinate axes are called the
xy, the yz and the xz planes, respectively. We can now use the coordinate axes
to assign a unique label P (x0, y0, z0) to any point P in R3, where in the entries
of the triplet,

x0 is the signed distance from the point to the yx-plane,

y0 is the signed distance from the point to the xz-plane, and

z0 is the signed distance from the point to the xy-plane.

For example, to locate the point P (2, 3, 1), start at the origin, step 2 units in
the x-direction, 3 units in the y-direction and 1 unit in the z-direction. To get
a sense of the 3-dimensional location of the point, it is essential to either, draw
line segments for each step, or better yet, draw a rectangular parallelepiped

1



2 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE

Fig. 1.1: Euclidean 3 Space

(a cuboid) to locate the point diagonally opposed to the origin. Figure 1.2
shows the points (2,3,1) and (-1,2,2). Next to points, planes are the simplest

Fig. 1.2: Point Plot

geometrical objects to visualize. The general equation of a plane in R3 is of the
form

Ax+By + Cz = D.

There are three possible cases.

Case 1. Two variables are missing as in the equation z = 2. Since the
variables x and y are unconstrained, the graph is a plane passing through the
point (0, 0, 2) which is parallel to the xy-plane. The analog y = 2 in R2 is a
line passing through the point (0, 2), which is parallel to the x-axis.

Case 2. One variable is missing as in equation 2x + 3y = 6. Had this been
an equation in 2-dimensions, the graph would have been a straight line passing
through the points (3, 0) and (0, 2). However, here we are in R3 and the points
in the graph must include three coordinates, the z-coordinate being arbitrary.
The graph is the plane one obtains by extruding the line in the direction of
the missing coordinate, as shown in figure 1.3. The word of the day here is
“extrusion”. In 3d graphics, extrusion means to stretch a flat object in a
direction orthogonal to the plane in which the object lies, thereby producing
a 3-dimensional shape. In general, if we have the graph of an equation in two
variables, in dimension 3, the graph is obtained by extruding the curve in the
direction of the missing coordinate. Thus, for example,
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� The 3d graph of z = x is a plane containing the y-axis and the line at 45
degrees in the xz-plane

� The 3d graph of x2 + y2 = 1 is a circular cylinder symmetric with respect
to the z-axis.

� The 3d graph of x2 + z2 = 1 is a circular cylinder symmetric with respect
to the y-axis.

� The 3d graph of y = x2 is a parabolic cylinder with generator lines parallel
to the z-axis. A shape similar to bending a thin piece of cardboard.

Fig. 1.3: Graphs of Planes

Case 3. No missing coordinates. In this case, the equation of the plane is
best written in the standard form Ax + By + Cz = D. We will treat planes
formally in section 1.5, but there is no reason to wait until then to learn how
to visualize them. Consider the example 2x+ 3y + 2x = 6 shown in figure 1.3.
According to one of the Euclidean postulates, a plane is determined uniquely by
three non-collinear points. The easiest three points to locate are the intersec-
tions of the plane with the coordinate axes. These are obtained by successively
setting two of the coordinates equal to zero and solving for the remaining coor-
dinate. In the example, the x-intercept is obtained by setting y = z = 0. Then
2x = 6 and x = 3. The three intercepts are P (3, 0, 0), Q(0, 2, 0) and R(0, 0, 3).
We render the plane by drawing the triangle 4PQR. Of course, the plane that
contains the triangle extends infinitely in all directions. Typically, we render
planes by drawing a triangle or a parallelogram contained in the plane.

1.1.2 Distance Formula

Let P (x0, y0, z0) and Q(x1, y1, z1) be two points in R3. We make think of
the points P and Q as main diagonal vertices of a cuboid as shown in 1.4.
The segment PQ is the hypothenuse of a right triangle with height (z1 − z0),
and whose base is itself the hypothenuse of another right triangle with sides
(x1 − x0) and (y1 − y0). Applying Pythagoras’ theorem twice, we deduce that
the distance d(P,Q) between the two points is given by

d(P,Q) =
√

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2. (1.1)
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The formula is a natural extension of the distance formula one learns in 2-
dimensional coordinate geometry. In particular, if P is the originO, the distance
d(O,Q) is given by the square root of the sum of the squares of the coordinates
of Q.

Fig. 1.4: Distance Formula

From the same diagram 1.4, it is fairly obvious that the coordinates of the
midpoint M of the segment PQ are given by the average of the coordinates of
P and Q, namely

M

(
x0 + x1

2
,
y0 + y1

2
,
z0 + z1

2

)
. (1.2)

The distance formula can be extrapolated to Rn by simply taking the square
root of the sum of the squares of the differences of the coordinates of the two
points. In a similar way, the midpoint formula can also be generalized to Rn.

1.1.3 Spheres

A sphere S2 in R3 is completely determined by its center and its radius. If
the center is located at C(x0, y0, z0)) and the radius is R, the sphere consists
of all points X(x, y, z) such that distance d(C,X) = R. It follows immediately
that the equation of the sphere is given by,√

(x− x0)2 + (y − y0)2 + (z − z0)2 = R,

or

(x− x0)2 + (y − y0)2 + (z − z0)2 = R2. (1.3)

Any equation of the form 1.3 is a sphere and any sphere can be written in the
form 1.3. One can instantly recognize the equation of a sphere because it is
quadratic on x, y and z with equal coefficients (that by division can be set to
1), and there are no cross terms.
Example Find the equation of the sphere with radius 3 centered at C(4, 3, 3).
Solution. Let X(x, y, z) be an arbitrary point on the sphere. Setting the dis-
tance d(C,X)2 = 32, we get

(x− 4)2 + (y − 3)2 + (z − 3)2 = 9.
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Fig. 1.5: Sphere

Example Find the equation of a sphere with center C(1, 2, 3) and containing
the point P (4, 3,−1).
Solution

R2 =(4− 1)2 + (3− 2)2 + (−1− 3)2

=9 + 1 + 16

=26

Hence
(x− 1)2 + (y − 2)2 + (z − 3)2 = 26.

Example Given: x2 + y2 + z2 = x + y + z, find the center and radius of the
sphere. The equation is quadratic and the coefficients of x, y and z are equal to
1 already. Thus, this represents a sphere. We complete the squares to rewrite
in standard form.

(x2 − x ) + (y2 − y ) + (z2 − z ) = 0,

(x2 − x+ 1
4 ) + (y2 − y + 1

4 ) + (z2 − z + 1
4 ) = 1

4 + 1
4 + 1

4 ,

(x− 1
2 ) + (y − 1

2 )2 + (z − 1
2 )2 = 3

4 .

So, the sphere has center at C(1/2, 1/2, 1/2) and radius R =
√

3/2.
Example Conceptual hints

� Find the equation of a sphere if one of its diameters has end points
P (5, 4, 3) and Q(1, 6,−1). Hint: Use the distance formula to find the
radius R = 1

2d(P,Q), and the midpoint formula to find the center.

� Determine if three points A,B and C lie on a straight line. Hint: Compute
d(A,B), d(A,C) and d(B,C). Determine if the largest of these three
numbers is equal to the sum of the other two.

� Determine if three points A,B and C are the coordinates of a right tri-
angle. Hint: Compute d(A,B), d(A,C) and d(B,C). Determine if the
square of the largest of these three numbers is equal to the sum of the
squares of the other two.
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1.2 Vectors

1.2.1 Definition The space of Euclidean vectors E3 is defined as the set
of ordered triplets v = 〈v1, v2, v3〉, where vi ∈ R, for each i = 1, 2, 3. The
definition can be extended to any dimension n by replacing triplets to n-tuples.
Given any two triplets A = (a1, a2, a3), B = (b1, b2, b3),∈ E3 and any real
number c, we define two operations:

A + B = (a1 + b1, a2 + b2, a3 + b3), (1.4)

cA = (c a1, c a2, c a3).

The triplet 0 = 〈0, 0, 0〉 is called the zero vector. Real numbers such as c ∈ R
are called scalars. In this course, all scalars are real numbers, but one could
conceive of a geometry in which the scalars are complex numbers or some other
entities.
The two operations of vector sum and multiplication by a scalar satisfy 8 natural
properties (VS1...VS8), inherited from real numbers, as follows:

� VS1: A + B = B + A,

� VS2: (A + B) + C = A + (B + C),

� VS3: A + 0 = A,

� VS4: A + (−A) = 0,

� VS5: c(A + B) = cA + cB

� VS6: (c+ d)A = cA + dA,

� VS7: (cd)A = c(dA),

� VS8: 1A = A.

A space with two operations which satisfy the 8 properties listed above is called a
vector space. The triplet that represents the vector are called the components
of the vector.

Fig. 1.6: Vector Operations

Vectors in E3 are not the same as points in R3 and they must not be
confused. For a point (a1, a2, a3) ∈ R3, what we mean by P (a1, a2, a3) is just
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a label to identify the location of the point. On the other hand, in calculus
and elementary physics, vectors are viewed as triplets, independent of their
location in space. Vectors can be added, points can’t. Similarly, it makes no
sense to multiply a point by a number. Vectors are usually regarded as arrows
characterized by a direction and a length. Thus, a vector A = 〈a1, a2, a3〉 can
be parallel-transported so that the foot of the arrow can be located at any point
in space. The tip of the arrow would then be located at the point obtained by
starting at the foot of the arrow, followed by steps of size a1 in the x-direction,
a2 in the y-direction and a3 in the z-direction. This representation leads to
a 1-1 correspondence between points and vectors which often causes confusion
to the novice. Given a point P (a, b, c) ∈ R3 we can associate to it uniquely,
a vector P = 〈a, b, c〉 which corresponds to the arrow with foot at the origin
and head at the point P . We then say that P is the position vector of the
point P . Triplets representing coordinates of a point will always be written
with parenthesis and vector components with angle brackets.

Geometry

With the representation of vectors by arrows just described, the geometry of
the two vector operations can be easily visualized.

Vector addition: If A and B are vectors with corresponding representation by
arrows, the vector A + B is obtained by placing the foot of the arrow of the
B vector at the head of the A vector, then drawing a new vector with foot
at the foot of A and head at the head of B. The geometry is illustrated in 2
dimensions in figure 1.6. Thus, for example If

A =〈3, 1〉,
B =〈4, 2〉, then

A + B =〈7, 3〉,

Multiplication by a scalar: Let c > 0 be a scalar and A a vector. Then cA is
represented by an arrow in the same direction, stretched by the factor c if c > 1
or contracted by the factor c if 0 < c < 1. If c is negative, a similar effect is
obtained, but then the resulting arrow points in the opposite direction.

Examples

� The vector 2A is twice as long as A and points in the same direction as A.

� The vector −3A is three times as long as A, but points in the opposite
direction.

� The vector 1
2A is half as long as A and points in the same direction as

A.

� If the vector F represents a force, then the vector −F represents a force
of the same magnitude but in the opposite direction.
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� If F1 and F2 represent two forces acting on an a mass (regarded as a
point-mass), then the total force acting on the mass is given by F1 + F2.

� Parallelogram law: As shown in figure 1.6, two vectors A,B drawn with a
common foot, span a parallelogram. Then the diagonal vector with foot at
the common foot of A and B represents A + B, whereas the diagonal from
the head of A to the head of B represents B−A = B + (−A). Students
should take the time to draw the appropriate parallel translations to verify

latter assertion. In particular, the vector
−−→
PQ from P to Q is given by

−−→
PQ = Q−P.

Note: When writing vectors by hand, it is not practical to use boldface notation,

instead, it is standard to denote vectors with an overhead arrow
−→
A. There is

no standard notation on whether or not use uppercase for the names of vectors.
For example, force vectors F are typically uppercase, but velocity vector v are
most commonly lowercase.

1.2.2 Definition Let A = 〈a, b, c〉 be a vector. The norm / length /mag-
nitude is given by

‖A‖ =
√
a2 + b2 + c2.

If A is the position vector of the point A, then ‖A‖ is the distance from A to
the origin. A vector of length one is called a unit vector. If a vector is divided
by its length, one gets a unit vector in the same direction.

1.2.3 Definition The standard basis of R3 consists of the three unit vec-
tors

i =〈1, 0, 0〉 = e1,

j =〈0, 1, 0〉 = e2,

k =〈0, 0, 1〉 = e3.

Any vector A ∈ E3 can be written as a linear combination of the basis vectors.
That is

A =〈a, b, c〉,
=a i + b j + ck

Both notations are common, but a “hybrid” notation that denotes a vector
using a combination of brackets and basis vectors is incorrect.
Example Find a unit vector in the direction of A = 〈3, 1, 1〉.
Solution:

‖A‖ =
√

32 + 12 + 12 =
√

11,

u =
A

‖A‖
,

=
〈3, 1, 1〉√

11
= 〈 3√

11
, 1√

11
, 1√

11
〉.



1.2. VECTORS 9

Fig. 1.7: Basis

Let F = 〈Fx, Fy〉 ∈ E2 be a vector in the plane such as a force vector. If we
denote the length ‖F‖ of the vector by F and the angle the vector makes with
the horizontal axis by θ, then, as shown in figure 1.7, the components of the
vector in standard basis are.

F =Fx i + Fy j where,

Fx =F cos θ,

Fy =F sin θ,

F =‖F‖,
θ = tan−1(Fy/Fx).

It is understood that the direction angle θ is positive when measured coun-
terclockwise. Unless otherwise specified, angles in calculus are measured in
radians.
Definition The magnitude v of a velocity vector v is called the speed.
Example What is the angle between the vector F = i +

√
3 j and the positive

direction of the x-axis?
Solution:

F =‖F‖ =

√
12 +

√
3

2
= 2 (30-60 right triangle),

θ = tan−1(
√

3/1) = π/3.

Example A woman walks due west on the deck of a ship at 3 mi/h. The ship
is moving north at a speed of 22 mi/h. Find the speed and and direction of the
woman relative to the surface of the water.
Solution: The velocity vector v of the woman is the sum of the two vectors.

v1 =− 3 i + 0 j,

v2 =0 i + 22 j,

v =v1 + v1 = −3 i + 22 j,

v =‖v‖ =
√

(−3)2 + 222 =
√

493,

θ = tan1(− 22
3 ).

Bearing angles are usually measured in degrees. So, to compute the angle θ in
a calculator one must first set the device to degree mode. The calculator result
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is negative since the inverse tangent function by default has range (−π/2, π/2).
To get the correct answer one must add 180o which is supplement in the third
quadrant. The answer is θ

.
= 93o.

The hand-written class notes contain some typical static equilibrium problems
with hanging masses. The problems on this topic are for enrichment only and
will not be worked out in class. Solutions to two static equilibrium problems
appear in page 5/55 of the handwritten version posted at the course web site.

http://people.uncw.edu/lugo/courses/M261/M261_ClassNotes_OCR.pdf.

1.3 Dot Products

The two operations of vector addition and multiplication by a scalar which
are permitted under structure of a vector space, are not sufficient for our pur-
poses. We need to equip the space with two additional vector multiplication
structures. The first of these multiplications is called the dot product

Fig. 1.8: Dot Product

1.3.1 Definition Let A = 〈a1, a2, a3〉 and B = 〈b1, b2, b3〉 be two vectors in
3-space and denote the relative angle between the two vectors by θ, as shown
in figure 1.8. The dot product of the two vectors is defined by

A ·B = a1b1 + a2b2 + a3b3 =

3∑
k=1

akbk. (1.5)

Notes:

� The dot product of two vectors is a scalar. For this reason, the dot
product is also called in the literature, the scalar product or the inner
product. To avoid possible confusion with the vector space operation of
multiplication by a scalar, we will not use the term scalar product again
in these notes.

� The dot product operation generalizes to n-dimensions by simply changing
the sum from 1 to n for vectors in En.

� By the “angle” between two vectors we mean the angle formed by the two
vectors arranged to have a common foot.
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� It follows immediately from the definition that

A ·A = ‖A‖2. (1.6)

1.3.2 Theorem The dot product of the two vectors A and B satisfies the
equation

A ·B = ‖A‖ ‖B‖ cos θ (1.7)

The proof follows from applying the law of cosines to the triangle shown in
figure 1.8, and comparing to the length of C = B−A.

‖B−A‖2 =‖A−B‖2

=(A−B) · (A−B)

=A ·A + B ·AB− 2A ·B,
=‖A‖2 + ‖B‖2 − 2A ·B,
=‖A‖2 + ‖B‖2 − 2‖A‖ ‖B‖ cos θ, (Law of Cosines).

The theorem is central because it allows for a geometry and a physics interpre-
tation of the dot product.

1.3.1 Geometry of Dot Products

If we let x denote the (scalar) projection of the vector B onto A, we see imme-
diately from the definition of cosines applied to figure 1.8, that

x ≡ Proj(B,A) =‖B‖ cos θ,

=
A ·B
‖A‖

(1.8)

The terminology ProjAB is also used in the literature. As the name indicates,
the scalar projection gives a number also called the component of the the
vector B in the direction of A. Clearly, the scalar projection of B onto A is
not the same as the scalar projection of A onto B. Thus, it is essential that
in formula 1.8, one has the norm of the correct vector in the denominator. It
might be easier to remember just the formula for the dot product, and draw
the triangular picture in figure 1.8.

The vector projection of B onto A, is obtained by multiplying the scalar
projection by a unit vector in the direction of A, namely

−−−−−−−−→
Proj(B,A) =

(
A ·B
‖A‖

)
A

‖A‖
,

=

(
A ·B
‖A‖2

)
A,

=

(
A ·B
A ·A

)
A. (1.9)
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The last step makes the formula slightly more “symmetrical” and easier to
remember. It also serves as preparation for future encounters with projections
of wave functions onto eigenstates in quantum mechanics, or root systems in
representation theory.

The dot product formula can be “reversed engineered” to find the angle θ
between two vectors. Namely, to find θ, one solves equation the equation 1.7 for
cos θ, then one finds θ by taking the inverse cosine. In particular, two vectors
are perpendicular if and only their dot product is zero.

A ⊥ B⇔ A ·B = 0. (1.10)

Example Given A = 〈−1, 1, 0〉 and B = 〈2,−1, 1〉, find: a) A ·B, b) the
component of B in the direction of A, c) the angle between the two vectors.
Solution:

A ·B =(−1)(2) + (1)(−1) + (0)(1) = −3,

P roj(B,A) =
−3√

(−1)2 + 12 + 02
=
−3√

2
,

θ = cos−1

(
−3√
2
√

6

)
= cos−1

(
−3√

12

)
.

Example Determine whether or not the points P (1,−3,−2), Q(2, 0,−4) and
R(6,−2,−5) are the vertices of a right triangle.

Solution: Let A =
−−→
PQ,B =

−→
PR,C =

−−→
QR and compute the dot products.

A =〈1, 3,−2〉,
B =〈5, 1,−3〉,
C =〈4,−2,−1〉,

A ·B =5 + 3 + 6 = 14,

A ·C =4− 6 + 2 = 0, −→ A ⊥ C, Right angle.

B ·C =20− 2 + 3 = 21.

1.3.2 Physics of Dot Products - Work

Fig. 1.9: Work

Let F be a force vector and r a position vector representing the displacement
of a point mass. We consider three cases as depicted in figure 1.9.
Case 1: Here we assume the force vector F is constant and the force is exerted
upon a mass along a constant direction vector r. The work W done by the
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force on the mass is then defined by the magnitude of the force multiplied by
the displacement. The displacement is the magnitude of r. In other words,

W = ‖F‖ ‖r‖ (1.11)

This formula appears in a first introduction to physics as W = force × distance.
In MKS units, the force is measured in Newtons and the displacement in meters.
The standard unit of work is a Joule. This is same as the standard unit of
energy, the difference being that work can be negative.

1 Joule = 1 Newton-meter,
If one lifts vertically a mass m from a table to a height h, the magnitude of
the force of gravity is just the weight mg. It takes energy to lift the mass, and
since energy is conserved, the energy must be stored in the mass in the form of
potential energy

PE = mgh.

An object with a weight of 1 Newton is about the size of one brass “Fig Newton”.
The work against gravity to lift such an object i meter is about 1 Joule.
Case 2: Here we assume again that the force vector is constant but the force is
exerted upon a mass along a constant direction vector r which makes an angle
θ with the force vector. Then, only the scalar projection of F onto r, that is
only the component of the force in the given direction, has an effect in moving
the mass. Thus, The work done by the force on the mass is given by

W =‖F‖ cos θ ‖r‖,
W =F · r. (1.12)

Case 3. This is the most general case in which instead of a force, we have a force
field. That is, for each point in space there there is a force vector which may vary
in magnitude and direction from point to point. We also assume that instead of
a straight line, the mass is being pushed by the force along a curve C given by
a position vector r(t), which depends on time t. True to the spirit of calculus,
one divides the curve into infinitesimally small line segments with direction dr,
as shown in figure 1.11. The vector field will not have significant change as it
moves a mass from a point on the curve to another point infinitesimally close
along the curve. So, case 2 above applies and we get an infinitesimal amount
of work

dW = F · dr

The total work is then found by integrating along the curve

W =

∫
C

F · dr. (1.13)

The integral that appears in this general case is called a line integral. We
will have to wait until section 5.2 to learn how to compute such line integrals.
Computing work by line integrals is a major objective of this course. Thus, in
some sense, this course is mostly about energy!
Example Find the work done by a force F = 8 i − 6 j + 9 k that moves an
object along a straight line from the point P (0, 10, 8) to the point Q(6, 12, 20).
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Solution:

F =〈8,−6, 9〉,

r =
−−→
PQ = Q−P,

=〈6, 2, 12〉.
W =F · r = 8(6)− 6(2) + 9(12) = 144.

In a physics course, it would be unthinkable to pose a problem like this one
without stating the units.

1.4 Cross Products

Let

A = a1 i + a2 j + a3 k,

B = b1 i + b2 j + b3 k.

The cross product A×B is a new vector defined by the determinant

A×B =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ , (1.14)

=

∣∣∣∣a2 a3

b2 b3

∣∣∣∣ i− ∣∣∣∣a1 a3

b1 b3

∣∣∣∣ j +

∣∣∣∣a1 a2

b1 b2

∣∣∣∣k, (1.15)

where, recalling from pre-calculus, the determinant of a 2×2 matrix is given by
the product of the diagonal terms minus the product of the off-diagonal ones,∣∣∣∣a b

c d

∣∣∣∣ = ad− bc. (1.16)

.
Example

A = 3 i− 2 j + k,

B = i + 2 j + 3 k.

A×B =

∣∣∣∣∣∣
i j k
3 −2 1
1 2 3

∣∣∣∣∣∣ ,
=

∣∣∣∣−2 1
2 3

∣∣∣∣ i− ∣∣∣∣3 1
1 3

∣∣∣∣ j +

∣∣∣∣3 −2
1 2

∣∣∣∣k,
=− 8 i− 8 j + 8 k

We will be doing lots of computations of cross products. Since the computations
involve only simple arithmetic, It will be shown in class how to compute cross
products effectively in one line.
From elementary properties of matrices, we have the following facts:
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1. Determinants are defined only for square matrices. Since we only have the
three basis vectors i, j,k in the definition of cross products, this concept
only makes sense in dimension 3. Never write a determinant symbol for
a 2× 3 or other non-square arrays!.

2. If in a square matrix, one switches two rows, the determinant changes by
a minus sign. Hence

B×A = −A×B,

A×A = −A×A = 0.

3. If in a square matrix, one row is a multiple of another, the determinant
is 0. Hence, if B is a non-zero multiple of A, that is B = cA, c 6= 0,
then the cross product is 0. We conclude that if the cross product of two
vectors is zero, then vectors are parallel. That is,

A×B = 0⇔ A ‖ B.

4. By direct computation from the definitions one can verify that

(A×B) ·A = 0,

(A×B) ·B = 0,

so the vector (A×B) is perpendicular to both, A and B.

We have the following three neat theorems.

1.4.1 Triple Product

Let

A =〈a1, a2, a3〉,
B =〈b1, b2, b3〉,
C =〈c1, c2, c3〉.

Then we have the following important vector identities

1.4.1 Theorem Triple Product

A · (B×C) =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3,

∣∣∣∣∣∣ (1.17)

The quantity on the left hand side is called the scalar triple product or just
the triple product. The triple product is also denoted by (ABC).

1.4.2 Theorem Triple Cross Product

A× (B×C) = (A ·C)B− (A ·B)C, (1.18)
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If in the right hand side of the equation, one writes the vectors in front of the
coefficients, one gets the common mnemonic BAC minus CAB.

1.4.3 Theorem Cross-Dot-Cross Formula

(A×B) · (C×D) =

∣∣∣∣A ·C A ·D
B ·C B ·D

∣∣∣∣ (1.19)

Proof of triple product. For the the first assertion 1.17 we have,

A =a1 i + a2 j + a3 k,

B×C =

∣∣∣∣b2 b3
c2 c3

∣∣∣∣ i− ∣∣∣∣b1 b3
c1 c3

∣∣∣∣ j +

∣∣∣∣b1 b2
c1 c2

∣∣∣∣k,
A · (B×C) =a1

∣∣∣∣b2 b3
c2 c3

∣∣∣∣− a2

∣∣∣∣b1 b3
c1 c3

∣∣∣∣+ a3

∣∣∣∣b1 b2
c1 c2

∣∣∣∣ ,
=

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3.

∣∣∣∣∣∣
Again, by properties of determinants, if one swaps two rows, the determinant
changes by a minus sign. By swapping two appropriate rows at a time, one can
verify that

A · (B×C) = C · (A×B) = B · (C×A)

so there is no minus sign ambiguity in the notation (ABC) for any three cyclic
permutation of the letters.

Proof of BAC-CAB At this stage we do not have enough fancy tools such as
tensor calculus to provide an elegant proof of equation 1.18, so basically, the
uninspiring approach is to compute both sides and compare to show they yield
the same answer. We present a slightly more instructive computation that at
least has some value in extracting the reason why the formula works. We start
with the right-hand-side and bootstrap our way to the left-hand-side.

(A ·C)B− (A ·B)C = (a1c1 + a2c2 + a3c3)〈b1, b2, b3〉−
(a1b1 + a2b2 + a3b3)〈c1, c2, c3〉,

= [b1(a1c1 + a2c2 + a3c3)− c1(a1b1 + a2b2 + a3b3)] i+

[b2(a1c1 + a2c2 + a3c3)− c2(a1b1 + a2b2 + a3b3)] j+

[b3(a1c1 + a2c2 + a3c3)− c3(a1b1 + a2b2 + a3b3)] k.

Keeping in mind our goal, as we extract the coefficients of i we want the ex-
pression in terms of the minors of the determinant, so we factor our a2 and a3.
We adjust the signs of the factors to keep the indices leading to easy to read
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determinants. We do the same for the coefficients of j and k.

(A ·C)B− (A ·B)C = [ a2(b1c2 − b2c1) + a3(b1c3 − b3c1)] i+

[−a1(b1c2 − b2c1) + a3(b2c3 − b3c2)] j+

[−a1(b1c3 − b3c1)− a2(b2c3 − b3c2)] k+

=

(
a2

∣∣∣∣b1 b2
c1 c2

∣∣∣∣+ a3

∣∣∣∣b1 b3
c1 c3

∣∣∣∣) i(
−a1

∣∣∣∣b1 b2
c1 c2

∣∣∣∣+ a3

∣∣∣∣b2 b3
c2 c3

∣∣∣∣) j(
−a1

∣∣∣∣b1 b3
c1 c3

∣∣∣∣− a2

∣∣∣∣b2 b3
c2 c3

∣∣∣∣) k

=

∣∣∣∣∣∣
i j k
a1 a2 a3∣∣ b2 b3
c2 c3

∣∣ − ∣∣ b1 b3c1 c3

∣∣ ∣∣ b1 b1
c1 c2

∣∣
∣∣∣∣∣∣

= A× (B×C).

Proof of Cross-Dot-Cross formula. The proof of equation 1.19 follows from a
slightly tricky application of the “BAC-CAB” formula and the preceding remark
on the order of operations.

(A×B) · (C×D =(A×B×C) ·D),

=[(A ·C)B− (A ·B)C] ·D,
=(A ·C)(B ·D)− (A ·B)(C ·D),

=

∣∣∣∣A ·C A ·D
B ·C B ·D.

∣∣∣∣
The special case of when C = A and D = B is even neater. We get

‖A×B‖2 =(A×B) · (A×B),

=

∣∣∣∣A ·A A ·B
B ·A B ·B

∣∣∣∣ ,
‖A×B‖2 =‖A‖2‖B‖2 − ‖A ·B‖2, (1.20)

=‖A‖2‖B‖2 − ‖A‖2‖B‖2 cos2 θ

=‖A‖2‖B‖2(1− cos2 θ),

=‖A‖2‖B‖2 sin2 θ.

Taking the square root of both sides taking into account that the angle θ be-
tween two vector is between 0 and π so that the sine is positive, we get

‖A×B‖ = ‖A‖‖B‖ sin θ. (1.21)

The intermediate result

‖A×B‖2 = ‖A‖2‖B‖2 − ‖A ·B‖2, (1.22)

is called Lagrange’s identity.
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Fig. 1.10: Cross Product

1.4.2 Geometry of Cross Products

From figure 1.10 and equation 1.21 we see that the magnitude of the cross
product of two vectors gives the area of the parallelogram subtended by the
two vectors. This is a very important geometrical fact. If we use the notation
Area

�
for the subtended area, we have just shown that

Area
�

= ‖A×B‖. (1.23)

The area Area4 of the subtended triangle would be half of this. Since the cross
product vector is also perpendicular to the two vectors, we can visualize the
A×B as the area of the subtended parallelogram times a unit vector n that is
normal (perpendicular) to the plane containing the parallelogram.

A×B = (Area
�

) n, where ‖n‖ = 1, n ⊥ A, n ⊥ B.

The orientation of the unit normal vector n is chosen according to the right
hand rule. A plane is uniquely defined by a point and a vector perpendicular
to the plane. Thus, the cross product is an essential tool to find equations of
planes. By dividing a curved surface into a grid of infinitesimal parallelograms
with areas given by cross products of infinitesimal vectors, we can integrate and
thus find the full surface area. This will a major topic to be covered in section
4.7.

The diagram on the right of figure 1.10 shows a parallelepiped subtended by
three vectors A,B,C. The base of the parallelepiped is the area spanned by A
and B and the height h is the projection of C onto the unit normal vector n,
that is, h = ‖C‖ cos θ. Hence, the volume is

V = (Area
�

)h = ‖A×B‖ ‖C‖ cos θ = (A×B) ·C. (1.24)

Thus, the volume subtended is the absolute value of the determinant of the
matrix with rows given by the components of the three vectors. A parallelepiped
can be divided into two congruent prisms, and as shown in figure 1.11, each
prism can be divided into three tetrahedra of equal volumes. Three vectors
A,B,C, subtend a tetrahedron, a prism and a parallelepiped. The volumes are
given by
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Fig. 1.11: Prism

Volume(Parallelepiped) = |(ABC)|,
Volume(Prism) = 1

2 |(ABC)|,
Volume(Tetrahedron) = 1

6 |(ABC)|.
Determinants were known to Leibnitz in the 1600’s
but cross products were not introduced until the
1840’s by Hamilton in his treatment of quaternions.
The formula for the cross product 1.15 in terms of
cofactor expansion along a row, is due to Laplace.
There are 6 different permutations of the vectors in
the triple product (ABC), three of which are even
and three odd, thus, 3 of the permutations yield the
volume and the other three, the negative of the vol-
ume. Cross product of vectors in E2 only makes sense if one embeds the vectors
in R3 by taking the z-component equal to zero. One can then verify immedi-
ately, that the length of the cross product of to vectors is equal the absolute
value of the corresponding 2× 2 matrix, and this is equal to the area of paral-
lelogram subtended by the two vectors. There is no cross product for vectors
A,B,C,D in four dimensions, but the determinant with this row vectors does
exist. In that case, absolute value of the 4× 4 determinant gives the hypervol-
ume.

Geometry Examples

Example Area of a triangle

Find the area of the triangle in R2 with vertices at P (1, 2), Q(3, 5) and R(3, 8).
Solution:

Let A =
−−→
PQ = 〈2, 3, 0〉,

B =
−→
PR = 〈2, 6, 0〉.

Then A×B =6 k,

Area4 = 1
2‖A×B‖ = 3.

Example Find the volume of the tetrahedron spanned by the vectors A =
〈1, 2, 3〉,B = 〈−1, 1, 2〉, and C = 〈2, 1, 4〉.
Solution:

V ol = 1
6 |(ABC)|,

= 1
6

∣∣∣∣∣∣
1 2 3
−1 1 2
2 1 4

∣∣∣∣∣∣ ,
=

9

6
=

3

2

1.4.4 Example Distance from a point to a plane
Let P be a point not in a plane that passes through the points Q,R and S. Let

A =
−−→
QR, B =

−→
QS, C =

−−→
QP,
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The vector A×B is perpendicular to the plane. Divide this vector by its length
to get a unit normal vector N. Let θ be the angle between C and N. The
distance d from the point P to the plane is just the projection d = ‖C‖ cos θ.
We compute,

N =
A×B

‖A×B‖
, ‖N‖ = 1.

d =‖C‖ cos θ = C ·N,

d =
C · (A×B)

‖A×B‖
, (1.25)

d =
|(ABC)|
‖A×B‖

(1.26)

It is assumed of course, that ‖A×B‖ 6= 0, else, the vectors would be parallel
and they would not span a plane. In the last line we inserted an absolute value,
since a distance can’t be negative.

1.4.3 Physics of Cross Products

1.4.4 Torque

In elementary physics, the cross product manifests itself in many ways.
Suppose we were trying to turn a bolt with a wrench with lever arm given by
vector r with a force F applied at the farthest point on the wrench . If the
force is at a right angle to the lever arm, the magnitude τ of the torque is given
by the simple lever formula of Archimedes, τ = ‖r‖ ‖F‖. The MKS units of
torque are Newton-meters. In the primitive American system, the units are
foot-pounds. The units are the same as the units of energy, but torque is more
like the rotational version of force, so we reserve Joules units only in the case
when Newton-meters refers to energy or work. If the force is applied in the
direction of the lever arm, the bolt will not rotate and the torque is zero. If
the force is applied at an angle θ, only the component of the force ‖F‖ sin θ
perpendicular to the lever arm, will make a contribution to the rotation. So
the magnitude of the torque is

τ = ‖r‖ ‖F‖ sin θ = ‖r× F‖

The torque is in fact defined as the vector

τ = r× F (1.27)

Angular Momentum

If a particle of mass m is moving with velocity vector v, the linear momentum
P is defined by P = mv. Students are often introduced to Newton’s second law
of motion as F = ma. The actual law of motion F = dP/dt written by Newton,
is that force is the rate of change of momentum. This allows for a system in
which the mass of the object is not constant, as in the case of a rocket. The
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rotational versions of the second law are given in relation to motion with a
position vector r about a pivot point. The relevant quantities are,

ω = r× v, Angular velocity,

α = r× a, Angular acceleration,

L = r×P, Angular momentum,

τ = r× F, Torque, (1.28)

τ =
d

dt
L, Second Law. (1.29)

Lorentz Force

The force exerted on a particle with charge q moving with velocity v in the
presence of an electric field E and a magnetic field B is given by the Lorentz
force

F = q(E + v ×B)

This force is the principle behind the design of cyclotrons and bubble chambers.

1.5 Lines and Planes

Starting about the 8th grade, students learn that the equation z = mx+ b
represents a straight line with slope m = ∆z/∆x and z-intercept b. In R3 we
have three variables so this definition of slope m is no longer valid. Also the
natural extension of the general equation of a line Ax + By = C to three
variables would be Ax + By + Cz = D but the latter describes a plane, not a
line. To find equations of lines and planes in R3 we allude to the following two
Euclidean postulates.

� Given a point and a direction, there is only one line passing through that
point in that direction.

� Given a point and a direction, there is only one plane passing through
that point and perpendicular to that direction.

We stipulate a direction by a vector. We think at this time it is appropriate
to issue an early warning not to confuse lines with planes! It might sound odd
to issue this warming since clearly lines are different than planes. Yet, year
after year, there are students who respond with the equation of a plane when
prompted for the equation of a line, and viceversa. The confusion is a fatal
error. The source of the confusion is that equations of lines and planes require
exactly the same data, namely, a point and a vector, as shown in figure 1.12.

1.5.1 Lines

Let P (x0, y0, z0) ∈ R3 be a given point and v = 〈a, b, c〉 a constant vector.
Suppose that X = 〈x, y, z〉 the position vector for an arbitrary point on the line
L determined by P and v. The notation r = 〈x, y, z〉 is also commonly used.
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Fig. 1.12: Lines and Planes

Then, the vector
−−→
PX = X−P must be a multiple of v as shown in figure 1.26;

that is, X−P = tv, where t is a real number. Therefore, the vector equation
of the line must be

X(t) = r(t) = P + tv, where, t ∈ R. (1.30)

A remark on notation is in order. Naming the position vector of an arbitrary
point in R3 by X (or x) is logistically a natural choice. Using r instead is also
a good choice because the length r of the vector would represent the distance
of the point to the origin, which would be historically consistent with Newton’s
1/r2 law. Equation 1.30 says that to get to a point on L with position vector r,
one starts at the initial position vector P, then flows by t units along the vector
v. The variable t is called a parameter, which we may interpret as being
time in some unit. An equation for a position vector in R3 depending on one
parameter describes a 1-dimensional continuum, as it should be for a line. In
practice, equation 1.30 is most useful when written in terms of its components.
We have

〈x, y, z〉 = 〈x0, y0, z0〉+ t〈a, b, c〉, hence,

x =x0 + at,

y =y0 + bt,

z =z0 + ct. (1.31)

So, the single vector equation 1.30 of the line is equivalent to three scalar
parametric equations 1.31. Unless otherwise specified in the problem, all
equations of lines in this course should be answered in parametric form.
We can eliminate the parameter and reduce to a system of two equations

x− x0

a
=
y − y0

b
=
z − z0

c
. (1.32)

This is called the symmetric form of the equation of the line. Parametric
equations are the preferred form for at least two reasons. First, the parametric



1.5. LINES AND PLANES 23

form has built-in dynamics. It is interpreted not just as a graph of a line,
but rather, as the trajectory of a particle moving along a straight line. In fact,
getting a bit ahead of ourselves and take derivative of equation 1.30 with respect
to t, we see that (v) is the velocity vector.

dr

dt
= v.

Since v is constant, the second derivative is zero, which means the acceleration
is zero and so is the force. This is consistent with Newton’s first law. A particle
with constant velocity moves along a straight line unless acted upon by an
external force. The parametric equation is not unique. For example, we could
replace v by 2v, and the particle would still be moving along the same straight
line, but now with twice the velocity.

A second reason why parametric equations are more suitable for physics and
engineering is that the symmetric form is not quite right in the case when one
or two of the components of the direction vector is zero. For example, if a = 0,
then the the first term of equation 1.32 must be separated to read x = 0. It
is common to abuse notation and leave zero components in the denominator
of equation 1.32 with the understanding this just means that the variable in
the numerator is constant. Of course, the equations must be consistent with
y = mb+ b in two variables. This is easily seen from the symmetric equation

x− x0

a
=
y − y0

b
,

y − y0

x− x0
=
b

a
= m.

This is just the point-slope formula for a line passing through the point (x0, y0)
and slope m = b/a as it should be since that is the slope of the direction vector
〈a, b〉.

1.5.2 Planes

Equations of planes are just a easy to construct. Let P (x0, y0, z0) ∈ R3 be
a given point and N = 〈A,B,C〉 a constant vector. Suppose that X = 〈x, y, z〉
is an arbitrary point on the plane P determined by P and normal vector N.

Then, the vector
−−→
PX = X−P must be perpendicular to N as shown in figure

1.26; that is,

(X−P) ·N = 0. (1.33)

In terms of the components, we have

A(x− x0) +B(y − y0) + C(z − z0) = 0 (1.34)

Distributing the multiplications, we get the standard linear equation of a
plane

Ax+By + Cz = D, (1.35)
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where D = Ax0 +By0 +Cz0 is just a constant. There is no particular geometric
significance to D other than if D = 0, the plane goes through the origin, and
the larger the absolute value of D, the further the plane is from the origin.
Example Line passing through two points
Find the equation of the line passing through P (1, 3,−1) and Q(2, 3, 5).

Solution: Let v =
−−→
PQ = 〈1, 0, 6〉. Then, equation 1.31 gives immediately

x =1 + t,

y =3,

z =− 1 + 6t.

The symmetric equation would be

x− 1

1
=
y − 3

0
=
z + 1

6

Notice that when t = 0 we are at the point P and when t = 1 we are at the
point Q. This can’t be a coincidence. Let P and Q are arbitrary points and

choose the direction vector as v =
−−→
PQ. Then we have,

r(t) =P + tv,

=P + tQ−P,

r(t) =(1− t)P + tQ. Therefore, (1.36)

r(0) =P,

r(1) =Q.

So, with the choice v =
−−→
PQ, the values t ∈ [0, 1] describe the line segment PQ.

We will need this fact often when performing line integrals later. The fact is
also used in basic computer graphics like Paint, to render line segments.
Example Plane containing three points
Find the equation of the plane that passes through three points, say P (3, 0, 0), Q(0, 2, 0)
and Q(0, 0, 6).

Solution: Let A =
−−→
PQ and B =

−→
PR. We have,

P =〈2, 0, 0〉
A =〈−3, 2, 0〉
B =〈−3, 0, 6〉

A×B =〈12, 18, 6〉 = 6〈2, 3, 1〉,
N =〈2, 3, 1〉,

2(x− 3) + 3(y − 0) + 1(z − 0) =0, from equation 1.35

2x+ 3y + z =6

A neat way to write the equation of plane that has non-zero coordinate inter-
cepts (a, 0, 0), (0, b, 0), (0, 0, c) is

x

a
+
y

b
+
z

c
= 1.
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Example Line parallel to another line

Find the line through P (−6, 2, 3) and parallel to the line 1
2x = 1

3y = z + 1.
Solution

x

2
=
y

3
=
z + 1

1
,

v =〈2, 3, 1〉, from equation 1.32

x =− 6 + 3t,

y =2 + 3t,

z =3 + t

Example Plane parallel to another plane
Find the equation of the plane through the point P (3,−2, 8) and parallel to the
plane z = x+ y.
Solution. The required plane is parallel to the given plane x+ y − z = 0 so we
can use the same normal N = 〈1, 1,−1〉. So we have,

1(x− 3) + 1(y + 2)− (z − 8) =0,

x+ y − z = −7

Fig. 1.13: a) Line of intersection of two planes. b) Plane containing a point and a

line. c) Plane containing a point and the line of intersection of two planes

Example Line of intersection of two planes
Find the line of intersection of the plane P1 : x + 2y + 3z = 1 with the plane
P2 : x− y + z = 1.
Solution: First we need a point on the intersection of the planes. Since we have
two equations and three unknowns, the system is under-determined and we have
infinite number of solutions - in fact, we have a whole line worth of solutions.
All we need is one. We could, for example, find the solution corresponding to
choosing z = 0. This gives two equations and two unknowns that can be solved
by any algebraic method of your choice.

x+ 2y =1,

x− y =1,

x =1, y = 0,

P =〈1, 0, 0〉
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A line on a plane is perpendicular to the normal to the plane. Since the line
here lies on both planes, the direction vector is perpendicular to the normals of
both planes. We have

N1 =〈1, 2, 3〉,
N2 =〈1,−1, 1〉,

v = N1 ×N2 =〈5, 3,−3〉,

Therefore, the equation of the line of intersection is

x = 1 + 5t,

y = 3t,

z = −3t.

Example Plane containing a point and a line
Find the equation of the plane passes through the point P (3, 5,−1) and contains
the line x = 4− t, y = 2t− 1, z = −3t.
Solution: It is important to visualize these analytic geometry problems as in
figure 1.13(b) to develop a solution strategy. The data required to find the
equation of a plane is a point and a normal vector. A point P is given. For
the normal vector we need to find two vectors on the plane and use the cross
product. One vector on the plane is the direction vector v = 〈−1, 2,−3〉. For

another vector on the plane we use w =
−−→
QP , where Q is a point on the line.

We have

P =〈3, 5,−1〉,
Q =〈4,−1, 0〉, Point on the line with t = 0,

w =
−−→
QP =〈1,−6, 1〉,

v =〈−1, 2,−3〉,
N = w × v =〈16, 2,−4〉.

So, the equation of the plane is

16(x− 3) + 2(y − 5)− 4(z + 1) =0,

16x+ 2y − 4z =62.

Example Plane containing a point and the line of intersection of two planes
Find the equation of the plane through a point P and containing the line of
intersection of two other planes.
Solution. We present only the strategy for solving the problem. We need a
point on the plane and a vector normal to the plane. For the normal vector we
first find the equation of the line of intersection of the two planes as shown in
1.13(c). The problem then reduces to one just like the previous one.
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1.6 Quadric Surfaces

Following a parallel treatment of curves in elementary algebra, we now move
from linear to quadratic equations in R3. The key to visualization of quadric
surfaces is having good familiarity with conic sections. The fundamental equa-
tions for conic sections are:

� Parabola: z = x2.

� Ellipse:
x2

a2
+
z2

c2
= 1.

� Hyperbola:
x2

a2
− z2

c2
= c.

As shown in figure 1.14(b), if c > 0 the hyperbola opens left and right,
if c = 0 one gets two straight lines y = ±x, and if c < 0, the hyperbola
opens up and down.

Here, we have intentionally described the conics in x-z coordinates in anticipa-
tion to making an analogy with the extensions to the corresponding surfaces.
A good starting point is this: If in an equation of a curve in x-z coordinates,
one replaces x2 by the square of the polar coordinates distance to the origin
r2 = x2 + y2, one gets a surface of revolution with the same curve as gen-
erators and symmetry about the z-axis. The cross-sections of the surface with
horizontal planes z =constant are circles. Thus, for example

Parabola z = x2 7→ z = x2 + y2 Paraboloid

Circle x2 + z2 = 1 7→ x2 + y2 + z2 = 1 Sphere

Hyperbola x2 − z2 = 1 7→ x2 + y2 − z2 = 1 Hyperboloid of 1 sheet

Two lines x2 − z2 = 0 7→ x2 + y2 − z2 = 0 Cone
Hyperbola x2 − z2 = −1 7→ x2 + y2 − z2 = −1 Hyperboloid of 2 sheets

If instead one replaces x2 by (x
2

a2 + y2

b2 ) the horizontal cross-sections become
elliptical. Horizontal cross-sections are also called level curves or contours.

Fig. 1.14: a) Paraboloid. b) Hyperboloids - Cone

With the simple observation above, we can now identify the following quadrics
as shown in figure 1.14:
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� z =
x2

a2
+
y2

b2
. Elliptic paraboloid. The paraboloid opens “upwards”

along the z-axis. We use quotation marks because coordinate axes can be
rotated at will as long as one preserves the right-hand orientation. Also,
if in the equation one interchanges two variables, say x and z, the shape
of the surface would be identical but the central axis of symmetry would

now be the x-axis. For example, x = y2

a2 + z2

b2 is a paraboloid in which
the x-axis is the axis of symmetry. If a = b, we would have a circular
paraboloid. The language is inconsistent here in regards to the suffix of
the first descriptor. It really should be called a “circlic paraboloid”, but
nobody uses that!

�
x2

a2
+
y2

b2
− z2

c2
= 1. Elliptic hyperboloid of one sheet. In the figure 1.14,

the hyperboloid of one sheet is the one that looks like a nuclear plant
cooling tower. The cross-sections with horizontal planes z = constant
are ellipses. The cross-sections with vertical planes x = constant, or
y = constant are hyperbolas. For instant algebraic pattern recognition,
the equation is quadratic in all three variables, the right hand side is a
positive constant, and only one variable has a minus sign. One minus
sign, one sheet.

�
x2

a2
+
y2

b2
− z2

c2
= −1. Elliptic hyperboloid of two sheets. In the figure,

the hyperboloid of two sheets is the one that looks like two cups, one
opening “up” and one opening “down.” The cross-sections (when they
exist) with horizontal planes z = constant are ellipses. The cross-sections
with vertical planes x = constant, or y = constant are hyperbolas. For
instant algebraic pattern recognition, the equation is quadratic in all three
variables, the right hand side is a negative constant, and only one variable
has a minus sign. Two minus signs, two sheets.

�
x2

a2
+
y2

b2
− z2

c2
= 0. Elliptic cone. The most common cones are circular

as in the equation z2 = x2 + y2. The cone had two funnels, one opens
up and one opens down. The graph is not a function of x and y because
there are two values of z for each point on the xy-plane other than the
origin. In the language of pre-calculus, it fails the vertical line test. If
one desires to get a function, one one must extract the square root and
choose a sign. Thus, for example z =

√
x2 + y2 would be a circular cone

with the funnel opening upwards. In this common example, notice that
the cross-section with the plane y = 0 gives two straight lines z = ±x at
45 degrees.

�
x2

a2
+
y2

b2
+
z2

c2
= 1. Ellipsoid. All the cross-sections with constant planes

are ellipses. If a = b = c = R, the ellipsoid is a sphere of radius R. If the
ellipsoid is obtained by rotating an ellipse along its minor axis then it is
“pancake-shaped” like an M&M and is called an oblate spheroid. If the
ellipsoid is “cigar-shaped” like a rugby ball, it is called a prolate spheroid.
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Fig. 1.15: Hyperbolic Paraboloid

Saddles: These quadric surfaces do not arise from extensions of rotating plane
curves. The generic equation of a saddle is

� z =
x2

a2
− y2

b2
. Hyperbolic paraboloid.

The level curves z = c, where c is a constant, depend on the value of c.
If c > 0 the level curves are hyperbolas opening left and right. If c = 0,
the level “curve” is two straight lines y = ±(a/b)x. If c < 0, the level
curves are hyperbolas opening up and down. Thus, if z represents the
height of the function, we can think of the plane curves in figure 1.14(b)
as being a topographical map of the surface. The cross-section by the
vertical plane y = 0 is a parabola that opens up and the cross-section
x = 0 is a parabola that opens down. Because of this, the technical name
of the surface is a hyperbolic paraboloid, but a saddle is a perfectly good
mathematical term. The plot on the left of figure 1.15 shows the surface
z = x2 − y2 with tube-enhanced level curves. The graph in the middle is
given by exactly the same equation, but the domain region in the xy-plane
is a circle.

� z = 2xy. Hyperbolic paraboloid

The level curves 2xy = c of the surface z = 2xy look exactly like the level
curves of z = x2− y2 but rotated 45 degrees. Thus, when one renders the
surface over a standard square domain centered at the origin, the graph
appears to have pointed corners as in the surface depicted on the right in
figure 1.15.

Cylinders. An equation of a curve in two variables in R3 actually represents
a surface obtained by extruding the curve in the direction of the missing coor-
dinate. These surfaces are called cylinders. Again, there is an inconsistency
with the “oid ” suffix.

� y = x2. Parabolic cylinder.

The shape looks like a bent page. The equation is missing the z-coordinate,
so the graph is just the standard parabola extruded along the z-axis.

� x2 + y2 = R2. Circular cylinder.

This is the shape that one commonly conjures when thinking of a cylinder.
It looks like a tube.
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�
x2

a2
+
y2

b2
= 1. Elliptic cylinder.

�
x2

a2
− y2

b2
= 1. Hyperbolic cylinder.

� y = f(x). Cylinder with level curve in the shape of the curve y = f(x)

The quadric surfaces listed in this section are all given in generic form. If any
variable such as x in the equations is replaced by (x − h), the shape does not
alter in any way. The graph is just a translation of the original graph, in this
case, h units to the right. It is important that the student learns to instantly
identify a given quadric surface by the shapes of the conic cross sections and
the algebraic structure of the equation. Quadric surfaces will appear very often
in later chapter as examples to illustrate new concepts.



Chapter 2

Vector Functions

A vector function is a function that takes one or more variables as input and
outputs a vector. More specifically, a vector function is a map f : Rm → Rn.
The set of all possible inputs is called the domain and the set of all possible
outputs is called the range of the function. The domain could be all of Rm or
a subset thereof. If n = 1, that is, when the output are real numbers, it is an
overkill to think of this as a vector function since for R, the vector operations
are the same as the operations of real numbers. So, a function f : Rm → R
is called a real-valued function. In the first two semesters of calculus we
consider single-variable, real-valued functions f : R→ R. In this course we are
interested in the following cases:

� f : R→ Rn. These represent curves in parametric form. If n = 2 we have
parametric plane curves and if n = 3, we have parametric space curves.
We well cover these in section 2.1.

� f : Rn → R. These are called multivariate, real-valued functions. When
n = 2, that is, f : R2 → R the functions can be visualized as surfaces
z = f(x, y) in 3-space. We will study these extensively in chapter 3.

� f : Rn → Rn. These transformations are called change of coordinates.
We discuss briefly the two main examples in section 2.5.

� f : R2 → R3. These represent surfaces in parametric form. We provide
a short introduction to parametric surfaces in section 2.6 and treat the
subject of surface integrals in chapter 5

The main subject of the current chapter is the study of parametric curves
in R3, culminating on a derivation of Kepler’s laws.

31
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2.1 Space Curves in R3

A space curve in R3 is a map r : R→ R3

t
r−→ 〈x, y, z〉,

t 7→ 〈x(t), y(t), z(t)〉,
r(t) = 〈x(t), y(t), z(t)〉, or,

r(t) = x(t) i + y(t) j + z(t) k. (2.1)

The map assigns to each value of the variable t, a position vector r(t). Below is
a list of the most common curves you are expected to recognize when you step
on one.

1. Lines
r(t) = 〈x0 + at, y0 + bt, z0 + ct〉 (2.2)

The single parametric vector equation is clearly equivalent to three para-
metric scalar equations

x(t) =x0 + at,

y(t) =y0 + bt,

z(t) =z0 + ct.

2. Circles

Circles are plane curves. We present only the equation of circles parallel
to one of the coordinate planes. For example, a circle of radius R on the
plane z = c, can be represented by the vector parametric equation

r(t) = 〈R cos t, R sin t, c〉 (2.3)

The vector parametric equation is equivalent to the three scalar equations

x(t) =R cos t,

y(t) =R sin t,

z(t) =c.

It is sometimes possible to eliminate the parameter to get a Cartesian
equation that might be more familiar. In the case in question, the key is to
recall Pythagoras’s theorem in trigonometric form. Indeed, applying the
Pythagoras trigonometric identity cos2 t+ sin2 t = 1, we get immediately

x2 + y2 = R2, z = c.

3. Ellipses

Ellipses are also plane curves. We present only the equation of ellipses
parallel to one of the coordinate planes. For example, an ellipse on the
plane z = c, can be represented by the vector parametric equation

r(t) = 〈a cos t, b sin t, c〉 (2.4)
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The vector parametric equation is equivalent to the three scalar equations

x(t) =a cos t,

y(t) =b sin t,

z(t) =c.

To verify this represents an ellipse we eliminate the parameter, again
evoking the fundamental trigonometric identity cos2 t + sin2 t = 1. We
have

x

a
= cos t,

x2

a2
= cos2 t,

y

b
= sin t,

y2

b2
= sin2 t, which gives,

x2

a2
+
y2

b2
= 1, z = c.

If we want the center shifted to (x0, y0, c) we just write

x(t) =x0 + a cos t,

y(t) =y0 + b sin t,

z(t) =c.

4. Hyperbolas

As above, we present only the equation of hyperbolas parallel to one of
the coordinate planes. It is often the case that students coming into this
course have not been properly exposed to hyperbolic functions of have
little recollection of them. To partially ameliorate this deficiency, we
present a brief review. Define, the hyperbolic cosine and hyperbolic sine
functions as

coshx =
ex + e−x

2
, (2.5)

sinhx =
ex − e−x

2
, (2.6)

We probably see a hyperbolic cosine function every day, because this is the
function describing the shape of a hanging cable. Now, here is a picture
2.1 of something you don’t see every day. This is the most beautiful
hyperbolic cosine function in the world. It is located at an idyllic place in
the Andes mountains near Bogotá, designed by architect Martha Lugo.
It follows immediately that

d

dx
coshx = sinhx,

d

dx
sinhx = coshx,
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Fig. 2.1: y = coshx

A short computation gives

cosh2 x− sinh2 =
1

4
[(ex + e−x)2 − (ex − e−x)2],

=
1

4
[e2x + 2exe−x + e−2x − (e2x − 2exe−x + e−2x)],

=
1

4
(4exe−x),

hence
cosh2 x− sinh2 x = 1

This is the hyperbolic analog of the trigonometric Pythagoras’ theorem.
For each formula in trigonometry, there is a corresponding formula for
hyperbolic functions. There is a (tanhx) function, a (sechx) function,
and other co-hyperbolic functions defined exactly the same way as in
trigonometry. There are sum and difference formulas, double angle for-
mulas, half angle formulas, and inverse hyperbolic formulas. For now, the
few facts listed above is all we need.

A hyperbola on the plane z = c, can be represented by the vector para-
metric equation

r(t) = 〈a cosh t, b sinh t, c〉 (2.7)

The vector parametric equation is equivalent to the three scalar equations

x(t) =a cosh t,

y(t) =b sinh t,

z(t) =c.

To verify this represents a hyperbola, we eliminate the parameter, but
this time we use the fundamental hyperbolic identity cosh2 t−sinh2 t = 1.
We have

x

a
= cosh t,

x2

a2
= cosh2 t,

y

b
= sinh t,

y2

b2
= sinh2 t, which gives,

x2

a2
− y2

b2
= 1, z = c.
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Note. Hyperbolic functions will be used extensively in this course, so this
might be a good time to review that appropriate section of the fat calculus
textbook. An alternative parametrization of the hyperbola above is given
by

r(t) = 〈a sec t, b tan t, c〉

Here one uses the fundamental identity sec2 t−tan2 t = 1 to eliminate the
parameter.

5. Parabolas

Again, we only present a parametrization of a parabola on a plane parallel
to one of the coordinate planes. On a plane, the equations of parabolas
are actually functions of x or y. When a curve on a plane parallel to the
xy-plane is expressed by an actual function (of x or y), there is always a
trivial parametrization. For example, the parabola x = ay2 + by + c on
the plane z = d can be written as

r(t) = 〈at2 + bt+ c, t, d〉 (2.8)

In general, if y = f(x), one can embed the plane curve on R3 by the
trivial parametrization

r(t) = 〈t, f(t), 0〉

6. Helix

The basic curves above are all plane curves. The present is the first ex-
ample in this list that represents a true space curve. The generic equation
is

r(t) = (a cos t, a sin t, ct). (2.9)

This curve is called a circular helix. Geometrically, we may view the
curve as the path described by the hypotenuse of a triangle with slope c,
which is wrapped around a circular cylinder of radius a. The projection
of the helix onto the xy-plane is a circle of radius a and the curve rises at
a constant rate c in the z-direction, as shown in figure 2.2. The circular
helix will serve as a good example to illustrate the dynamics of a particle
moving along a curve, as will be discussed later on this chapter.

The curve
r(t) = (a cosh t, a sinh t, ct). (2.10)

is called a hyperbolic helix. It has a similar interpretation as a curve
describing a hyperbola in xy-coordinates as it climbs at a constant rate
up a hyperbolic cylinder.

7. Twisted Cubic

This example illustrates the simplest cubic curve in R3. The vector equa-
tion is

r(t) = t i + t2 j + t3 k (2.11)
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Fig. 2.2: a) Circular Helix b) Twisted Cubic

This is equivalent to the three scalar equations x = t, y = t2, z = t3. It
follows that

y = x2, z = x3, z = y3/2

This means that a particle moving on a trajectory along the twisted cu-
bic is constrained to a parabolic cylinder in the xy-coordinates, a cubic
cylinder on the xz-coordinates, and a half-odd power cylinder in the yz-
coordinates. Here we are recalling that an an equation missing one coor-
dinate represents a generalized cylinder obtained by extruding that curve
in the direction of the missing coordinate. In other words, when pro-
jected onto the coordinate planes, the graph looks a parabola, a cubic
and a half-odd power function respectively. This very neat behavior is il-
lustrated in the fancy figure 2.2(b). In the figure we used an orthonormal
frame {T,N,B} instead of the standard orthonormal basis {i, j,k} for
reasons that will become clear later in this chapter.

This concludes the set of basic curves students are expected to recognize and
visualize on sight in this course. If a curve is not one of these, students may
avail themselves of Maple, Mathematica, Matlab, or other graphing software.

2.2 Calculus of Curves

We finally start doing some calculus. I think it is more instructive to present
the whole content in a “super-lecture” to get a holistic view of the theory, then
we go back and do more specific examples. Since all the concepts arise from
physics, it is my view that not covering the physics thoroughly would be a great
disservice.

Let r(t) = x(t) i + y(t) j + z(t) k.

2.2.1 Definition Let t0 be a particular value of t. We define the limit as t
approaches t0 as

lim
t→t0

r(t) = lim
t→t0

x(t) i + lim
t→t0

y(t) j + lim
t→t0

x(t) k (2.12)

The limit of the vector equation exists only if each of the three limits of the
components exist. If the limit exists, then the computation reduces to three
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single-variable calculus computations of limits. All the rules and theorems
about limits for functions of one variable apply.
Example Let

r(t) =
sin t

t
i +

t2 − 1

t+ 1
j +

et − 1

t
k

.
Then by using L’Hôpital’s rule on the first and third slots, we get

lim
t→0

r(t) = lim
t→0

[
sin t

t

]
i + lim

t→0

[
t2 − 1

t+ 1

]
j + lim

t→0

[
et − 1

t

]
k,

= lim
t→0

[
cos t

1

]
i + lim

t→0

[
t2 − 1

t+ 1

]
j + lim

t→0

[
et

1

]
k,

= 1 i− 1 j + 1 k.

Definition We say that r(t) is continuous at t0 if
a) r(t) is defined.
b) lim

t→t0
r(t) exists.

c) lim
t→t0

r(t) = r(t0)

In other words, the vector function is continuous if each the component func-
tions is continuous. All theorems and properties of continuous functions for a
single variable apply to each to the component functions.

Definition We say that r(t) is differentiable at t0 if each of the component
functions is differentiable at t0. Again, all theorems, and formulas of differen-
tiation of a function of a single variable apply to each component function. To
find the derivative of r(t) we just take the derivative of each component. We
will interpret the parameter t as time in some appropriate unit. We have the
following definitions

v(t) =
dr

dt
=

〈
dx

dt
,
dy

dt
,
dz

dt

〉
, Velocity, (2.13)

a(t) =
d2r

dt2
=

〈
d2x

dt2
,
d2y

dt2
,
d2z

dt2

〉
, Acceleration, (2.14)

v = ‖v‖ =

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
d2z

dt

)2

, Speed. (2.15)

There is a clear difference between velocity which is a vector and speed which is
a scalar. Conflating the two leads to fatal mistakes. At each point of the curve,
the velocity vector is tangent to the curve and thus the velocity constitutes a
“vector field” representing the velocity flow along that curve.
Integration of a vector function is also defined in the obvious way, namely∫ b

a

r(t) dt =

(∫ b

a

x(t) dt

)
i +

(∫ b

a

y(t) dt

)
j +

(∫ b

a

z(t) dt

)
k. (2.16)
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Example Projectile Motion
Suppose a projectile is launched from a position r(0) = x0i + y0j with a

speed v0 at an angle θ0. Then, the initial velocity vector is

v(0) = v0 cos θ0 i + v0 cos θ0 j.

Ignoring friction, the only force acting on the projectile is gravity. The accelera-
tion due to gravity is of magnitude a = g and it point downwards. We can easily
integrate the equations of motion. We use the prescribed initial conditions to
evaluate the constants of integration

a(t) = 0 i− g j,

v(t) = C i + (−gt+D) j,

= v0 cos θ0i + (−gt+ v0 sin θ0) j, (from the initial conditions for velocity),

r(t) = (v0 cos θ0 t+ E)i + (−1

2
gt2 + v0 sin θ0 t+ F ) j,

= (v0 cos θ0 t+ x0)i + (−1

2
gt2 + v0 sin θ0 t+ y0) j,

In component notation, the motion is parabolic according to the equations

x(t) = v0 cos θ0 t+ x0,

y(t) = −1

2
gt2 + v0 sin θ0 t+ y0. (2.17)

This represents a complete solution to projectile motion with no friction, under
a constant gravitational field. All other physics related to this model such as
maximum range and height can be extracted from the equations. For example,
if the particle is launched from the origin, the range is obtained by setting y = 0,
which gives

t = 0, t =
2v0

g
sin θ0

Substituting into x(t), we get the range R,

R =
2v2

0

g
sin θ0 cos θ0 =

v2
0

g
sin 2θ0.

The maximum range (without friction) is obtained when sin 2θ0 = 1, that is,
when θ0 = π/4. This is a well-known result in first-year physics.
Basically, the projectile moves at a constant speed in the horizontal direction,
but behaves like a free-fall particle in the vertical direction.

2.3 Arc Length and Curvature

Let r(t) represent a space curve. We imagine that the curve is partitioned into
infinitesimal segments described by the differential of length vector

dr = dx i + dy j + dz k. (2.18)
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The vector dr represents an infinitesimal displacement in a direction tangential
to the curve. By extension of the definition of the element of arc length, which
in R2 is just an infinitesimal expression of Pythagoras’ theorem, we define

‖dr‖2 = ds2 = dx2 + dy2 + dz2. (2.19)

Now we perform a short but interesting manipulation.(
ds

dt

)2

=

(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

,

= v2,

so we conclude that

ds

dt
= v, (2.20)

s =

∫
v dt (2.21)

If we have initial condition s(0) = 0, we can write the functional equation for
arc length in terms of t as,

s(t) =

∫ t

0

v(τ)dτ, (2.22)

and thus take care of the constant of integration.
The physics of equation 2.20 is most intuitive. If one were travelling along

some curved trajectory, no matter how curved a differentiable curve is, at the
infinitesimal level it looks straight, so the rate of change ds/dt of the arc length
is the instantaneous speed v. In a car, this is the number that would show in the
odometer. The second equation is a cause of anxiety for some students. It says
that to compute the arc length of a curve, one must integrate the speed, and
that means integrating the square root of some function. Experience in the first
two semesters of calculus indicates that the only functions with square roots
we are equipped to integrate at this stage are those in which the radicand is:
constant, linear, quadratic, a perfect square, or one from which we can extract
just the right chain rule factor for a substitution. As a result, there is only
a handful of neat problems that can be done analytically, and these are the
very same problems that have appeared in calculus textbooks for a couple of
centuries. Anxiety will disappear for the diligent student who works out all the
arc length problems in a fat calculus book. We will do the most important arc
length computation shortly.

If t is a function t = t(u) of some other variable, we can substitute for
that variable r(t(u)). We call this a reparametrization. The most useful
reparametrization is by arc length. In practice, it is typically difficult to find an
explicit arc length parametrization of a curve since not only does one have to
calculate the integral, but also one needs to be able to find the inverse function
t(s) from s(t). On the other hand, from a theoretical point of view, arc length
parameterizations are ideal, since any curve so parametrized has unit speed.
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The proof of this fact is a simple application of the chain rule and the inverse
function theorem. This is more evident using the chain rule in Leibnitz notation,
since

dr

ds
=
dr

dt

dt

ds
=

dr
dt
ds
dt

,

=
dr
dt

‖drdt ‖
=

v

v
≡ T. (2.23)

and any vector divided by its length is a unit vector. This vector is called
the unit tangent vector T because it is equal to the velocity vector divided
by its length (the speed), so the vector T points in the same direction as the
velocity vector. The last equation above is a bit awkward to write because of
the fraction, so it is more elegant to rewrite is as

ṙ =
dr

dt
= vT. (2.24)

Here we have introduced the common notation from physics to indicate by a
dot, the derivative with respect to time. We will reserve the prime notation
for the derivative with respect to other parameters. For example, we would
write r′(s) for the derivative with respect to s. The dot notation is also useful
because it clears the superscript slot when it is needed for a square or some
other power.

Let r(s) be a curve parametrized by arc length and let T be the unit tangent
vector T = r′(s). Since T is a unit vector, we have

T ·T = 1

Now we differentiate this equation using the product rule. We get,

d

ds
(T ·T) = 0,

dT

ds
·T + T · dT

ds
= 0,

2
dT

ds
·T = 0,

dT

ds
·T = 0.

We conclude that dT/ds is perpendicular to T. This is a general fact for the
rate of change of any vector of constant length. Now, We divide this new vector
by its length and call it the unit normal N,

N =
dT
ds∥∥dT
ds

∥∥ .
Once again, the fraction makes the last equation a bit awkward, so we rewrite
it as

dT

ds
=

∥∥∥∥dTds
∥∥∥∥ N.
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The result is called the first (of three) Frenet equations

dT

ds
= κN, where κ =

∥∥∥∥dTds
∥∥∥∥ . (2.25)

The quantity κ is called the curvature. It makes sense to call κ the curvature
because, if T is a unit vector, then T′(s) is not zero only if the direction of
T is changing. The rate of change of the direction of the tangent vector is
precisely what one would expect to measure how much a curve is curving.Next,
we introduce a third vector

B = T×N, (2.26)

which we will call the binormal vector. The triplet of vectors (T,N,B) forms
an orthonormal set called the Frenet frame; that is,

T ·T = N ·N = B ·B = 1,

T ·N = T ·B = N ·B = 0. (2.27)

2.3.1 Example Circular Motion
Before we apply the full machinery of vector calculus, we start with some ele-
mentary trigonometry. Consider a circle of radius R, and θ be the central angle
measured in radians. The length s of the arc subtended by a central angle θ is
given by s = Rθ. Now, suppose a particle moves around the circle at a constant
speed v. Speed is the rate of change of arc length. Since R is constant, we get
v = Rω, where ω is the rate of the change θ/t of the angle. That is θ = ωt.
This small result motivates the vector parametrization of the position vector of
a particle moving in circular motion with constant angular speed ω

r(t) = 〈R cosωt,R sinωt〉. (2.28)

Now, we compute formally the dynamics of the particle using the first Frenet
equation 2.25. Taking the first and second derivatives we find the velocity and
the acceleration

v = ṙ = 〈−Rω sinωt,Rω cosωt〉,
ṙ = Rω〈− sinωt, cosωt〉, ,

a = r̈ = −Rω2〈cosωt, sinωt〉, (2.29)

By inspection we see that v · r = 0, so the velocity vector is perpendicular
to the position vector, and hence it is tangent to the circle as shown in figure
2.3. This is consistent with an earlier statement that the velocity vector is
tangential to the direction of motion. We also observe that the acceleration
vector is a negative multiple of the position vector, so the acceleration vector
points towards the center of the circle. By Newton’s second law F = ma we
infer that the force also points toward the center. This is evidence that circular
motion is produced by a central force. Using one more time Pythagoras’ identity
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Fig. 2.3: Circular Motion

cos2 φ+ sin2 φ = 1, we can mentally compute the speed v and the magnitude a
of the acceleration

v = Rω, a = Rω2. (2.30)

The first of these equations is consistent with our result obtained from geometry.
It says that the larger the radius, the larger the speed. This should be obvious
to any student who played in a marching band going around a corner. It is
also the principle behind the operation of centrifuges as those use to extra
honey from honeycombs, drying cycle of washing machines, and separation of
biological particles as in DNA centrifuges. It follows that ω = v/R. Inserting
this value into the acceleration equation, we get

a =
v2

R
. (2.31)

This is a fundamental result in uniform circular motion. The acceleration is
called the centripetal acceleration. I am in a one-man mission to have this
equation taught to every high school freshman taking drivers education. The
equation says that as one goes around a curve, doubling the speed quadruples
the acceleration and hence the friction force on the tires required to maintain
the vehicle on the road. Reducing the radius by a factor of two, doubles the
acceleration. A combination of the two is likely to result in a car skidding off the
road. The formula for centripetal acceleration appears on every introductory
physics textbook. Unfortunately, most students at that stage have not had a
course on vector calculus and it is likely they will not be exposed to the “right
way” of obtaining this result.
Next, we compute the curvature. The arc length is given by

s =

∫
v dt =

∫
Rω dt = Rωt.

Hence ωt = s/R. We substitute this into the equation for the position vector,
thus resulting in the reparametrization by arc length

r(s) = 〈R cos(s/R), R sin(s/R)〉 (2.32)
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Taking the derivative with respect to s, the constant R gets cancelled by the
chain rule factor, and we get the unit tangent vector

dT =
dr

ds
= 〈− sin(s/R), cos(s/R)〉

Differentiating again, we get

dT

ds
=
dr

ds
=

1

R
〈− cos(s/R),− sin(s/R)〉 (2.33)

The vector N = 〈− cos(s/R),− sin(s/R)〉 is a unit vector, so it is fact the unit
normal, and by the first Frenet equation 2.25, the multiplicative factor 1/R
must be the curvature. Notice that T ·N = 0 as it should be. The neat result
is

dT

ds
= κN, where κ =

1

R
(2.34)

The result could not be more intuitive. The curvature of a circle is constant.
The larger the radius, the smaller the curvature. If one stands on a circle with
the very large radius like at a point on the Earth’s equator, the curvature will
be very small. This is the reason why, even today, some people think the Earth
is flat. How sad. Finally, the significant result we were seeking is that the
centripetal acceleration can be rewritten as

a = v2κ. (2.35)

2.4 Frenet Equations

If we differentiate the relation B ·B = 1, we find that B ·B′ = 0, hence B′

is orthogonal to B. Furthermore, differentiating the equation T ·B = 0, we get

B′ ·T + B ·T′ = 0.

rewriting the last equation

B′ ·T = −T′ ·B = −κN ·B = 0,

we also conclude that B′ must also be orthogonal to T. This can only happen
if B′ is orthogonal to the TB-plane, so B′ must be proportional to N. In other
words, we must have

B′(s) = −τN(s), (2.36)

for some quantity τ , which we will call the torsion. The torsion is similar to
the curvature in the sense that it measures the rate of change of the binormal.
Since the binormal also has unit length, the only way one can have a non-zero
derivative is if B is changing directions. This means that if in addition B did
not change directions, the vector would truly be a constant vector, so the curve
would be a flat curve embedded into the TN-plane.
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Fig. 2.4: Frenet Frame.

The quantity B′ then measures the rate of
change in the up and down direction of an ob-
server moving with the curve always facing for-
ward in the direction of the tangent vector. The
binormal B is something like the flag in the
back of sand dune buggy. The orthonormal
Frenet frame {T,N,B} is the simplest example
of what Eli Cartan called repère mobile (mov-
ing frame). It constitutes the starting point of
the field of modern differential geometry. The
advantage of this basis over the fixed {i, j,k} basis is that the Frenet frame is
naturally adapted to the curve. It propagates along the curve with the tangent
vector always pointing in the direction of motion, and the normal and binormal
vectors pointing in the directions in which the curve is tending to curve. In
particular, a complete description of how the curve is curving can be obtained
by calculating the rate of change of the frame in terms of the frame itself. In
aviation, the angular changes of the Frenet frame around the basis vectors are
called the roll, the pitch and the yaw.

2.4.1 Theorem Let r(s) be a unit speed curve with curvature κ and torsion
τ . Then

T′ = κN
N′ = −κT τB
B′ = −τN

. (2.37)

Proof We need only establish the equation for N′. Differentiating the equation
N ·N = 1, we get 2N ·N′ = 0, so N′ is orthogonal to N. Hence, N′ must be a
linear combination of T and B.

N′ = aT + bB.

Taking the dot product of last equation with T and B respectively, we see that

a = N′ ·T, and b = N′ ·B.

On the other hand, differentiating the equations N ·T = 0, and N ·B = 0, we
find that

N′ ·T = −N ·T′ = −N · (κN) = −κ
N′ ·B = −N ·B′ = −N · (−τN) = τ.

We conclude that a = −κ, b = τ , and thus

N′ = −κT + τB.

The Frenet frame equations (2.37) can also be written in matrix form as shown
below.  T

N
B

′ =

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B

 . (2.38)
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The appearance of an antisymmetric matrix in the Frenet equations is not at
all coincidental, as is deeply connected to advanced properties of the rotation
group.

In the previous section we computed the curvature of circle from the first
Frenet formula. In general this is completely impractical because the formula
requires computing the integral for arc length and then inverting the equation
to reparametrize by arc length. We need a formula to compute κ directly from
the original equation of the curve, and utilizing only the parameter t. Recall
equation 2.24

ṙ =
dr

dt
= vT.

Take the derivative using the product rule

r̈ =
d

dt
(vT),

=
dv

dt
T + v

dT

dt
,

=
dv

dt
T + v

dT

ds

ds

dt
, by the chain rule,

=
dv

dt
T + v2 dT

ds
, since

ds

dt
= v,

=
dv

dt
T + v2κN, from the First Frenet equation 2.25.

To summarize the result, we have

r̈ = a =
dv

dt
T + v2κN. (2.39)

Equation 2.39 is important in physics. The equation states that a particle mov-
ing along a curve in space feels a component of acceleration along the direction
of motion whenever there is a change of speed, and a centripetal acceleration
in the direction of the normal whenever it changes direction. The tangential
acceleration aT , and the centripetal (or normal) Acceleration ac and
any point are given by

aT =
dv

dt
, ac = v2κ =

v2

r
.

where r is the radius of a circle called the osculating circle. The osculating
circle has maximal tangential contact with the curve at the point in question.
This is called contact of order 2. In general, a tangent to a curve has contact
of order 1 with the curve in the sense that it passes through two consecutive
points on the curve. The contact order is (2− 1). The osculating circle passes
through three consecutive points on the curve in the curve; the contact order
is (3− 1).

The osculating circle can be envisioned by a limiting process similar to
that of the tangent to a curve in differential calculus. Let p be point on the
curve, and let q1 and q2 be two nearby points. If the three points are not
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collinear, they uniquely determine a circle. The center of this circle is located
at the intersection of the perpendicular bisectors of the segments joining two
consecutive points. This circle is a “secant” approximation to the tangent circle.
As the points q1 and q2 approach the point p, the “secant” circle approaches
the osculating circle. The osculating circle, as shown in figure 2.5, always lies
in the TN-plane, which by analogy is called the osculating plane. If T′ = 0,
then κ = 0 and the osculating circle degenerates into a circle of infinite radius,
that is, a straight line. The physics interpretation of equation 2.39 is that as
a particle moves along a curve, in some sense, at an infinitesimal level, it is
moving tangential to a circle, and hence, the centripetal acceleration at each
point coincides with the centripetal acceleration along the osculating circle. As
the points move along, the osculating circles move along with them, changing
their radii appropriately.

Fig. 2.5: Osculating Circle

Our focus remains on a formula for κ,
since that is how we get to physics of com-
ponents of the acceleration vector. For con-
venience, we align the two results

ṙ =
dr

dt
= vT,

r̈ =
dv

dt
T + v2κN

We need to solve for κ. We need to be a bit
clever since this is a vector equation and we
can’t use just plain algebra to isolate κ on
one side of the second equation. In particular
that would involve dividing by a vector, which
makes no sense at all. Instead, we take the cross product of the two equations
and use the facts that T×T = 0 and T×N = B. We get

ṙ× r̈ = v3κB

But B is a unit vector, that is ‖B‖ = 1. Therefore, taking the length of both
sides, we finally get the desired formula

κ =
‖ṙ× r̈‖
v3

=
‖ṙ× r̈‖
‖r̀‖3

. (2.40)

The formula is entirely in terms of the derivatives with respect to t of the
original curve, so after all this effort, obtaining the curvature is reduced to a
step-by-step computation. The computation of the length of the cross product
here is typically easier using Lagrange’s identity 1.22

‖ṙ× r̈‖2 =

∣∣∣∣ṙ · ṙ ṙ · r̈
r̈ · ṙ r̈ · r̈

∣∣∣∣ . (2.41)

2.4.2 Example Circular helix
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Let r(t) = 〈3 cos t, 3 sin t, 4t〉. Compute: ṙ, r̈, v,T, s, aT , ac. Ordinarily we do
not need to compute N.

Solution. The curve is a helix. Work is expedited doing mental computations
whenever we encounter and instance of the identity cos2 t+ sin2 t = 1. We have

ṙ = 〈−3 sin t, 3 cos t, 4〉,
r̈ = 〈−3 cos t,−3 sin t, 0〉,

v =
√

32 + 42 = 5,

T =
1

5
〈−3 sin t, 3 cos t, 4〉,

N =
T′

‖T′‖
= 〈− cos t,− sin t, 0〉,

ṙ× r̈ = 〈−3(4) sin t,−3(4) cos t, 43〉,
‖ṙ× r̈‖ = 3(5) = 15,

κ = 15/53 = 3/25,

ac = v2κ = 3,

aT = v̇ = 0

This makes sense. The helix is curving at a uniform rate, so κ is constant. As
stated earlier, the computation of the length of the cross product would have
been easier using Lagrange’s identity

‖ṙ× r̈‖2 =

∣∣∣∣52 0
0 32

∣∣∣∣ = 152.

2.4.3 Example Hyperbolic helix

Let r(t) = 〈et, e−t,
√

2t〉. Compute: ṙ, r̈, v,T, s, aT , ac.

Solution. This problem in disguise is similar to the preceding one. Note that
x = et, y = 1/et, so xy = 1. This is the graph of a hyperbolic cylinder on which
the curve wraps, rising at a constant rate. The curve is a hyperbolic helix. We
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have,

ṙ = 〈et, e−t,
√

2〉,
r̈ = 〈et,−e−t, 0〉,

v =
√
e2t + e−2t + 2 =

√
e2t + 2 + e−2t, (Looking for a perfect square),

=
√

(et + e−t)2 = et + e−t = 2 cosh t,

s =

∫
2 cosh dt = 2 sinh t. (assuming that s(0) = 0),

T = 1
(et+e−t) 〈e

t, e−t,
√

2〉,

ṙ× r̈ = 〈−
√

2e−t,
√

2et, 2〉 =
√

2〈−e−t, et,
√

2〉,

‖ṙ× r̈‖ =
√

2(e−t + et) = 2
√

2 cosh t.

κ =

√
2

(et + e−t)2
,

ac =
√

2,

aT = et − e−t = 2 sinh t.

A slightly fancier version of the hyperbolic helix example above is given by,

2.4.4 Example Hyperbolic helix - version 2

Let r(t) = 〈a cosh t, a sinh t, a〉. We have

ṙ = 〈a sinh t, a cosh t, a〉,
r̈ = 〈a cosh t, a sinh t, 0〉,

v =
√
a2 sinh2 t+ a2 cosh2 t+ a2,

= a
√

cosh 2t+ 1, (by double angle formula),

= a
√

2

√
cosh 2t+ 1

2
,

= a
√

2 cosh t, (by half angle formula),

ṙ× r̈ = 〈−a2 sinh t, a2 cosh t,−1〉,
‖ṙ× r̈‖ = a2 cosh t,

ac = a,

aT = a
√

2 sinh t.

The centripetal acceleration for this curve is also constant.

Example Twisted cubic

Let r = 〈 13 t
3, t2, 2t〉. Compute: ṙ, r̈, v,T, s, aT , ac.
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Solution. This is a twisted cubic with the coefficients rigged up just right.

ṙ = 〈t2, 2t, 2〉,
r̈ = 〈2t, 2, 0〉,

v =
√
t4 + 4t2 + 4 =

√
t4 + 4 + 4t2, (Looking for a perfect square),

=
√

(t2 + 2)2 = t2 + 2

T =
1

t2 + 2
〈t2, 2t, 2〉,

s = 1
3 t

3 + 2t, (assuming that s(0) = 0),

ṙ× r̈ = 〈−4, 4t,−2t2〉 = 2〈−2, 2t,−t2〉,
‖ṙ× r̈‖ = 2(t2 + 2),

κ =
2

(t2 + 2)2
,

ac = 2

aT = 2t.

This is a good example that illustrates that often, computation of the unit nor-
mal is more computationally intensive. The normal is given by N = T′/‖T′‖.
For the derivative of each component of T we can use the quotient rule. Then
we have divide by the length of the vector. Nothing is hard, but it does take a
bit of time and hope that the length of T′ involves the square root of a perfect
square. It does. For the final result I got.

N =
1

2 + t2
〈2t, 2− t2,−2t〉

Details are found in my hand written notes at the web site.

2.4.5 Example Plane curves
Let r(t) = (x(t), y(t)). To find κ, we just embed the plane curve into R3 by

writing r(t) = (x(t), y(t), 0) and just apply the formula. We get,

ṙ = (ẋ, ẏ, 0),

r̈ = (ẍ, ÿ, 0),

κ =
‖ṙ× r̈‖
‖ṙ‖3

,

=
| ẋÿ − ẏẍ |

(ẋ2 + ẏ2)3/2
.

This is the formula that appears in the section on parametric curves in Calculus
II. In particular, if y = f(x), we use the trivial parametrization x = t, y = f(t)
and we get a simper formula that also appears in Calculus II. Had it been the
case that all STEM students take the three semesters of calculus, this formula
would have been redundant in the curriculum. As long as we have derived the
formula here, we will use it in the next example.
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2.4.6 Example Let r(t) = 〈et cos t, et sin t〉. Find the v, κ.
Solution. Without the exponentials this would have been a circle. With the
factor of et the central distance is increasing exponentially. The graph is called
a logarithmic spiral. These type of spirals are manifested all over nature as in
the case of nautilus shells and spiral galaxies.

ṙ = 〈−et sin t+ et cos t, et cos t+ et sin t〉
= 〈et(cos t− sin t), et(cos t+ sin t)〉

r̈ = 〈−2et sin t, 2et cos t〉, (From the product rule),

v =
√
e2t(cos t− sin t)2 + e2t(cos t+ sin t)2,

= et
√

(cos t− sin t)2 + (cos t+ sin t)2),

= et
√

(1− 2 cos t sin t) + (1 + 2 cos t sin t),

v =
√

2 et,

κ =
2e2t cos t(cos t− sin t) + 2e2t sin t(cos t− sin t)

(
√

2 et)3
,

=
2e2t

2
√

2e3t
=

1√
2et

.

2.5 Change of Coordinates

2.5.1 Cylindrical Coordinates

Cylindrical coordinates refers to the change of variables T : R3 → R3 given by

〈r, θ, z〉 T−→ 〈x, y, z〉,
〈r, θ, z〉 7→ 〈r cos θ, r sin θ, z〉.

Of course, this is equivalent to the three scalar equations

x = r cos θ,

y = r sin θ,

z = z

Cylindrical coordinates constitute an example of what is
called a triply orthogonal system. This means that the
surfaces obtained by setting one of the coordinates equals
to a constant are mutually orthogonal at each point. For
example, in cylindrical coordinates z = k is a plane, r = a
is a cylinder of radius a, θ = π/4 is a vertical plane at 45

degrees. The surfaces intersect at a point at which three unit vector normal
to each of the three surfaces form an orthogonal frame, much like the {i, j,k}
frame. It is easy to find these unit vectors. We will call the triplet {er, eθ, ez}.
The position vector for a unit circle is r = cos θi + sin θj. The unit vector er
points in the same direction, so it is the same vector. The derivative of er with
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respect to θ is also a unit vector and it is orthogonal to er, so choose this to be
eθ. The cylindrical basis frame is therefore given by

er = cos θ i + sin θ j,

eθ = − sin θ i + cos θ j,

ez = k (2.42)

Physicists usually call the adapted unit vectors {r̂, θ̂, ẑ}. The importance of
triply orthogonal systems will become self evident in the derivation of Kepler’s
laws in section 2.7.

Cylindrical coordinates are the natural extension of polar coordinates to
three dimensions. In polar coordinates in the plane, the distance from a point
with coordinates x, y to the origin is called r =

√
x2 + y2. We will not review

the full array of beautiful curves in R2 that admit an elegant functional form
in polar coordinates. For the time being, it suffices to mention the following

Basic Polar Curves

1. Circle. The equation r = a represents a circle centered at the origin
with radius a. The real reason why polar coordinates were introduced by
Newton.

2. Shifted Circle. The equation r = a cos θ also represents a circle. To verify
this, we change to Cartesian coordinates,

r = a cos θ,

r2 = ar cos θ, (after multiplying by r),

x2 + y2 = ax,

(x2 − ax+ a2

4 ) + y2 = a2

4 , (completing the square),

(x− a
2 )2 + y2 = a2

4 .

This is the equation of a circle of diameter a with center shifted to (a2 , 0).
If instead we had r = a sin θ, we would have circle of the same diameter,
but with center shifted to (0, a2 ).

3. Cardioids. The equations r = a(1 ± cos θ) and r = a(1 ± sin θ) are
cardioids. To establish whether the cardioids open right, left, up or down,
it suffices to plot the points for θ = {0, π2 , π,

3π
2 }.

4. Polar conics. One of the major contributions to polar equations was dis-
covered by Newton in the process of trying to integrate the equations of
motion of a planet in polar coordinates. The solutions are of the form

r =
ed

1± e cos θ
, r =

ed

1± e sin θ
.

He quickly proved that these are indeed equations of conics, thereby prov-
ing that Kepler’s law about elliptical orbits of planets could be be derived
mathematically and not just empirically.
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Surfaces of Revolution

Equations of surfaces in which x and y appear in the form (x2 + y2) can
be transformed into cylindrical coordinates by replacing the expression by r2.
Equations in cylindrical coordinates in which there is no z are cylinders For
example, in cylindrical coordinates, we have

r = a, is a circular cylinder with axis of symmetry along z,

r = a cos θ, is circular cylinder with a generator along the vertical axis,

z = r2, is the paraboloid z = x2 + y2,

z = r, is the cone z =
√
x2 + y2,

z =
√
a2 − r2 is the hemisphere z =

√
a2 − x2 − y2

In single variable calculus, when one makes a substitution in an integral, the
integrand must be adjusted by the chain rule factor. Cylindrical coordinates are
most useful when performing multiple integration over regions or surfaces that
exhibit symmetry with respect to one of the coordinate axes. The change of
variables analog of the chain rule factor in cylindrical coordinates often changes
a multiple integral in Cartesian coordinates with nasty square roots, to a very
simple integral that often can be integrated by inspection. Multiple integrals
in cylindrical coordinates are treated in section 4.3.

2.5.2 Spherical Coordinates

Spherical coordinates are to spheres as polar coordinates are to circles. The
motivation is the same. Even in the most fundamental problem of finding the
area of a circle x2 + y2 = a2 by integration in Cartesian coordinates, one is
presented with a square root y =

√
a2 − x2 in the integrand. This requires a

trigonometric substitution leading to the integral of an even power of a cosine
function. In plane polar coordinates, the equation of the same circle is r = a,
making the area integral possible in one line. The equation of a sphere of radius
a centered at the origin is x2 + y2 + z2 = a2, so the integral for the volume
in Cartesian coordinates would now involve an undesirable z =

√
a2 − x2 − z2

integrand. To ameliorate this problem, we introduce spherical coordinates.

The spherical coordinates P (r, θ, φ) of a point P in R3 are
defined as follows. The coordinate r is the distance from P
to the origin. The coordinate θ is the spherical polar angle
that the line segment from P to the origin makes with z-
axis. The angle φ is the usual plane polar coordinates angle

(the azimuthal angle). To relate spherical coordinates to Cartesian coordinates
we first draw the projections z = r cos θ onto the z-axis and R = r sin θ onto
the xy-plane. The quantity R is the distance from the point with coordinates
(x, y) on the xy-plane to the origin. By polar coordinates x = R sinφ, and
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y = R sinφ. Hence, we have

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ

and

r2 = x2 + y2 + z2,

φ = tan−1(y/x),

θ = cos−1(z/
√
x2 + y2 + z2).

(2.43)

Although is is really unnecessary, the skeptics may verify algebraically that

x2 + y2 + z2 = (r sin θ cosφ)2 + (r sin θ sinφ)2 + (r cos θ)2 = r2.

We impose the restriction r ≥ 0, 0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π. With these
restrictions we can label all the points in R3.

Spherical coordinates is the only other example of a triply
orthogonal system that appears in Calculus III. The idea
is the same as above. Surfaces obtained by setting each
one of the coordinates equals to a constant are mutually
orthogonal at the point of intersection. For example, in
spherical coordinates r = a is a sphere of radius a, θ = π/4
is a cone at 45 degrees and φ = π/4 is a vertical plane. The
surfaces intersect at a point at which the normals to the
three surfaces are mutually orthogonal; that is, if we construct unit vectors
{r̂, θ̂, φ̂}, normal to the corresponding constant-coordinate surfaces, the triplet
forms an orthonormal set adapted to the coordinate system.

Transformations in R3 which lead to triply orthogonal systems are not abun-
dant. Whereas, substitutions in single variable integration are ubiquitous, we
present only two “simultaneous substitutions” to help simplify certain classes of
triple integrals over regions or functions that exhibit an appropriate symmetry.
Triply orthogonal systems are special because in these systems the infinitesimal
differential of volume is a rectangular parallelepiped (a box).

2.5.1 Remark Regrettably, we should mention that the spherical coordi-
nates labels used by most mathematicians are confusing. Historically, since
Lagrange introduced spherical coordinates in the 1700’s, physicists have de-
noted the distance from a point in space to the origin by the coordinate r.
This explains why in gravitation and in electromagnetism, one talks about
the 1/r2 law. Most mathematicians call the distance ρ. I have never read a
textbook from an author bold enough to call the gravitational force a 1/ρ2

law. In the standard physics notation the coordinates of a point P (r, θ, φ) on
a sphere are in this order, the distance r to the origin, the angle θ from the
north pole, and the angle φ from the x-axis formed by the projection or r onto
the xy-plane. Many calculus textbooks also change the order of the spherical
coordinates to (ρ, θ, φ) where φ is the angle from the north pole. This intro-
duces yet one more point of confusion because it makes the spherical basis
vectors left-handed. Perhaps it is time to reconsider the 2002 proposal by Te-
vian Dray and Corinne Manogue, to universally adopt the physics convention
(https://bridge.math.oregonstate.edu/papers/spherical.pdf).
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We will expect students to recognize the following special quadrics surfaces
in spherical coordinates

1. Sphere. The equation r = a in spherical coordinates represents a sphere
of radius a, centered at the origin.

2. Shifted Sphere. The equation r = a cos θ also represents a sphere. To
verify this, we transform the equation to Cartesian coordinates,

r = a cos θ,

r2 = ar cos θ, after multiplying by r,

x2 + y2 + z2 = az,

x2 + y2 + (z2 − az + a2

4 ) = a2

4 , completing the square,

x2 + y2 + (z − a
2 )2 = a2

4 .

This is the equation of a sphere of diameter a with center shifted to
(0, 0, a2 ). If instead we had r = a sin θ cosφ, we would have sphere of the
same diameter, but with center shifted to (a2 , 0, 0).

3. Cone. The equation θ = θ0 represents a branch of a cone with vertex at
the origin and generator that makes an angle θ0 with the z-axis. Thus, to
write the equation of a such a cone, all need to know is the angle between
the z-axis and the generator of the cone. This is from the definition of the
coordinate system, but again, the skeptic could corroborate the statement
by a direct computation from the transformation equations. For example,
for the case θ = π/4, we have

θ = π
4 ,

r cos θ = r cos(π4 ) = r 1√
2
,

z2 = 1
2 (x2 + y2 + z2),

z2 = x2 + y2,

z =
√
x2 + y2

If we wanted the lower branch of the cone z2 = x2 + y2 we would have to
take θ = 3π/4.

2.5.2 Example Atomic Orbitals

Although in the main examples in setting up integrals in spherical coordi-
nates in the this course will be restricted to regions consisting of spheres and
cones as above, here is something neat. Define the Legendre polynomials Pn(z)
of degree n by the equation

Pn =
1

2nn!

dn

dzn
(z2 − 1)n. (2.44)
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Thus, for example, we compute P2(z)

P2(z) =
1

222!

d2

dz2
(z2 − 1)2,

= 1
8

d2

dz2
(z4 − 2z2 + 1),

= 1
8 (12z2 − 4),

= 1
2 (3z2 − 1)

The idea is to compute the Legendre polynomials, follow up by making the
substitution z = cos θ, and then plot the results in spherical coordinates. Here
is a list of the first four Legendre polynomials. We could easily compute these
by hand, but as long as we will be using a computer algebra system to graph
the functions, we might as well let computer also do the calculation of the
derivatives.

n Pn(z) Pn(cos θ)

1 P1(z) = z P1(cos θ) = cos θ
2 P2(z) = 1

2 (3z2 − 1) P2(cos θ) 1
2 (5 cos3 θ − 3 cos θ)

3 P3(z) = 1
2 (5z3 − 3z) P3(cos θ) = 1

2 (5 cos3 θ − 3 cos θ)
4 P4(z) = 1

8 (35z4 − 30z2 + 3) P4(cos θ) = 1
8 (35 cos4 θ − 30 cos2 θ + 3)

The table also shows the corresponding polynomials after making the substi-
tution z = cos θ. The graphs in spherical coordinates as shown in figure 2.6.

Fig. 2.6: Atomic Orbitals with quantum number n = 1, 2, 3, 4

Hopefully the reader recognizes these as the angular part of the atomic orbitals
for principal quantum numbers n = 1, 2, 3, 4. Of course there must be a com-
pelling mathematical reason for this neat result. The reason behind everything
is that the Legendre functions are solutions to the angular θ part of Laplace’s
equation in spherical coordinates. This is a great motivator for further studies
in partial differential equations.

2.6 Parametric Surfaces

A vector function r from a subset R ∈ R2 to R3 locally represents a surface.
The function is called a coordinate patch of a surface, because in general, it will
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take more one than such patch to cover the full surface. More precisely, we
have a function

(u, v)
r−→ 〈x, y, x〉,

(u, v) 7→ 〈x(u, v), y(u, v), z(u, v)〉,

that maps a region in the uv-plane to a two-dimensional surface in R3, as shown
in figure 2.7. The general parametric equation of a curve in R3 is

Fig. 2.7: Parametric Surface

r(u, v) = x(u, v) i + y(u, v) j + z(u, v) k, (2.45)

where r(u, v) represents the position vector of a point on the surface. If in the
region R ∈ R2 one takes a grid of defined by the lines v = constant, then for
each constant, r effectively depends only on the parameter u and the resultant
is a set of parametric curves on the surface, as shown in figure 2.7. Therefore,
the partial derivative vectors ru are tangential to these curves. Similarly, the
partial derivative vectors rv are tangential to curves u = constant. Thus, the
vector

N = ru × rv, (2.46)

is normal to the surface at each point, We define the unit normal n to the
surface by

n =
ru × rv
‖ru × rv‖

. (2.47)

2.6.1 Example Planes. The equation of a plane that passes through a point
P (x0, y0, y0) and contains the vectors a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉 is
given by

r(u, v) = P + ua + vb. (2.48)

This equation of a plane is the analog of the equation of a
line. If v = 0 the equation represents the line that contains
P and has direction vector a. Similarly, if u = 0 one gets
the line that contains P and has direction vector b. The
full equation describes the plane by starting at the point P
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and then moving along linear combinations of a and b to get to any point in
the plane. If we make the restriction u, v ∈ [0, 1], the equation describes the
parallelogram spanned by a and b.
Unpacking the equation of the plane 2.48 in terms of the vector components,
we get

r(u, v) = 〈x0 + ua1 + vb1, y0 + ua2 + vb2, x3 + ua3 + vb3〉.

It is worth noticing that if one were to follow the conventions of tensor calculus,
we should vectors as column vectors rather than row vectors. Doing so, makes
the equation more transparent,

r(u, v) = P + ua + vb,

=

x0

y0

z0

+ u

a1

a2

a3

+ v

b1b2
b3

 .
Most likely, the main reasons why column vectors are not universally used in
the exposition of calculus is that it is much more taxing to the typesetter, and
much less efficient in space utilization. The parametric equation of the plane
here is very elegant, because it does not require cross products. One could in
principle eliminate the parameters u and v and find the more common type
of equation of the form Ax + By + Cz = D, however it is easier to show the
equation is consistent with the procedure described in section 1.5.2 by simply
noticing that a normal vector is given by

N = ru × rv = a× b

2.6.2 Example Saddle. The equation

r(u, v) = u i + v j + (u2 − v2) k, or in scalar parametric form,

x = u,

y = v,

z = u2 − v2

is clearly equivalent to the Cartesian equation z = x2 − y2, so the equation
represents a saddle.

2.6.3 Example Explicit surface.
The equation of the saddle above is an example of an explicit equation

z = f(x, y) of a surface. Just as a curve y = f(x) in R2 can be written in
parametric form r(t) = 〈t, f(t)〉, explicit equations of surfaces can be instantly
converted to parametric from by what I will call the trivial parametrization

r(u, v) = u i + v j + f(u, v) k.
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We could even use the coordinates x and y as parameters and write.

r(x, y) = 〈x, y, f(x, y)〉. (2.49)

2.6.4 Example Paraboloid and Saddle

The trivial parametric equation of the paraboloid z = x2 + y2 is

r(x, y) = 〈x, y, x2 + y2〉.

Parametric equations are certainly not unique. We could describe that same
paraboloid in cylindrical coordinates z = r which in parametric form reads

r(r, θ) = 〈r cos θ, r sin θ, r2〉.

In components, x = r cos θ, y = r sin θ, z = r2. Therefore x2 + y2 = r2 = z.

The equation

r(r, θ) = 〈r cosh θ, r sinh θ, r2〉.

gives the saddle x2 − y2 = z

2.6.5 Example cone

A minor modification

r(r, θ) = 〈r cos θ, r sin θ, r〉.

gives the equation of a cone. The see this just notice that if x = r cos θ and
y = r sin θ, then x2 + y2 = r2 = z2. The big advantage is that in parametric
form, the graph gives the full cone, whereas in the Cartesian equation, one has
to solve for z to get a function. The positive square root gives only the top half
of the cone and the negative square root gives only the bottom half of the cone.

2.6.6 Example Surface of revolution. Circular paraboloids and circular
cones are examples of surfaces of revolution obtained by starting with a curve
z = f(x) and rotating about the z-axis. This amount to replacing x by r to
give the surface z = f(r). Hence, a parametric representation of surfaces of
revolution is given by

r(r, θ) = 〈r cos θ, r sin θ, f(r)〉 (2.50)

More generally, if x = x(u), z = z(u) is the parametric equation of a curve
in the xz-plane, then the surface of revolution generated by rotating the curve
around the z-axis is given by

r(u, v) = 〈x(u) cos v, x(u) sin v, z(u)〉. (2.51)

2.6.7 Example Torus



2.6. PARAMETRIC SURFACES 59

A torus is a surface of revolution generated by rotating a
circle around an axis that is coplanar with the circle. In the
standard torus, the axis does not touch the circle resulting
in a shape that looks like doughnut or a bagel. Consider
a circle of radius r in the xz-plane, centered at (R, 0) and
rotate the circle a full revolution about the z-axis.
We assume that R > r so that the axis of revolution does not touch the circle
With this choice, we obtain a standard torus. The parametric equation of the
circle in the xz-plane is

x−R = r cos(θ), z = r sin θ.

By equation 2.51, the parametric equation of the torus is

r(θ, φ) = 〈 (R+ r cos θ) cosφ, (R+ r cos θ) sinφ, r sin θ 〉 (2.52)

2.6.8 Example Sphere
In spherical coordinates the equation of a sphere of radius a centered at the
origin is r = a. The spherical coordinates transformation 2.43 suggests an
obvious parametrization,

r(θ, φ) = 〈a sin θ cosφ, a sin θ sinφ, a cos θ〉. (2.53)

This might be the best example of why parametric equations is the ultimate

Fig. 2.8: Sphere

way to graph surfaces. Figure 2.8 shows an attempt to plot a sphere in Cartesian
coordinates by the two functions z = ±

√
a2 − x2 − y2. The graph on the right

shows a clean graph. A minor observation is that the parametric equation graph
is actually missing a point, namely the north pole. It is not possible to get the
entire graph of an sphere with a singe coordinate patch because a rectangle and
a sphere have different topologies - spheres are not flat. As a bonus, observe that
in the parametric equation graph, the grid consists of meridians and parallels.

2.6.9 Example More cones. We have also learned that in spherical coordi-
nates, setting θ = θo yields the equation of a cone with a generator making an
angle θo. Therefore the transformation equations 2.43 also suggest that setting
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θ equal to a constant gives a parametric equation of a cone. For example, let
θ = π/4. We get

r(r, φ) = 〈r 1√
2

cosφ, r 1√
2

sinφ, r 1√
2
〉.

The common factor of 1√
2

is just a scaling factor and it can be deleted without

affecting the shape of the graph. We now have x = r cosφ, y = r sinφ, and
x2 + y2 = r2 = z2, which is indeed the equation of a cone at 45 degrees.

2.6.10 Example Hyperboloid
The parametric equation of the sphere 2.53 can be modified
to obtain the equation of a circular hyperboloid of one sheet.
The trick is convert a sum of squares by a difference of
squares. This can be done naturally if one replaces cosφ

and sinφ by coshφ and sinhφ respectively. This results in the following para-
metric equation of a circular hyperboloid of one sheet.

r(θ, φ) = 〈a sin θ coshφ, a sin θ sinhφ, a cos θ〉,
⇒ x2 − y2 + z2 = a2

If in addition one replaces sin θ and cos θ by sinh θ and cosh θ respectively, one
gets a hyperboloid of two sheets. Instead of coshφ and sinhφ, we could also
use secφ and tanφ, since sec2 φ− tan2 φ = 1

2.6.11 Example Helicoid
A helicoid is a ruled surface traced by a line segment
rotating about a perpendicular axis, as it rises at a constant
rate along the axis. A discrete version of the surface can be
visualized by a spiral staircase. Every particular point on

the rotating line segment traces a helix. Suppose the segment is the interval
[−1, 1] as it rotates around the z- axis. A point a distance u along the generating
line segment traces circles looking from above the xy-plane, but it rises at a
constant rate. Thus, the equation of a helicoid in parametric form can be
represented by the equation

r(u, v) = 〈 u cos v, u sin v, v 〉. (2.54)

In Cartesian coordinates the equation is y/x = tan z.

2.7 Kepler’s Laws

In a remarkable feat of empirical observation of planetary motion, Johannes
Kepler formulated in the early 1600’s, the following laws:

1. Planets move in elliptical orbits around the sun and the sun is located at
one of the foci of the ellipses.
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2. The line joining each plane with the sun sweeps equal areas in equal time.

3. The square of the periods is proportional to the cube of the length of the
major axis.

Newton understood that such magnificence must have a mathematical expla-
nation, and it is mainly for this reason that he invented calculus. It is a shame
that this being one of the highest achievements in the history of science, the
derivation of this laws is omitted from the standard calculus curriculum. We
present here a derivation of the laws of Kepler. It must be noted that the
approach we take here is not that which appeared in Newton’s 1687 Principia
Mathematica.

Kepler’s Second Law

We prove that Kepler’s second law is equivalent to conser-
vation of angular momentum. Suppose the sun sits at the
origin of a coordinate system, and the position vector of a
planet with respect to the sun is r. In the process we will
show that the motion takes place on a plane, so we adapt

a polar basis frame {er, eθ}, as in equation 2.42. Since r and θ depend on time,
we have

er = cos θi + sin θj

ėr = − sin θ dθdt i + cos θ dθdt j

ėr = dθ
dt eθ

and

eθ = − sin θi + cos θj

ėθ = − cos θ dθdt i− sin θ dθdt j

ėθ = −dθdt er

In terms of the polar frame, the position and velocity vectors are

r = r er,

v = ṙ = dr
dt er + rėr,

= dr
dt er + r dθdt eθ.

We do not need the acceleration vector in polar coordinates to derive Kepler’s
first law, but we include it here for completeness.

a = r̈ =
d

dt
(ṙ er + rθ̇ eθ),

= r̈er + ṙėr + (ṙθ̇ + rθ̈) eθ + rθ̇ ėθ,

= r̈er + ṙθ̇ eθ + (ṙθ̇ + rθ̈) eθ − rθ̇θ̇ er.

Therefore,

a = r̈ = (r̈ − rθ̇2)er + (rθ̈ + 2ṙθ̇)eθ,

= (r̈ − rθ̇2)er + 1
r
d
dt (r

2θ̇) eθ (2.55)

Now we compute the magnitude L of the angular momentum (see subsection
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1.4.4).

L = mr× v,

= mr er × (drdt er + rėr),

= mr2 (er × ėr),

= mr2 dθ
dt (er × eθ),

L = ‖L‖ = mr2 dθ
dt , (2.56)

since (er × eθ) is a unit vector perpendicular to the plane spanned by the two
vectors.
Newton’s gravitational law for planetary motion states that the force F exerted
by the sun with mass M on a planet of mass m is given by

F = −mMG

r3
r = −mMG

r2
er, (2.57)

where M is the mass of the sun, m the mass of the planet, G is a universal
constant of gravitation, and r is the position vector of the planet from the sun
at the origin of the coordinate system. Since F = ma, we have

a = −MG

r3
r,

r× a = 0.

Taking the derivative of the angular momentum, we get

d

dt
L = m

d

dt
(r× v),

= m(v × v + r× a)

= 0.

Therefore, the angular momentum is constant. It should be noted that the
conservation of angular momentum depends only of the fact that a is a central
force, which gives r× a = 0.. Since L is constant, so is its magnitude and
direction, hence the motion is on a plane with

L = mr2 dθ

dt
= constant.

This is consistent with equation 2.55, from which one infers that the acceleration
is purely radial if (r2θ̇) is constant.
On the other hand, the differential of area in polar coordinates is dA = 1

2r
2 dθ,

hence,
dA

dt
= 1

2r
2 dθ

dt
= constant

Geometrically, this means the radial arm sweeps equal areas in equal times.
For a celestial object orbiting the sun with high eccentricity as in the case of a
comet, the orbit must whip faster around the sun as the the orbit gets closer
to the center of attraction.
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Kepler’s First Law
One approach to deriving Kepler’s first law is to solve directly the differen-
tial equation from Newton’s laws in polar coordinates for a radial force, The
equation is

r̈ − rθ̇2 = −MG

r2
. (2.58)

The process starts by using conservation of angular momentum to write θ̇ as a
constant over r2. Here, we use a well-known vector calculus approach that does
not rely much on differential equations. The goal is the same; to integrate the
equation of motion to find an expression for r. Since the angular momentum is
constant, so is r× v. In fact,

‖r× v‖ = r2 dθ
dt =

L

m
= k where k is constant.

We begin by computing the cross product of a with L

a× L = −MG

r2
er × (mr2 [er × ėθ)],

= −mMG [er × (er × ėr)],

= −mMG[(er · ėr)er − (er · er)ėr] By the BAC-CAB equation 1.18,

dv

dt
× L = mMG ėr.

Since L is constant, we can integrate both sides

v × L = mMG er + c,

where c is a constant vector of integration. We adapt the {i, j,k} so that
k points in the direction of L and c is aligned with i. Let θ be the angle
subtended between r and c. Now we take the dot product of r with the last
equation, taking notice that on the left hand side with get a triple product we
can rearrange. We get

r · (v × L) = mMGr · er + ‖c‖ ‖r‖ cos θ,

1

m
(mr× v) · L = mMGr + rc cos θ,

1

m2
‖L‖2 = r(MG+ c cos θ),

k2 = r(MG+ c cos θ),

r =
k2

MG+ c cos θ

We conclude that

r =
ed

1 + e cos θ
, (2.59)

where, ed = k2/(MG) and e = c/(MG). We have found that the motion of the
planet is a conic!
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Kepler’s Third Law
This derivation requires some classical facts about ellipses. Let T be the time
it takes for a plane to complete a full orbit. We know that

k2 = r2 dθ

dt
, and,

dA

dt
= 1

2r
2 dθ

dt
,

therefore,

dA

dt
= 1

2k ⇒ A =

∫ T

0

1
2k dt

A = 1
2kT

Let a and b be the semi-major and semi-minor axes of the ellipse. The area of
the ellipse

x2

a2
+
y2

b2
= 1,

is A = πab. If you have never seen this formula before, peek at equation 4.18 for
the derivation of the volume of an ellipsoid, Soon you will be able to prove the
area formula yourself by a homologous method. Also, you need to recall that
the foci of the ellipse occur at coordinates F± = (±c, 0), where c2 = a2− b2. So
far we have

A = πab = 1
2kT ⇒ T =

2πab

k

Now we compute the semi-latus rectum of the ellipse in two different ways.
The semi-latus rectum is the positive y-coordinate at the foci. Of course we
could define the latus rectum in a coordinate-free manner, more in the spirit of
classical geometry. In an ellipse, the latus rectum is the length of the segment
perpendicular to the major axis at one of the foci, that is contained inside
the ellipse. A similar definition exists for other conics. Back to coordinate
geometry, choose the focus (c, 0). We get

c2

a2
+
y2

b2
= 1,

y2

b2
= 1− c2

a2
=
a2 − c2

a2
=
b2

a2
,

y =
b2

a

Next, in the equation of the celestial conic

r =
k2/MG

1 + e cos θ

set θ = π/2. That is also the latus rectum since this is the y-coordinate above
the origin where the sun sits at a focus. We get

k2

GM
=
b2

a
⇒ k2 =

GMb2

a
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Square the period and insert the value above for k2.

T 2 =
4π2a2b2

k2
,

= (4π2a2b2)
a

GMb2
,

T 2 =
4π2

GM
a3

This is Kepler’s third law.



Chapter 3

Partial Derivatives

3.1 Functions of Several Variables

A function of several real variables f : Rn → Rm is a map that takes n
real inputs which we can be denoted by a vector x = 〈x0, x1, . . . , xn〉 into a
vector that we can denote as y = 〈y0, y1, . . . , ym〉. The standard notation for
a function of several variables f : Rn → Rm is y = f(x). The set of all
possible inputs in Rn is called the domain D(f) of the function and the set of
all possible outputs y ∈ Rm is called the range Rg(f). In this section we are
primarily interested in real-valued functions of several variables meaning that
m = 1.
A real-valued function of two variables

f : R2 → R,

(x, y) ∈ R2 f−→ z ∈ R.

has two inputs and one output. Ordinarily we denote these functions by z =
f(x, y). we can graph a real-valued function z = f(x, y) as a surface in R3 by
using the z-axis for the range. Just as in the case of one-variable functions
y = f(x), the domain is naturally restricted if:

a) The function has square roots, since the radicand can not be negative,
b) The function has fractions where the denominator has zero’s,
c) The function has logarithms, since the argument must be positive.

The domain can also be imposed manually.

Example . Let z = f(x, y) =
√

4− x2 − y2. The domain D(f)

D(f) = {(x, y) ∈ R2 : x2 + y2 ≤ 4},

consists of all the points on a disk of radius 4. Squaring both sides, the reader
will recognize this as the equation of the top half of a sphere of radius 2. The
range is the interval [0, 2]. Please note that the domain is a set, so one must
use the formal set notation. The range is also a set, but being a subset of the
real line, it is simpler to use the equivalent interval notation.

66
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Example Let z = f(x, y) = x2+y2

xy . The domain consists of all points in R2

except for those in the x or y-axes. That is,

D(f) = {(x, y)) ∈ R2 : x 6= 0, and y 6= 0}.

Example Let w = F (x, y, z) = ln(36− 9x2 − 4y2 − 36z2). The domain

D(F ) = {(x, y, z) ∈ R3 :
x2

4
+
y2

9
+
x2

1
≤ 1}.

consists of all the points on or inside an ellipsoid.
If z = f(x, y), the level curves ( also called contours ) of the function are
the curves given by setting the z coordinates equal to a constant c. The level
curve z = c is the curve of intersection of the surface with the plane z = c, that
is, the set of all points on the surface at a height z = c. If w = F (x, y, z), the
contours are level surfaces defined implicitly by setting F (x, y, z) = c. For
example, as shown in figure 1.14 the level surfaces of

w =
x2

a2
+
y2

b2
− z2

c2

are elliptic hyperboloids of one sheet for c > 1, an elliptic cone for c = 0, and
elliptic hyperboloids of two sheets for c < 0.
By plotting the level curves of z = f(x, y) on a plane, we can visualize the
surface as a topographical map

Example
z = f(x, y) = x2 + y2

. The domain D(f) of this function is all of R2. The range of the function is
Rg(f) = [0,∞] ∈ bfR, because the sum of two squares is non-negative. The
surface is a circular paraboloid, and the level curves is a set of circles as shown
in figure 1.14.

Fig. 3.1: Level Curves

Example
z = f(x, y) = 2xy
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.
The domain D(f) is again all of R2, because x and y are real numbers that

can always be multiplied. The range is Rg(f) = R because, both x and y can
be positive or negative. The set of level curves z = c, that is 2xy = c, is a set
of hyperbolas plus the two intersecting lines x = 0 and y = 0 which correspond
to c = 0. The level curves are depicted on the left in figure 3.1. The hyperbolas
here have exactly the same shape as the hyperbolas x2 − y2 = c that appear
in 1.14. The surface z = 2xy is a saddle, shown here with some level curves,
along with the 2 dimensional topographical map below the surface. Should the
surface describe a temperature distribution T (x, y) = 2xy, we have picked a
color scheme for the level curves on the plane with shades of yellow and red
color to indicate hot and shades of blue color to indicate cold. The temperature
would be zero on the coordinate axes around which the color is a neutral white.
If we think of the surface as the heights of a terrain, the areas shaded shaded
in blue would be below sea level.
Example

z = f(x, y) = xy e−
1
2 (x2+y2).

Without the factor xy this would be a surface of revolution generated by a
normal (Gaussian) distribution curve. The xy factors cause the surface to dip
under the xy-plane when the variables have different signs, as shown in figure
3.1. The level curves are displayed on a plane using the same temperature-color
scheme as in the saddle above.

3.2 Limits and Continuity

The concept of a limit of a real-valued function of one variable, as envisioned
by the early developers of calculus in the 1600’s, is most intuitive. It basically
says that the limit of a function y = f(x) as x approaches a point x0 is L
if as x gets arbitrarily close to x0, the function f(x) gets arbitrarily close to
L. The notion of “arbitrarily close” lacks mathematical rigor. The current
rigorous definition of limits was introduced by Augustin-Louis Cauchy, a French
mathematician who was born in 1789, the same year as the French Revolution.
The first rigorous definition of continuity of a function at a point was given by
Karl Weierstrass.
The rigorous definition of limits for functions of several variables captures es-
sentially the same spirit as the one variable version. We may as well write the
definition for vector-valued function of several variables, although in this sec-
tion we are primarily concerned with real-valued functions. Denote the distance
formula in Rn by the dn and the distance formula in Rm by dm. In the case of
real-valued functions (m = 1), the distance formula between two points is the
absolute value of their difference. We have

3.2.1 Definition Let f : Rn → Rm be a vector valued function y = f(x).
We say that

lim
x→x0

f(x) = y0. (3.1)



3.2. LIMITS AND CONTINUITY 69

Fig. 3.2: Limits

if given any number ε > 0, there exists a number δ > 0, such that dm(f(x),y0) <
ε, whenever dn(x,x0) < δ.

Just as in the case of one-variable, this definition is a mouthful and we need
to try to unpack it a bit. The number ε is arbitrary, but we usually think of
ε as a small number. What small number? Any. We can pick ε to be 0.1, or
0.001, or 10−8 or any other number as small as we desire. We can interpret ε
as a tolerance of how close we want the value of the function f(x) to be to y0.
We can visualize this as in figure 3.2 in which we show a diagram for a function
from R2 to R2. In the figure, we want the value of the function to be within a
radius ε of y0. The limit exists if this can be always be achieved by choosing a
radius δ (which necessarily depends of ε) with x less than δ units of x0. This
captures the idea that f(x) is “ε-close” to y0 whenever x is “δ-close” to x0.

If the function y = f(x) is defined at x0, the limit exists, and f(x0) = y0,
we say that the function is continuous at that point. In other words, f(x) is
continuous at x0 if

lim
x→x0

f(x) = f(x0). (3.2)

Establishing when a limit of function of several variables exists at a point is
by far more difficult that for one-variable calculus functions. In the latter, the
domain is a set of real numbers, so when we say that x approaches x0, this can
only happen from the left or from the right. In R2 for example, when we say
that x approaches x0, this can happen along an infinite set of paths. We also
do not have a several variable version of l’Hôpital’s rule to compute limits.

The Limit theorem and the main theorems about single-variable continuous
functions extend in a natural way to several variables. Thus, for example,
given two function which are continuous at a particular point, then so is their
sum, difference and product. The quotient is also continuous whenever the
denominator is not zero. But of course, the most interesting cases are precisely
the latter. The number of examples in this course, for which we can determine
that the limit of a quotient of functions of several variables exists at a point
where the denominator is zero, is a very small set indeed. Therefore, we will
be content with primarily solving problems determining that certain limits do
not exist. This is a much, easier task, because if the limit exists, then it has
to be unique. Therefore, for the limit not to exist, it suffices to show that the
function approaches a different number for just two or more paths.
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Fig. 3.3: Limit does not exist

Example Show that the limit

lim
(x,y)→(0,0)

xy

x2 + y2
,

does not exist.
Solution

At any point in R2 other than the origin (0, 0), the function is the ratio
of two polynomials so the function is continuous. At (0, 0) the function is not
defined, but the limit might still exist - we show that it doesn’t.

The surface with level curves is pictured in figure 3.3. Inspection of the
surface shows that there is some “Wonton”-like pinching. This is an indication
that something bad is happening at the origin. The figure shows two (blue)
paths along which one approaches the same value, but from that, one can
conclude nothing. The problem is that as one approaches the origin along other
straight lines of different slopes, the function may approach different values,
instead of a unique value. We can quantify this as follows. Chose y = mx
and investigate what happens as we approach origin along these paths. Along
y = mx, we have

lim
(x,y)→(0,0)

xy

x2 + y2
= lim

(x,mx)→(0,0)

x(mx)

x2 + (mx)2
,

= lim
(x,mx)→(0,0)

mx2

x2 +m2x2
,

= lim
x→0

mx2

x2(1 +m2)
,

=
m

1 +m2

This means that for paths of different slopes one gets different numbers. Thus,
for example, along y = 0 for which m = 0 the result is 0. but along y = x, for
which m = 1, the result is 1/2. That alone does it. The limit can’t depend on
m, so the limit does not exist (DNE).
Note: Since we are working with limits, it is essential that we adhere strictly
to the rules of syntax. A syntax error is a mathematical error. Also note, that
this being a proof, it must have a conclusion.
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Fig. 3.4: Limit does not exist

Example Show that the limit

lim
(x,y)→(0,0)

xy2

x2 + 3y4
,

does not exist.
Solution

The pinching at the origin shown in the graph of the function in figure 3.4
suggests that the limit does not exist there. We would like to choose a power
function path along which all the variables cancel. We choose the family of
parabolas x = my2. Along these paths, we have

lim
(x,y)→(0,0)

xy2

x2 + 3y4
= lim

(my2,y)→(0,0)

(my)2y2

(my2)2 + 3y4
,

= lim
(my2,y)→(0,0)

my4

m2y4 + 3y4
,

= lim
x→0

my4

y4(m2 + 3)
,

=
m

m2 + 3

We get different results as we approach the origin along different parabolas.
The limit can’t depend on m, so the limit does not exist.
At the origin, the two functions above have a sort of higher dimensional version
of jump discontinuity. Here is another kind of example with most interesting
behavior.

3.2.2 Example Investigate the limit

lim
(x,y)→(0,0)

xy(x2 − y2)

x2 + y2
,

Solution. the function f(x, y) = xy(x2 − y2)/(x2 + y2) is not defined at the
origin, so it is not continuous there. The graph of the function along with some
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Fig. 3.5: Limit exists

level curves appears in figure 3.5. For lack of a better name we will call this
function as a “4-leg-saddle,” or a “foul saddle.” The reader might be surprised
to see that the graph appears to be totally well behaved as we approach the
origin; but we know there must be a hole at (0, 0). We should be fairly confident
that the limit exists. In general, proving that a limit exists must involve an
ε-δ argument and this is hard. However, in this special example there is a neat
trick - we convert to cylindrical coordinates. Let x = r cos θ and y = r sin θ, so
that x2 + y2 = r2 We get

lim
(x,y)→(0,0)

xy(x2 − y2)

x2 + y2
= lim

(r,θ)→(0,0)

r2 cos θ sin θ(r2 cos2 θ − r2 sin2 θ)

r2
,

= lim
(r,θ)→(0,0)

r4 cos θ sin θ(cos2 θ − sin2 θ)

r2
,

= lim
(r,θ)→(0,0)

r4 sin 2θ cos 2θ

2r2
,

= lim
(r,θ)→(0,0)

r4 sin 4θ

4r2
,

= lim
(r,θ)→(0,0)

1

4
r2 sin 4θ

,

which is 0, independent of θ. By extending the definition of the function so that
f(0, 0) = 0, we get a continuous function. In the computer generated graph one
would not even notice the difference.

If we try to apply the same trick to convert the “wonton” surface to cylindrical



3.3. PARTIAL DERIVATIVES 73

coordinates, we get

z =
xy

x2 + y2
.

=
r cos θ r sin θ

r2
,

= cos θ sin θ, r > 0,

= 2 sin 2θ,

So for any particular value θ = θo, the level curve is the semi-infinite horizontal
line of intersection of the surface and the plane z = 2 sin 2θo. Thus, the surface
is “ruled” by these lines with heights oscillating between −1 and 1 as theta
goes around a full period. This explains why the surface looks the way it does,
and why the function approaches different values depending on the angle of
approach to the origin.

3.3 Partial Derivatives

Fig. 3.6: Partial Derivative

We recall from calculus of one variable
that if one has a function y = f(x), the
derivative of the function at a point is de-
fined by limit of the ratio ∆y/∆x as the in-
crement ∆x approaches 0. The ratio ∆y/∆x
represents the slope of a secant line pass-
ing through two nearby points. The limit
of this as the increment ∆x approaches zero
then has the geometric interpretation as the
slope of the tangent line to the curve. We
would like to capture this concept for a real-
valued multivariate function. We introduce
partial derivatives for a real-valued function
of 2 variables, but the definition can be easily extended to several variables.
Let z = f(x, y) be a function, and P (x0, y0) be a point in the domain of the
that function. We define

fx(x, y0) =
∂f

∂x
(x, y0) = lim

h→0

f(x+ h, y0)− f(x, y0)

h
,

fy(x0, y) =
∂f

∂y
(x0, y) = lim

k→0

f(x0, y + k)− f(x0, y)

k
, (3.3)

The limits may, or may not exist. If the limits exist, they are called the partial
derivatives of the function. The geometry of the definition is illustrated in
figure 3.6. When one is extracting the partial derivative with respect to x one
holds the value of y constant, so only the variation of the function in the x
direction is considered. We may think of fx(x, y0) as the slope of the curve of
intersection of the surface with the vertical plane y = y0. This is also illustrated
in figure 3.6. In a similar manner, when one computes the partial derivative
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fy(x0, y), one holds the x coordinate constant and only considers the variation
of the function in the y direction. Other than that, the definition has exactly
the same spirit as the corresponding definition of derivatives in one variable
calculus.

It follows that if one can find the derivative of a function of one variable, one
can also compute partial derivatives, by the following procedure. When taking
partial derivatives with respect to a variable, treat all other variables as if they
were constant. Otherwise, all the rules of differentiation and all the formulas
for derivatives of functions of one variable, still apply. Several notations for
partial derivatives are found in the literature. Here are the most common ones
which we will use in this book. Let z = f(x, y)

fx = zx =
∂f

∂x
=
∂z

∂x
,

fy = zy =
∂f

∂y
=
∂z

∂y
,

fxx = zxx =
∂2f

∂x2
=
∂2z

∂x2
,

fxy = zxy =
∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
,

and so on for other higher order partial derivatives. Note that in the mixed par-
tials, the quantity ∂2f/(∂y∂x) means that one first differentiates with respect
to x and then with respect to y. In the notation in the bottom, the variable y
appears first, which is in the opposite lexicographical order of the correspond-
ing quantity fxy. We do not have to worry much about the order of the mixed
partial derivatives, because of the following theorem

3.3.1 Theorem (Clairaut) If the functions fxy and fyx are both continuous
on an open region containing the point (x0, y0), then

fxy(x0, y0) = fyx(x0, y0)

The conditions of this theorem are met by almost all functions z = f(x, y)
treated here. The first counter-example to the theorem showing that the conti-
nuity condition is necessary was found by Peano circa 1900. The most common
function for which the mixed partial are not equal at a particular point is the “4-
leg-saddle” at the origin. At the origin the first derivatives fx(0, 0) and fy(0, 0)
exist and are continuous, but the mixed partials are not and the theorem fails.
Example Let f(x, y) = x3 + xy2 + y3. Compute fx and fy.
Solution.

fx = 3x2 + y2,

fy = 2xy + 3y2.

Example Let f(x, y) = x sin(xy). Compute fx and fy.
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Solution

fx = x
∂

∂x
sin(xy) + sin(xy)

∂

∂x
x,

= xy cos(xy) + sin(xy),

fy = x2 cos(xy).

Example Let f(x, y) = exy
2

ln(x+ y2)

Solution

fx = y2exy
2

+
1

x+ y2
,

fy = 2xyexy
2

+
2y

x+ y2
.

Example Let f(x, y) = x2y3 + ex
2y. Compute all the first and second partial

derivatives.

Solution

fx = 2xy3 + 2xy ex
2y,

fy = 3x2y2 + x2 ex
2y,

fxx = 2y3 + 2xy ex
2y(2xy) + 2y ex

2y,

= 2y3 + 2y(2x2y + 1)ex
2y,

fxy = 6xy2 + 2xy ex
2y(x2) + 2x ex

2y,

= 6xy2 + 2x(x2y + 1)ex
2y = fyx,

fyy = 6x2y + x4 ex
2y.

Example Consider the ideal gas law PV = nRT . Find ∂P/∂T and ∂P/∂V .

Solution

P =
nRT

V
,

∂P

∂T
=
nR

V
,

∂P

∂V
= −nRT

V 2
,

3.3.2 Example Mixed Partials not Equal

The function

f(x, y) =

{
xy(x2−y2)
x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0)

shown in picture 3.5 is exceptional at the origin for it provides a rare example
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of a function for which fxy 6= fyx. In fact, by the quotient rule we get,

fx(x, y) =
y(x4 + 4x2y2 − y4)

(x2 + y2)2
, if(x, y) 6= (0, 0),

fy(x, y) =
x(x4 − 4x2y2 − y4)

(x2 + y2)2
, if(x, y) 6= (0, 0).

For the first partial derivatives at (0, 0), we have

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim
h→0

(0/h2)− 0

h
= 0,

fy(0, 0) = lim
k→0

f(0, k)− f(0, 0)

k
= lim
k→0

(0/k2)− 0

k
= 0.

Therefore, fx(0, y) = −y for all y, which implies that,

fxy(0, y) = −1, fxy(0, 0) = −1.

Similarly, fy(x, 0) = x for all x, which implies that,

fyx(x, 0) = 1, fyx(0, 0) = 1.

In accordance with Clairaut’s theorem, it must be the case that fxy or fyx is
not continuous at (0, 0). For (x, y) 6= (0, 0),

fxy = fyx =
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
.

A plot of the function fxy reveals almost the same type of
singularity at the origin as the “wonton” surface. The level
curves are straight lines but the lines appear to approach
the origin at different values depending upon the direction.

Indeed, let y = mx. Evaluating the function fxy for (x, y) 6= (0, 0), along the
directions y = mx, we find

fxy(x,mx) =
1−m6

(1 +m2)3
.

Hence, the limit as (x,mx)→ (0, 0) gives different values which depend on m.
This implies that the limit does not exist and hence the function fxy is not
continuous at the origin.

3.3.1 Laplacian

A partial differential equation (PDE) is an equation that contains partial
derivatives. If the equation only contains the first partial derivatives, the equa-
tion is called a PDE of first order, and if it contains one or more second partial
derivatives, it is called PDE of second order. The process of finding solutions
of partial differential equations is the subject of a more advanced course. How-
ever, the process of establishing whether of not a particular function satisfies
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a PDE, is elementary, since all one has to do is insert the function into the
equation and verify that it holds. For example, we can verify that the function
u(x, t) = sin(x+ 3t) satisfies the equation ux − (1/3)ut = 0 because

ux − 1
3ut = cos(x+ 3t)− 1

3 cos(x+ 3t)(3) = 0.

Definition The Laplacian (in Cartesian coordinates) is the differential oper-
ator ∇2 defined by

∇2u =
d2u

dx2
, if u = u(x),

∇2u =
∂2u

∂x2
+
∂2u

∂y2
, if u = u(x, y),

∇2u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
, if u = u(x, y, z), (3.4)

The quantity ∇2 is called a differential operator because it is looking for a func-
tion input on which to operate. The output is another function. The central
application of differential calculus of several variables to STEM fields is math-
ematical modelling of physical phenomena by partial differential equations. It
turns out that the PDE models of the main branches of mathematical physics
all involve the Laplacian. The operator enters into the field equations of New-
tonian gravitation, classical theory of electricity and magnetism via Maxwell’s
equations, the wave equation including the models for propagation of light,
sound, water and gravitational waves, and Schrödinger’s equation in quantum
mechanics. We present a very introductory note to the three basic classical
models featuring the Laplacian

3.3.2 Laplace’s equation

The equation

∇2u = 0

is called the Laplace equation. It is a special case of the potential theory
Poisson equation ∇2u = ρ, where ρ is a function typically representing a density
of mass, or charge creating the field. The solutions of the Laplace equation are
called harmonic functions. We show some examples of harmonic functions
in two variables
Example Show that the function u(x, y) = x3 − 3xy2 is harmonic.
Solution.

ux = 3x2 − 3y2

uy = −6xy
And

uxx = 6x

uyy = −6x

So

uxx + uyy = 6x− 6x = 0

As a teaser to stimulate your thirst for knowledge, we introduce a most re-
markable fact one learns in a more advanced course in complex variables. All
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harmonic functions of two variables arise as the real and imaginary parts of dif-
ferentiable complex functions w = f(z), where z = x+ iy and i =

√
−1. More

specifically, if the complex function w is separated into its real and imaginary
parts w = u(x, y) + iv(x, y), then, both, u and v are harmonic functions. The
pair are called conjugate harmonic.

Example Let w = f(z) = z3. Then

w = (x+ iy)3,

= x3 + 3x2(iy) + 3x(iy)2 + (iy)3,

= (x3 − 3xy2) + i (3x2y − y3),

u = (x3 − 3xy2), v = 3x2y − y3.

The function u(x, y) = x3 − 3xy3 is the one that appears in the preceding
example.

Example Let Let w = f(z) = z4. Then

w = (x+ iy)4,

= x4 + 4x3(iy) + 6x2(iy)2 + 4x(iy)3 + (iy)4,

= (x4 − 6x2y2 + y4) + i (4x3y − 4xy3),

u = x4 − 6x2y2 + y4, v = 4x3y − 4xy3.

We verify that the function u(x, y) = x4 − 6x2y2 + y4 is harmonic.

ux = 4x3 − 12xy2

uy = −12x2y + 4y3
And

uxx = 12x2 − 12y2

uyy = −12x2 + 12y2,

So

uxx + uyy = 0

.

Example Complex logarithm

Consider complex numbers in polar coordinates

x = r cos θ,

y = r sin θ.
and

r =
√
x2 + y2

θ = tan−1(y/x).

We assume that 0 ≤ θ < 2π to avoid multiple labels for the points. Then

z = x+ i y,

= r cos θ + i r sin θ,

= r(cos θ + i sin θ),

= r eiθ.
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Then, the (principal part of ) the complex logarithm function is

w = ln z,

= ln(r eiθ),

= ln r + i θ,

= ln(
√
x2 + y2) + i tan−1(y/x).

u = ln(
√
x2 + y2); v = tan−1(y/x).

. We verify that the function u = ln(
√
x2 + y2) = (1/2) ln(x2 +y2) is harmonic.

ux =
x

x2 + y2

uy =
y

x2 + y2

And

uxx =
y2 − x2

(x2 + y2)2

uyy =
x2 − y2

(x2 + y2)2
,

So
uxx + uyy = 0.

The function u = ln(1/r) is (up to a constant) the potential due a current on
a straight wire. We leave to reader to verify that v(x, y) = tan−1(y/x) is also
harmonic.
Example Complex cosine
Starting with Euler’s formula, we have

eix = cos θ + i sin θ,

e−ix = cos θ − i sin θ.

Adding the two equations above and dividing by 2, we get,

cosx =
eix + e−ix

2
.

Then, the complex cosine function is,

w = cos z =
1

2
(eiz + e−iz),

=
1

2
[ei(x+iy) + e−i(x+iy)],

=
1

2
[eixe−y + e−ixey],

=
1

2
[e−y(cosx+ i sinx) + ey(cosx− i sinx)],

= cosx

(
ey + e−y

2

)
+ i sinx

(
e−y − ey

2

)
,

= cosx cosh y − i sinx sinh y.

u = cosx cosh y, v = − sinx sinh y
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It follows immediately that

uxx + uyy = − cosx cosh y + cosx cosh y = 0,

so u is harmonic; by a similar computation, so is v.
Table 3.1 shows some common conjugate harmonic functions in some domain,
with the generating complex function w = f(z) = u+ i v

w = f(z) u(x, y) v(x, y)

w = z2 u = x2 − y2 v = 2xy
w = z3 u = x3 − 3xy2 v = 3x2y − y3

w = z4 u = x4 − 6x2y2 + y4 v = 4x3y − 4xy3

w = ez u = ex cos y v = ex sin y

w = ln z u = ln(
√
x2 + y2) v = tan−1(y/x)

w = cos z u = cosx cosh y v = − sinx sinh y
w = sin z u = sinx cosh y v = cosx sinh y
w = 1/z u = x/(x2 + y2) v = −y/(x2 + y2)

Table 3.1: List of some conjugate harmonics

Harmonic functions in two variables give rise to very neat surfaces in R3.
In figure 3.7 we display some of them in cylindrical coordinates. Cylindrical
coordinates just means we convert x and y to polar coordinates. The first graph
is the saddle u(x, y) = x2 − y2 that comes from the real part of f(z) = z2. In
cylindrical coordinates the equation is

z = r2 cos2 θ − r2 sin2 θ = r2 cos 2θ.

The second graph is called a monkey saddle because it has a place for the tail
of the monkey. The monkey saddle comes from the real part of the function
f(z) = z3 which in cylindrical coordinates is z = r3 cos 3θ. The third graph on
the right is the real part of f(z) = z4 with cylindrical equation z = r4 cos 4θ.
There is no classical name for the latter, this is basically the same we called a
“foal-on-horse” saddle because a baby horse riding on papa-horse would have
space for the four legs. The function z = r8 cos 8θ would give an “octopus
saddle”.
We emphasize that the expectation on this topic at this level reduces to verifying
whether or not a function of two variables is harmonic.
Example Inverse Square Law
For harmonic functions in three variables we mention only one example, how-
ever, this is the most important of all harmonic functions. Let r = x i+y j+xk
be the position vector of a point in R3 with distance r = ‖r‖ to the origin. Let
φ = −1/r. We show that

∇2φ = ∇2

(
−1

r

)
= 0, r 6= 0. (3.5)
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Fig. 3.7: a) Saddle b) Monkey Saddle c) “Foal-on-Horse” Saddle

is a solution of Laplace’s equation.

φ(x, y, z) = − 1√
x2 + y2 + z2

,

φx =
x

(x2 + y2 + z2)3/2
,

φy =
y

(x2 + y2 + z2)3/2
,

φz =
z

(x2 + y2 + z2)3/2
.

In the next section we will learn that the vector whose components are the
first partial derivatives, is called the gradient, and is denoted by the symbol
∇φ = 〈φx, φy, φz〉. Let F be a force vector given by,

F = −∇φ

Using this notation, we have

F = ∇
(

1

r

)
= − r

r3
(3.6)

Up to a constant, this is the inverse square law for Newtonian gravitation
and electromagnetism. This is because the magnitude ‖F‖ of the force vector
is 1/r2. For gravitation, the force field is

Fg = ∇
(
MG

r

)
= −MGr

r3
, (3.7)

where M is the mass of the gravitational source and G is Newton’s universal
gravitation constant.

For the second partial derivatives we use the quotient rule and simplify the
result by multiplying top and bottom by the square root term to eliminate the
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double fraction. We leave the details to the reader and just present the results.

φxx =
−2x2 + y2 + z2

(x2 + y2 + z2)5/2
,

φyy =
x2 − 2y2 + z2

(x2 + y2 + z2)5/2
,

φzz =
x2 + y2 − 2z2

(x2 + y2 + z2)5/2
.

Adding the results, we get φxx + φyy + φzz = 0

3.3.3 Wave Equation

Let u = u(x, y, z, t) The wave equation is the PDE

∇2u =
1

v2

∂2u

∂t2
, v = constant (3.8)

The constant v represents the speed of the wave. The wave operator

� = ∇2 − 1

v2

∂2

∂2t

enters into the physical model of any wave propagation phenomena, whether it
refers to light, sound, water, or wave on a string. In this unit we will only be
concerned with verifying whether or not a particular function u(x, t) satisfies
the wave equation in one dimension

∂2u

∂x2
=

1

v2

∂2u

∂t2
(3.9)

If one were to pluck a string on a guitar, the sound wave generated would be
described by such an equation. A more realistic model would include a friction
term and boundary conditions.

3.3.3 Example Show that function u(x, t) = sin(x− vt) is a solution of the
one-dimensional wave equation.
Solution. This is a very easy problem. We compute the partial derivatives and
insert into the equation to see if it holds. It amounts to a simple application of
the chain rule.

ux = cos(x− vt)
ut = −v cos(x− vt)

and
uxx = sin(x− vt)
utt = (−v)2 sin(x− vt)

So,
uxx − (1/v2) utt = 0.

The solution has a fairly obvious interpretation. If in a function y = f(x) one
replaces x by (x − h), the graph of the function is shifted to the right by an
amount h. Here, time t is a continuous variable, so the graph of the function
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u = sin(x − vt) represents a sine wave moving to the right with speed v. The
sine function can be replaced by any twice differentiable function

u(x, t) = f(x− vt) = f(ξ), where ξ = x− vt

Then, by the chain rule again

uxx = f ′′(ξ), utt = (−v)2f ′′(ξ)

so this is also a solution of the wave equation. The general solution of the
one-dimensional wave equation is of the form

u(x, t) = f(x− vt) + g(x+ vt), (3.10)

where, f and g are twice differentiable functions. The solution represents a
wave form moving to right plus a wave form moving to the left, both with
speed v. One can corroborate this visually by creating a “bump” disturbance
on a stretched slinky.

3.3.4 Heat Equation

Let u = u(x, y, z, t). The heat equation, also called the diffusion equation is
given by

∂u

∂t
= α2∇2u, α = constant. (3.11)

The generic solution of the heat equation in one dimension

∂u

∂t
= α2 ∂

2u

∂x2

is of the form
u(x, t) = e−α

2k2t2(A cos kx+B sin kx),

where A,B and k are constants. It is very easy to verify that this is a solution.
The solution is sinosoidal with an amplitude that attenuates exponentially. We
leave it at that.

3.4 The Differential

3.4.1 The Differential in one Variable

We begin this section with a short review of the fundamentals of one variable
calculus in terms of differentials. Anticipating that we will extend the notion
to two variables we denote a differentiable real-valued function by z = f(x).
The function is graphically represented by a curve, as shown in figure 3.8. Let
z0 = f(x0) be a point on the curve. We are interested in finding the slope of the
tangent line to the curve at the point P (x0, z0). We pick a point x = x0 + ∆x
nearby and denote the change of the function to get to the point z = f(x) by
∆z. We define the derivative of the function at the point (x0, z0) as the limit
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of the slope ∆z/∆x, as ∆x approaches 0. At the risk of a temporary abuse
of notation, we interchangeably denote the derivative dz/dx = f ′(x) by the
symbol zx or fx. We have

dz

dx
= lim

∆x→0

∆z

∆x
= zx = fx.

The limit is a rigorous concept that can be made very precise with the ε-δ
language invented by Cauchy in the 1800’s. The limit can be computed by
step by step process, leading eventually to the list of derivatives rules and the
formulas for the derivatives of the elementary functions. We are taught again
and again that dy/dx is not a fraction, but rather, a process represented by
the limit definition. But now, something rather peculiar is done in standard
calculus books. We define the differential by the equation

dz = zx dx. (3.12)

Fig. 3.8: Differentials

The peculiar object here is dx. Counter
to the intuition of Newton and Leibniz who
called dx an infinitesimal, we are told that dx
is really an independent variable that can be
given any value. This is absolute non-sense.
If dx were really a variable in the usual sense
as we understand it, then we should be able
to take the square root, or exponential of dx,
which of course would be grievous error! In-
tuitively, dx should be something “smaller”
than ∆x, but that makes no sense either,
since ∆x is approaching 0 and there is no
smallest number that is not 0. So, for now, we prefer to stick with Newton
and Leibnitz, and just refer to dx as an infinitesimal, which conjures the idea
of something very small. We will have to wait until a more advanced course
to make rigorous sense of dx as explained by Eli Cartan in the early 1900’s.
Having accepted dx exists, then the differential dz is fine. The differential leads
to three fundamental concepts that we wish to extend to multivariate functions.
1. Linearization

Linearization of a function of one variable means to approximate the value
of the function at a point z = f(x) by the equation the tangent line at a nearby
point. Let z0 = f(x0). If ∆x is small, we have the approximation

∆z

∆x

.
= zx,

z − z0

x− x0

.
= fx(x0),

z
.
= z0 + (x− x0)fx(x0), that is,

f(x)
.
= f(x0) + (x− x0)fx(x0).

The reader will recognize the quantity on the right hand side as the approxi-
mation to the function by the linear term of the Taylor series. So, for example,
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if we wanted to approximate
√

101, we would take z = f(x) =
√
x, x0 = 100,

x = 101 and ∆x = 1. Then,

f(x) =
√

101
.
=
√

100 + (101− 100)
1

2
√

100
,

.
= 10 +

1

20
,

.
= 10.05

Of course, with one push of a button in a calculator which has the Taylor series
coded in a chip, we can get by far a much better approximation. In this sense,
this particular application to evaluate functions is obsolete. However, finding
the equation of the tangent line, is fundamental.

2. Implicit Differentiation
Every expression for the derivative of a function, can be rewritten in terms

of differentials. For example,

d

dx
(x2) = 2x, then d(x2) = 2x dx,

d

dy
(y2) = 2y, then d(y2) = 2y dy,

d

du
(u2) = 2u, then d(u2) = 2u du.

The differential does not discriminate because of the name of the variable, they
are all treated equally. With this simple observation, implicit differentiation of
an equation f(x, y) = c is reduces to two instructions

a) Take d
b) Solve for dy/dx

3.4.1 Example . Find dy/dx, given the circle x2 + y2 = 1.
Solution,

d(x2 + y2) = 0,

2x dx+ 2y dy = 0,

dy

dx
= −x

y
, y 6= 0.

The solution is not valid when y = 0, because at those points, the tangent line
is vertical. A circle is not a function of x. The derivative of y with respect to
x could have been obtained without implicit differentiation by first solving for
y to get two explicit functions y =

√
1− x2 and y = −

√
1− x2. Not only is

this more work, but for more complicated expressions it might be difficult or
impossible to solve for y explicitly.

3.4.2 Example Find dy/dx, given y3 + 4xy2 − 5x = 1
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In this case it is still possible to solve for y using the cubic formula discovered
by Scipione del Ferro and first published by Gerolamo Cardano in 1545. The
solutions with Maple cover an entire page - clearly not the thing to do. Instead,
we follow the two steps mentioned above, keeping in mind that for the middle
term we need the product rule.

d(y3 + 4xy2 − 5x) = 0,

3y2 dy + 4y2 dx+ 8xy dy − 5 dx = 0,

(3y2 + 8xy) dy = −(4y2 − 5) dx,

dy

dx
= − (4y2 − 5)

(3y2 + 8xy)
, 3y2 + 8xy 6= 0

3.4.3 Example Find dy/dx, given y2 + x sin y + x3 = 1
Solution. This is a transcendental equation and it is not possible to solve
for y in terms of elementary functions. However, as before, the differential
always converts a nonlinear equation on the variables to a linear equation of
the differential of the variables. We get

d(y2 + x sin y + x3) = 0,

2y dy + sin y dx+ x cos y dy + 3x2 dx = 0,

(2y + x cos y) dy = −(sin y + 3x2) dx,

dy

dx
= − sin y + 3x2

(2y + x cos y)
; 2y + x cos y 6= 0.

We reiterate that the derivative is valid only in the cases where the denominator
is not zero.

3. Chain Rule
Suppose that z = f(x) and x = g(t), Then, composition of functions gives z as
a function of t and we can take the derivative dz/dt. From the definition of the
differential, we have

dz = zx dx.

Recalling the zx = dz/dx We get immediately

dz

dt
=
dz

dx

dx

dt
.

This is the chain rule in the notation of Leibnitz. Huge disclaimer! this is not
a proof of the chain rule. It completely ignores the subtlety that as ∆t→ 0, we
also have ∆x→ 0. However, the standard rigorous proof of the chain rule that
appears in all calculus textbooks shows that the formula is correct.

3.4.2 Multivariate Differential
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Fig. 3.9: Differentials

We extend the definition of differentials
to functions z = f(x, y) of two variables in a
natural way. Assume the partial derivatives
of the function exist and are continuous. The
function represents a surface in R3 as shown
in figure 3.9. Let P (x0, y0) be a point on the
domain and z0 be the value of the function at
this point. We are interested in approximat-
ing the value of the function at a point (x, y)
nearby. As shown in the picture, if we start at
P and vary the function holding y0 constant,
we get a curve on the surface. Thus, the def-
inition of differentials for one variable applies. Let x = x0 + ∆x, where ∆x is a
small number. The change ∆z1 on the surface resulting from this increment in
the x coordinate is given approximately by

∆z1
.
= zx ∆x.

Similarly, if we vary y while holding x constant, we get a curve on the surface
that depends only on y. Let y = y0 +∆y, where ∆y is also a small number. The
change ∆z2 on the surface resulting from this increment in the y coordinate is
given by

∆z2 = zy ∆y.

The composite change ∆z resulting from the increments in x and y is the sum

∆z = zx ∆x+ zy ∆y. (3.13)

The infinitesimal version of the formula is the differential

dz = zx dx+ zy dy, or,

df = fx dx+ fy dy. (3.14)

Embedded in the differential are three very important concepts:
1. Linearization

Linearization of a function of two variables means to approximate the value
of the function z = f(x, y) by the equation of the tangent plane at a nearby
point. Let z0 = f(x0, y0), x = x0 +∆x and y = y0 +∆y, where the increments
are small, Then, equation 3.13 reads

(z − z0)
.
= fx(x0, y0) (x− x0) + fy(x0, y0) (y − y0).

which we can rewrite as

f(x, y)
.
= f(x0, y0) + fx(x0, y0) (x− x0) + fy(x0, y0) (y − y0). (3.15)

There is a lot going on here. The equation

fx(x0, y0) (x− x0) + fy(x0, y0) (y − y0)− (z − z0) = 0 (3.16)



88 CHAPTER 3. PARTIAL DERIVATIVES

is the equation of the tangent plane to the surface at the point (x0, y0, z0).
Clearly, the normal N to the plane is given by the vector

N = 〈fx, fy,−1〉 (3.17)

You may find it easier to remember the expression for the normal vector and use
it when needed, to find the equation of the tangent plane. The approximation
3.15 is just the linear part of the Taylor expansion of the function f(x, y) near
the point (x0, y0). It is neat that one can use 3.15 to approximate numerically
the value of the function near the given point (x0, y0), but again, this is fairly
pointless nowadays, considering the proliferation of calculators and computers.

The definition of the differential extrapolates in a natural way to functions
of more variables. For example, if we have a hypersurface w = F (x, y, z), we
write

dw = wx dx+ wy dy + wz dz. or,

dF = Fx dx+ Fy dy + Fz dz.

3.4.3 Implicit Differentiation and the Gradient

We revisit implicit differentiation in two variables in a more formal manner
that sheds light onto the geometry of the precess. Consider a function defined
implicitly by the equation f(x, y) = c, where c is a constant. These represent
the level curves of the function z = f(x, y). Extracting the differential, we find,

df = fx dx+ fy dy = 0,

fy dy = −fx dx,
dy

dx
= −fx

fy
, where fy 6= 0. (3.18)

We have reduced implicit differentiation in one variable to the very simple
formula 3.18. It is easy because it should be easy. We are talking about differ-
entiation in one variable, but using the more advanced tool of the multivariate
differential. The reader may wish to corroborate that the new simple formula
is compatible with the examples on implicit differentiation presented in subsec-
tion 3.4.1. The expression for df is most interesting. We can rewrite it as a dot
product

df = fx dx+ fy dy,

= 〈fx, fy〉 · 〈dx, dy〉 = 0,

3.4.4 Definition The differential operator

∇ =
∂

∂x
i +

∂

∂y
j, (3.19)
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is called the two-dimensional gradient. The quantity is called an operator,
because it is ready to receive an input on which to operate. It the input is a
function, the output is a vector. Rather, we should say the output is a vector
field because the values of the vector at a point depend of the coordinates at
that point. That is, the vector field assigns a vector to each point in the domain.
The gradient vector field of f(x, y) is

∇f = 〈fx, fy〉

We recall that dr = 〈dx, dy〉 is just the differential of arc length vector 2.18,
Thus, we can write the equation df = 0 in the form

∇f · dr = 0 (3.20)

Since dr is tangential to the level curves, deduce that the gradient vector field
is normal to the level curves!

Fig. 3.10: Gradient

3.4.5 Example Let f(x, y) = x2 − y2. The surface is a saddle and the level
curves x2− y2 = c are hyperbolas, except for the case c = 0 that consists of the
two lines y = ±x. The gradient of the function is the vector field

∇f = 〈2x,−2y〉

Plotting a vector field is not task to be done by hand by human beings. In figure
3.10 we have used Mathematica to render on a grid, the gradient vector field
superimposed on a set of level curves. The figure makes obvious the general fact
that gradient vectors point in the direction of fastest increase of the surface.
This is so, because the fastest way to move from a level curve to one with higher
altitude is in a direction orthogonal to the level curve.

We now consider implicit differentiation in three variables. An implicit
function of three variables is an equation of the form

F (x, y, z) = c
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For each constant c we may consider F (x, y, z) = c as a level surface of a
hypersurface w = F (x, y, x). For example, the implicit function

F (x, y, z) = x2 + y2 − z2 = c

represents a family of nested circular hyperboloids, except for the case c = 0
that represents a circular cone. The surfaces are not regular functions of x and
y, but in principle, one one could solve for z and obtain locally explicit functions.
In the given case it is easy to solve for z in term of two square root functions,
but in general, this may be hard or impossible. Still, it is straightforward to
find the partial derivatives zx and zy by a three-step process,

1. Take the differential d.
2. Solve for dz. One gets dz = zx dx+ zy dy
3. Read the partial derivatives from the “coefficients” of dx and dy.

3.4.6 Example Given the hyperboloid x2 − y2 + z2 + 6z = 8, find the first
partial derivatives zx and zy.
Solution,

d(x2 − y2 + z2 + 6z) = 0,

2x dx− 2y dy + 2z dz + 6 dz = 0,

(2z + 6) dz = −2x dx+ 2y dy,

dz = − 2x

2z + 6
dx+

2y

2z + 6
dy,

zx = − 2x

2z + 6
, zy =

2y

2z + 6
, z 6= −3

3.4.7 Example Given yz3 + 4xey + 5z = 9, find zx and zy.
Solution,

d(yz3 + 4xey + 5z) = 0,

z3 dy + 3yz2 dz + 4xey dy + 4ey dx+ 5 dz = 0,

(3yz2 + 5) dz = −4ey dx− (z3 + 4xey) dy,

dz =
−4ey dx− (z3 + 4xey) dy,

3yz2 + 5
,

zx = − 4ey

3yz2 + 5
, zy = −z

3 + 4xey

3yz2 + 5
, 3yz2 + 5 6= 0.

These two problems are special cases of the general case of finding zx and zy

for the equation
F (x, y, z) = c

. Taking the differential, we get,

dF = Fx dx+ Fy dy + Fz dz = 0,

Fz dz = −Fx dx− Fy dy,

dz = −Fx
Fz

dx− Fy
Fz

dy,
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Hence, once again we have reduced the implicit differentiation problem to the
following compelling formula

zx = −Fx
Fz
, zy =

Fy
Fz
, Fz 6= 0. (3.21)

Also, as before, the intermediate step dF = 0 is very interesting. We can rewrite
the equation, as

∇F · dr = 0,

where ∇ is now the three dimensional gradient operator

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k. (3.22)

The interpretation is completely analogous. The infinitesimal arc length vector
dr is tangent to any curve r(t) on the surface, so it is tangent to the surface.
Hence, The vector

N = ∇F = 〈Fx, Fy, Fz〉 (3.23)

is normal to the level surfaces and hence normal to the tangent plane to the
surface at each point. This yields an easy to remember procedure to find the
equation of the tangent plane to a surface at a given point P , namely, compute
the gradient, evaluate it at P , and use this vector as the normal to the plane.

3.4.8 Example Find the equation of the tangent a plane to the ellipsoid

F (x, y, z) = x2

1 + y2

4 + z2

9 = 3, at the point P (1, 2, 3).
Solution. To find the equation of plane, we need a point and a normal. The
point is given. For the normal, we have

∇F = 〈2x, y/2, 2z/9〉,
∇F |

P
= 〈2, 1, 2/3〉,

N = = 〈6, 3, 2〉,

so the equation is

6(x− 1) + 3(y − 2) + 2(z − 3) = 0,

6x+ 3y + 2z = 18.

We need to reconcile the normal vector to a surface defined implicitly with the
normal vector to an explicit surface z = f(x, y). This is easy. Let

F (x, y, z) = f(x, y)− z = 0

In other words, we can always view an explicit equation z = f(x, y) as the
particular level surface of the function F (x, y, z) above. Then

∇F = 〈fx, fy,−1〉

which is the result 3.17 we had before.
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3.5 Chain Rule

3.5.1 First Order Chain Rule

We use the intuitive approach for the chain rule in one variable using the
differential to extrapolate to the chain rule in several variables. Recall that if
z = f(x) and x = g(t), then the differential dz = zx dx, where zx = dz/dx,
leads to the derivative of the composite function

dz

dt
=
dz

dx

dx

dt
, or in subscript notation,

zt = zxxt.

Now, suppose that

z = f(x, y), x = x(t), y = y(t).

Then z = f(x(t), y(t)) is ultimately a function of t, that is, a curve. That is,
the composition of the maps is a real-valued function as shown in the diagram
here,

t→ (x, y)
f−→ z,

R → R2 f−→ R.

Therefore, it makes sense to take the derivative dz/dt. The derivative is a
regular derivative dz/dt and not a partial derivative, since we are just finding
the slope of a curve.
As with one variable, we convert the differential into a
derivative formula,

dz = zx dx+ zy dy,

zt = zxxt + zyyt.

z
↙↘

x y
↙ ↘
t t

This is the chain rule in this case. A good mnemonic to remember this formula
is to arrange the variable dependence in the form of a tree as shown in the figure.
In the tree, z depends on x and y, which themselves depend on t. Now think of
a “Hungry Caterpillar” that likes to munch on t-leaves. The caterpillar crawls
down one branch to x and then from x to t. Each node of the tree represents
a derivative. The caterpillar then goes back to the tree trunk and crawls back
down on the y branch looking of the other t-leaf. Writing the equation in the
notation of Leibnitz

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
, (3.24)

gives a better sense of why this is called the chain rule. We humorously add
that the allegorical caterpillar is a chain eater in the sense that it has to chomp
on every t-leaf.

We provide an example that although extremely simple, it has all features
that need to be illustrated with this case of the bivariate chain rule. The usual
suspect is a quadric surface.
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3.5.1 Example Let z = f(x, y) = x2−y2, x = cos t, y = sin t. Use the chain rule
to find dz/dt and then evaluate this at t = π/3.

Solution

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
,

= 2x(− sin t)− 2y cos t,

= −2(x sin t+ y cos t).

That is all there is to computing dz/dx. Now we evaluate at the given point,

dz

dt

∣∣∣∣
t=π/3

= −2(x sin t+ y cos t)|t=π/3,

= −2(cos(π/3) sin(π/3) + sin(π/3) cos(π/3),

= − sin(2π/3)), by double angle formula,

= −
√

3.

The goal here is to understand the new chain rule, and if asked to use it, the
problem must be solved as above. In the next lines we “cheat” just for the
purpose of verifying the process works. We solve the problem without any use
of the multivariate chain rule.

z = x2 − y2,

= cos2 t− sin2 t,

= cos 2t,

dz

dt
= −2 sin 2t.

As expected, the function z = cos 2t is ultimately an elementary single-variable
function. We should point out that given z = f(x, y) and x = x(t), y = y(t),
we could define a space curve

r(t) = x(t) i + y(t) j + [ f(x(t), y(t)) ]k.

The position vector of a point on the space curve is con-
strained to satisfy the equation z = f(x, y), therefore, the
space curve must lie on the surface. In the example above,
the space curve r(t) = 〈cos t, sin t, cos 2t〉 indeed lies on the

saddle. Since x2 + y2 = 1, the curve is geometrically described by the intersec-
tion of the saddle with a cylinder of radius 1. The projection of the curve onto
the xy-plane is a circle, whereas the z-coordinate oscillates with period T = π
according to the function z = cos 2t.

Now we consider another case in which we have

z = f(x, y), x = x(t, s), y = y(t, s),



94 CHAPTER 3. PARTIAL DERIVATIVES

where all the given functions are differentiable. The composite function diagram
in this case now needs to be modified a follows,

(t, s)
T−→ (x, y)

f−→ z,

R2 T−→ R2 f−→ R,

where we have denoted by T the vector function that takes vector 〈x, y〉 to
vector 〈t, s〉. Such types of vector functions from Rn to Rn are called coordinate
transformations or change of variables. We have already given a couple of
examples of the this type when we changed to polar coordinates to study limits
of some functions of two variables
The tree diagram is depicted in the adjacent figure. Since
z ultimately depends on t and s, it makes sense to take
the partial derivatives zt and zs. Recalling that when
one computes the partial derivative with respect to one
variable , the other variables are treated as if they were

z
↙↘

x y
↙↘ ↙↘
t s t s

constants, we see that the formula for zt looks just as before, the only difference
being that now zt represents a partial derivative instead of a regular derivative.
The same can be said about zs. Hence, the equations for the two partial deriva-
tives are given by,

zt = zxxt + zyyt,

zs = zxxs + zyys,

The formulas above are short and elegant, but to emphasize that all the sub-
scripts denote partial derivatives, we rewrite the equations as,

∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t
,

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s
, (3.25)

3.5.2 Example Let z = x3−3xy2, x = r cos θ, y = r sin θ. Use the chain rule
to find zr and xθ.
Solution

zr = zxxr + zyyr,

zθ = zxxθ + zyyθ,

zr = (3x2 − 3y2) cos θ − 6xy sin θ,

zθ = −(3x2 − 3y2)r sin θ − 6xy r cos θ,

For the purposes of fulfilling the requirements of the curriculum, we are done
with this problem. However, you may find the following enrichment perspective
interesting. The function here is a monkey saddle which is a harmonic function,
so there are complex numbers lurking in the neighborhood. Let’s expand zr by
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a full substitution. We get,

zr = (3x2 − 3y2) cos θ − 6xy sin θ,

, = (3r2 cos2 θ − 3r2 sin2 θ) cos θ − (6r cos θ r sin θ) sin θ,

= 3r2[cos2 θ − sin2 θ] cos θ − 3r2[2 sin θ cos θ] sin θ,

= 3r2[cos 2θ cos θ − sin 2θ sin θ],

= 3r3 cos(2θ + θ), using the sum and double angle formulas

= 3r2 cos 3θ

This is the way it should be because the real part of w = z3 = r3e3iθ is

u = r3 cos 3θ ⇒ ur = 3r2 cos 3θ.

A similar computation can be done for uθ.

3.5.3 Example Wave Equation. Let u = f(x − vt) + g(x + vt), where f, g
are arbitrary twice differentiable functions and v is a constant. Show that u
satisfies the wave equation uxx = (1/v2)utt
Solution. Let ξ = (x− vt) and η = (x+ vt) so that

u = u(ξ, η) = f(ξ) + g(η).

We have,

ux = uξξx + uηηx = fξ + fη,

ut = uξξt + uηηt = vfξ + (−v)fη.

If u is a function of ξ and η, the so are ux and ut, so the same chain rule applies.
The mixed partial derivatives of f and g are zero, since these are functions of
one variable. Thus

uxx = (ux)
ξ
ξx + (ux)

η
ηx = fξξ + fηη,

utt = (ut)ξξt + (ut)ηηt = v2fξξ + (−v)2fηη.

So clearly v2uxx = utt

3.5.2 Second Order Chain Rule

The general second order chain rule is more challenging and is not covered
satisfactorily in most fat calculus textbooks. But if we don’t do it, then it falls
through the cracks only to come back and bite you in the back at a later time.
So let’s do it now and let’s do it right. We begin by extending the differential
to a full multivariate calculus function from Rn to R. So that we do not run
out of letters we use an index notation for the variables. We write

u = f(x1, x2, . . . , xn) = f(xk), , k = 1, 2, . . . n.
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Then,

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · ·+ ∂f

∂xn
dxn,

df =

n∑
i=1

∂f

∂xi
dxi. (3.26)

Now suppose the we also have xi = xi(t1, t2, . . . , tm). What we have is a
composition of maps

(t1, t2, . . . , tm)
T−→ (x1, x2, . . . , xn)

f−→ u,

Rm T−→ Rn f−→ R

Thus, it makes sense to take the partial derivatives with respect to each of the
t variables. The resulting chain rule is

∂f

∂tk
=

n∑
i=1

∂f

∂xi
∂xi

∂tk
. (3.27)

This more general formula is very slick. It contains the pair of equations 3.25
as a special case in which (t1, t2) = (t, s), (x1, x2) = (x, y) and the summation
is from i = 1 to 2. Now comes the “hard” part. We take the second derivatives
of equation 3.27, keeping in mind that ∂f/∂xi is also ultimately a function
of the t’s, so for these functions, we have to apply the chain rule recursively.
Combining with the product rule, we get the second order chain rule formula

∂2f

∂tl∂tk
=

n∑
j=1

n∑
i=1

∂2f

∂xj∂xi
∂xj

∂tl
∂xi

∂tk
+

n∑
i=1

∂f

∂xi
∂2xi

∂tl∂tk
. (3.28)

Equation 3.28 is rather formidable for a first pass in multivariate calculus, so
we unpack the equation for ftt and fss for the two variable case (t1, t2) = (t, s),
and (x1, x2) = (x, y). We could also expand the formula for the mixed partials
fts, but we are after the Laplacian, so we will not need them for now. The
explicit formulas are,

ftt = fxx(xt)
2 + 2fxtxtyt + fyy(yt)

2 + fxxtt + fyytt,

fss = fxx(xs)
2 + 2fxtxsys + fyy(ys)

2 + fxxss + fyyss. (3.29)

One of the most difficult problems in this book is to convert the 2-dimensional
Laplacian to polar coordinates. The Laplacian in polar coordinates appears
in classical models that have cylindrical symmetry such as the vibrations of a
membrane, diffraction by a circular aperture, electric potential of charge distri-
bution on a long cylinder, heat conduction on a circular plate, and many more.
Most authors leave the conversion of the Laplacian as an advanced exercise for
the students, but doing so alienates all but the brightest. All STEM students
should be exposed to this problem, so we believe that it is best to work out the
problem for all.
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3.5.4 Example Show that if u = f(x, y) is a twice differentiable functions
and x = r cos θ, y = r sin θ, then

∂2f

∂x2
+
∂2f

∂x2
=
∂2f

∂r2
+

1

r2

∂2f

∂θ2
+

1

r

∂f

∂r
(3.30)

Solution
It is better to work with the chain rule on the right hand side. First, we need

xr = cos θ,

yr = sin θ,

xrr = 0,

yrr = 0.

and

xθ = −r sin θ,

yθ = r cos θ,

xθθ = −r cos θ,

yθθ = −r sin θ.

Then, the first partial derivatives are

fθ = −fx r sin θ + fy r cos θ,

fr = fx cos θ + fy sin θ,

1

r
fr =

1

r
fx cos θ +

1

r
fy sin θ.

Computing the second partial derivatives we are lead to the set of equations

fθθ = r2fxx sin2 θ − 2r2fxy cos θ sin θ + r2fyy cos2 θ − rfx cos θ − rfy sin θ,

1

r2
fθθ = fxx sin2 θ − 2fxy cos θ sin θ + fyy cos2 θ − 1

r
fx cos θ − 1

r
fy sin θ,

frr = fxx cos2 θ + 2fxy cos θ sin θ + fyy sin2 θ,

frr +
1

r2
fθθ = fxx + fyy −

1

r
fx cos θ − 1

r
fy sin θ,

= fxx + fyy −
1

r
fr.

Rearranging the last equation, we get the desired result

frr +
1

r2
fθθ +

1

r
fr = fxx + fyy.

3.6 Directional Derivative

3.6.1 Definition and Computation

Given a a surface z = f(x, y), and a point P (x0, y0), we have learned that the
partial derivative fx and fy evaluated at P represent the slopes of the surfaces
at P in the x and y directions respectively. Now we are interested in finding
the rate of change of the surface in any direction. Let x = 〈x, y〉 represent the
position vector of an arbitrary point in R2. It is convenient to use the notation
f(x) = f(x, y). That is, when we write the value of the function f at a vector,
we mean the value of the function at the position coordinates of that vector.
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Thus, for example, f(P) = f(x0, y0). Let u = 〈a, b〉 be a unit vector. In R2,
the equation

r(t) = P + tu

represents a straight line that contains the point P and and has direction vector
u. But in R3 , the graph of the equation is a plane obtained by extruding the
line in R2 into a vertical plane. The plane intersects the surface z = f(x, y)
restricting the surface to a curve on the surface, as shown in figure 3.11. We
define the directional derivative Duf(P ) of the function f in the direction u at
the point as

Duf(P ) = lim
t→0

f(P + tu)− f(P)

t
(3.31)

The definition here generalizes to functions of more variables by just taking
the point P and the vector u in the appropriate dimension. We have chosen to
illustrate the definition in two variables because in this case it is easy to visualize
the geometry. The definition of directional derivative parallels the definition of
derivatives in one-variable calculus. We evaluate the function f(x, y) at a point
near P along the line r(t). We compute the average slope, then we take the
limit as the nearby point approaches P . The result is a number that measures
of the rate of change of the surface at the given point in the given direction.
The real valued function whose rare of change we are computing can be written

Fig. 3.11: Directional Derivative

as the composition

g(t) = f(P + tu) = f(x0 + at, y0 + bt)

of the function f(x, y) with

x = x0 + at,

y = y0 + bt.
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The derivative g′(0) can be computed as a very simple example of the chain
rule

g′(t) =
df

dt
=
∂f

∂x

dx

dt
+ +

∂f

∂y

dy

dt
,

= a
∂f

∂x
+ b

∂f

∂x
,

= ∇f · u.

So we have just proved that

Duf(P ) = ∇f |
P
· u. (3.32)

This very neat formula reduces computation of directional derivatives to a very
simple kitchen recipe.

1. Compute the gradient and evaluate at the point
2. Make sure the direction is given by a unit vector, if not, make it so.
3. Compute the dot product of the two vectors above.

The directional derivative formula 3.32 also is also very intuitive from a geo-
metric point of view.

� If the unit vector is i = 〈1, 0〉, then a = 1 and b = 0. Thus, in this case,
the directional derivative is just the partial derivative fx, or the rate of
change in the x-direction.

� If the unit vector is j = 〈0, 1〉, then a = 0 and b = 1. Thus, in this case,
the directional derivative is just the partial derivative fy, or the rate of
change in the y-direction.

� If the unit vector is u = 〈a, b〉, the directional derivative is a linear com-
bination of the partial derivatives fx and fy

In two variables, there is at least four different ways in which the unit vector is
specified.

1. The unit vector is given. Check to make sure ‖u‖=1.
2. A direction vector v is given. Divide it by its length.
3. A direction angle θ is given. Take u = 〈cos θ, sin θ〉.
4. A direction to a point Q is given. Take u =

−−→
PQ/‖

−−→
PQ‖.

3.6.1 Example Find the directional derivative of f(x, y) = y3 + 3x2 − 2x
at the point (1, 1), where u is the unit vector in the direction vector given by
angle θ = π/3.
Solution

∇f = 〈6x− 2, 3y2〉
∇f |

P
= 〈4, 3〉,

u = 〈cos π3 , sin
π
3 〉 = 〈 12 ,

√
3

2 〉,

Duf(P ) = 2 + 3
√

3
2 .
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3.6.2 Maximizing Directional Derivative

The main tool for computing the directional derivative of a function f at a
point P in the direction of a unit vector is

Duf(P ) = ∇f |
P
· u

This is just a dot product. So, if θ is the angle subtended by the two vectors,
we can rewrite the expression as

Duf(P ) = ∇f |
P
· u,

= ‖∇f‖
P
‖u‖ cos θ,

= ‖∇f‖
P

cos θ, since ‖u‖ = 1.

The maximum value the last expression can attain is

max[Duf(P )] = ‖∇f‖
P

and this occurs when θ = 0, that is, when the direction is the direction of
the gradient. We already know that gradient vector is orthogonal to the level
curves/surfaces, so this is the direction of maximum rate of change. In figure
3.11 we have intentionally taken u in the direction of the gradient. If the level
curves were a topographical of the “mountain” represented by the surface, a
climber seeking for the steepest path on the mountain would pick that direction.
Thus, in the example above with f(x, y) = y3 + 3x2−2x at the point (1, 1), the
gradient at the point is ∇f

P
= 〈4, 3〉, so the maximum rate of change at that

point is 5 and this is in the direction 〈4, 3〉.
In the book “The Spy who Came in from the Cold ”, the great English novelist
John Le Carré once wrote,

“It is said that men condemned to death are subject to sudden
moments of elation; as if, like moths in the fire, their destruction
were coincidental with attainment.”

If one were to think of a camp fire as a localized source of heat described by
a temperature function T (x, y, z), then the level surfaces T (x, y, z) = c would
represent surfaces of equal temperature. It is as if the moths in Le Carré’s
quote were naturally programmed to seek the shortest path to their morbid
attainment.

3.7 Maxima - Minima

One of the most direct applications of differential calculus is that it provides
a straightforward procedure to locate local (relative) extrema of functions. For
a function of one the variable, the procedure is called the second derivative test.
The second derivative test is introduced early in the first semester of calculus,
but to really understand why it works, requires Taylor series which typically
appear at the very end of the second semester. Thus, it is common for students
to come into the vector calculus course without a solid foundation of testing
for critical points of smooth functions. For that reason, we begin with a short
review of the topic in the context of functions of one variable
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3.7.1 Max-Min in One Variable

Let z = f(x) be a smooth, real-valued function of one variable. Anticipating
working with two variables, we abuse notation again writing fx = f ′(x). At
a point x = x0, the derivatives are either positive, negative or zero. The first
derivative fx(x0) measures the slope of the curve at that point, and the second
derivative fxx(x0) measures the concavity. We have

fx(x0)


> 0 Increasing

< 0 Decreasing

= 0 Horizontal

fx(x0)


> 0 Concave Up

< 0 Concave Down

= 0 No information

Combining these two together, we get the second derivative test. To locate the
extrema of the function z = f(x) we follow the two-step process,

1) Set fx = 0 and solve. If solutions xc exist, they are critical points.

2) Test the second derivative at each critical point.

We get the following classification,

fxx(xc)


> 0 Local minimum at x = xc,

< 0 Local maximum at x = xc,

= 0 No information.

When the second derivative at a critical point is equal to zero, most textbooks
say that the test fails and leave it a that. The easiest example to motivate this
are the functions f(x) = x3, f(x) = x4 and f(x) = −x4. At x = 0, all three
functions have fxx(0) = 0. However, at x = 0, f(x) = x3 one has an inflection
point, f(x) = x4 has a local minimum and f(x) = −x4 has a local maximum.
The second derivative test is inconclusive for these three power functions. Is
is not the case that calculus fails, but rather, the information is incomplete
without considering the Taylor series,

f(x) = f(x0) + fx(x0)(x− x0) +
1

2!
fxx(x0)(x− x0)2 + . . . . (3.33)

At a critical point xc, the first derivative is 0. The idea of the second derivative
test is to approximate the function by a parabola. However, if fxx(xc) = 0, the
Taylor series says that there is no good parabolic approximation. In such case,
one should check if fxxx(xc) 6= 0. If so, the graph is locally approximated by a
cubic curve and we have an inflection point. If the third derivative at the critical
point is also zero, one needs to continue the Taylor polynomial approximation
until one encounters the first integer n > 3 so that f (n)(x0) 6= 0. Then, whether
one has a local maximum-minimum or infection point is dictated by whether
this n is even or odd.
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Fig. 3.12: Taylor series for f(x) = x3(x2 − 1)

3.7.1 Example Let f(x) = x3(x2 − 1). Then

f(x) = x5 − x3,

f ′() = 5x4 − 3x2 = x2(5x2 − 3) = 0,

f ′′(x) = 20x3 − 6x = 2x(10x2 − 3),

x = −
√

3/5, 0,
√

3/5, critical points,

f ′′(−
√

3/5) < 0, Local maximum at x = −
√

3/5,

f ′′(−
√

3/5) > 0, Local minimum at x =
√

3/5,

f ′′(0) = 0, test fails.

As shown in figure 3.12 at the points where there is a local maximum or min-
imum, the second order Taylor series approximates the function by parabolas.
But at the critical point x = 0, there is no good quadratic approximation, how-
ever, the Taylor series of order 3 shows a good cubic approximation. This is
the real reason there is an inflection point at x = 0.

3.7.2 Max-Min in Two Variables

The second derivative test for maxima and minima of a function of two
variables is also based on Taylor series. Let z = f(x, y) be a smooth function in
a neighborhood of a point (x0, y0), let (x, y) be a point near (x0, y0). Using the
notation f(x) = f(x, y), and f(x0) = f(x0, y0), the Taylor series up to second
order about the point (x0, y0) is

f(x) =f(x0) + [fx(x0)(x− x0) + fy(x0)(y − y0)]+

1

2!
[fxx(x0)(x− x0)2 + 2fxy(x0)(x− x0)(y − y0) + fyy(x0)(y − y0)2] + . . .

(3.34)

The proof of the Taylor series is an adaptation of the mode of thinking analogous
to the proof in one variable. We present the proof in section 3.9. Roughly
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speaking, if a power series expansion in two variables exists, one proves that
the constant coefficients are given as above, by successively computing, term
by term, the partial derivatives of the series and then evaluating them at the
point (x0, y0). We are interested in critical points (x0, y0) where the function
might have a local maximum or a local minimum. The shape of the graphic is
absolutely not affected by translations, so for our purposes is more convenient
to consider the Taylor expansion about the origin. At a critical point in one
variable, the tangent line is horizontal. In the same manner, at a critical point of
f(x, y) the linear approximation is the tangent plane which is also horizontal.
Hence, the first partial derivatives are equal to zero. We are left with the
problem of analyzing the quadratic approximation,

f(x, y) =
1

2!
[fxx(0, 0)x2 + 2fxy(0, 0)xy + fyy(0, 0)y2],

=
1

2!
[Ax2 + 2Bxy + Cy2],

where A,B and C are the constant coefficients. We begin by considering the
level curves

Ax2 + 2Bxy + Cy2 = k (3.35)

The equation is quadratic, so the level curves are conics. To classify the conics
we begin by writing the equation of the level curve conics by the tantalizing
matrix multiplication equation,[

x y
] [A B
B C

] [
x
y

]
= k, k = constant

We observe that the matrix of coefficients associated with the quadratic form is
symmetric. It is almost impossible to overestimate the significance of this fact.
To understand the behavior of the quadrics. Define the discriminant D of the
quadratic form by the determinant

D =

∣∣∣∣A B
B C

∣∣∣∣ = AC −B2.

It turns out that the conics can be classified by whether the discriminant is
positive, negative or zero. Consider the simpler situation in which B = 0.
Then the matrix is diagonal and

D = AC

In the case of a diagonal matrix, the entries along the diagonal are called the
eigenvalues. Here the eigenvalues are A and C and the discriminant is the
product of the eigenvalues. There are three possibilities,

D = AC

 > 0 Ellipse
< 0 Hyperbola
= 0

(3.36)

The explanation is simple.
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1. AC > 0, then A and C are either both positive or both negative. The
quadric z = Ax2 + Cy2 is a paraboloid, and the level curves are ellipses
(or circles if A = C) . If A and C are both positive, the paraboloid has
upward concavity as in the case z = x2+y2. If A and C are both negative,
the paraboloid has downward concavity as in the case z = −x2 − y2.

2. AC < 0, then A and C have different signs. The quadric is a saddle and
the level curves are hyperbolas as in the case z = x2 − y2.

3. AC = 0, then either A = 0 or C = 0 or both. If one of the two is not
zero, the quadric is a parabolic cylinder generated by horizontal lines as
in the case z = x2. The level curves are horizontal lines. If both A = 0
and C = 0, then there is no quadric. We would need to look at the third
order Taylor series for the next possible approximation to the surface.

If B 6= 0, the situation in general is considerably more complicated because the
graph of the level curves are rotated conics for which the axes of symmetry do
not align with the coordinate axes. The topic of rotation of conics used to be
part of the calculus I curriculum, but it has long been abandoned at this level.
There is danger that the important topic might fall through the cracks, unless
students have the good fortune of getting the appropriate exposure to rotations
of conics in linear algebra. The big spectral theorem in linear algebra applied
to symmetric 2× 2 matrices, says that there are still two eigenvalues and their
product is still the given by the discriminant.

D = AC −B2

 > 0 Ellipse
< 0 Hyperbola
= 0

(3.37)

The theory of eigenvalues and eigenvector implies there is a rotation that “di-
agonalizes” the matrix so that in the rotated axes, there is no cross term xy.
After the rotation, the conic axes of symmetry align with the rotated coordinate
axes. The discriminant is not affected by a rotation of axes, and neither is the
classification scheme of the level curves of equation 3.35. Whereas the proof of
this assertion is beyond the scope of this course, a compelling argument can be
made by investigating the behavior of a particular family of conics such as

2x2 + 2Bxy + 8y2 = 1

In this case, the discriminant is D = 16 − B2. We then produce a frame by
frame animation of the conics as the value of changes from −9 to 9. We keep
an eye on the special frame in which B = ±4 for which D = 0. Figure 3.13
shows the frames as B changes by a step size equal to −1. It is clear from the
video that the shape of the conics is consistent with the classification given by
equation 3.37. When the discriminant is negative which happens when |B| > 4
the graphs are hyperbolas. When the discriminant is positive with |B| < 4,
the graphs are ellipses. In both cases the axes of symmetry of the conics are
aligned with the rotated coordinate axes. Finally, when |B| = 4, the quadrics
degenerate into a pair of parallel lines.
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Fig. 3.13: Family of conics 2x2 + 2Bxy + 8y2 = 1, B = −9 − 8, . . . 9.

To show the correlation of the conics with of the corresponding quadrics,
we render the level curves of the family of surfaces

f(x, y) = 2x2 + 2Bxy + 8y2.

as shown in figure 3.14

Fig. 3.14: f(x, y) = Ax2 + 2Bxy + Cy2, A = 2, C = 8, Discriminant D = 16 −B2.

1. When the level curves are ellipses, the quadric is a paraboloid and we say
that the critical point (0, 0) is elliptic. Whether the paraboloid has local
minimum or maximum depends on whether A > 0 or A < 0.

2. When the level curves are hyperbolas, the quadric is a saddle and we say
that the critical point (0, 0) is hyperbolic.

3. When the discriminant is 0, we say the critical point (0, 0) is parabolic.
In the example above, the level curves are pairs of parallel lines and the



106 CHAPTER 3. PARTIAL DERIVATIVES

graph is a parabolic cylinder. It could have happened that the discrim-
inant is zero because all the coefficients are 0, in which case there is no
quadric.

Now we have enough intuition to motivate the process for classifying the nature
of the critical points of a function f(x, y) of two variables. By classification of
a critical point we mean, determining whether at that point the function has
relative extremum, a saddle point, or something else. If a relative extremum,
we want to know if it is a relative maximum or a relative minimum.
Define the Hessian of the function at a point (x, y) by the determinant

H(x, y) =

∣∣∣∣fxx fxy
fyx fyy

∣∣∣∣ = fxxfyy = f2
xy. (3.38)

Here, we are assuming that the function is smooth within its domain, so that
the mixed partial derivatives are equal to each other.

The second derivative test is as follows

1. Set

fx = 0,

fy = 0.

We get a system of two equations and two unknowns. Solve the system
and find the critical points (xc, yc), if they exist. There might be more
than one critical point. If so, we test each with the Hessian.

2. Evaluate the Hessian at each critical point, this gives a number. This
number can be positive, negative or zero. We classify each critical point
by the scheme

H(xc, yc)


> 0 fxx(xc, yc)

{
> 0 Local minimum at(xc, yc),
< 0 Local maximum at(xc, yc),

< 0 saddle at(xc, yc),
= 0 No information.

(3.39)

When the Hessian is zero at a critical point, the test is inconclusive. It means
that either, the quadric approximation is cylindrical, or there is no good quadric
approximation to the function at that point, and one would need to include the
next order term in the Taylor series. The reader might wonder why we do not
have to test concavity in the y-direction and why is it not enough to check
fxx and fyy. First, the “Foal-on-Horse” surface in figure 3.7 shows a function
that is concave up along the x and y-axes, but the function does not have an
extremum at the origin. One needs to involve the mixed partial to make sure
the other directional derivatives are included. Secondly. if H > 0, then fxx
and fyy must have the same sign, else, their produce would be negative and so
would be the Hessian.

3.7.2 Example Let f(x, y) = 2xy. Classify the critical points.
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Solution. Set

fx = 2y = 0,

fy = 2x = 0.

We only have one critical point at (0, 0). We test the critical point.

fxx = 0, fxy = 2,

fyx = 2, fyy = 0.

Hence, H(0, 0) = −4 < 0 and we have a saddle at (0, 0). The problem is rather
trivial, because the function is already a quadric and the Hessian is constant. In
fact, the saddle has exactly the same shape as the conjugate harmonic saddle
z = x2 − y2, but rotated by 45 degrees. For any quadratic function in two
variables, finding the critical point reduces to solving two linear equations and
two unknowns and the Hessian will be a constant. What we have is the pleonasm
that a quadratic function of two variables is its own Taylor series of order 2.

3.7.3 Example Let f(x, y) = x3y + 12x2 − 8y. Classify the critical points
Solution. Take the first partial derivatives and solve to find the critical points

fx = 3x2y + 24x = 0,

fy = x3 − 8 = 0, ⇒ x = 2,

12y + 24(2) = 0, ⇒ y = −4.

Hence, we have a critical point at (2,−4), We test the critical point.

fxx = 6xy + 24, fxy = 3x2,

fyx = 3x2, fyy = 0,

H(x, y) = −9x4.

So H(2,−4) < 0 and we have a saddle at (2,−4).

3.7.4 Example Let f(x, y) = x3−3xy2. Find and classify the critical points
Solution. This is an interesting cubic surface.

fx = 3x2 − 3y2 = 0, ⇒ y = ±x,
fy = −6xy = 0, ⇒ x = 0 or y = 0.

Either way, the only critical point is (0, 0). We compute the Hessian.

fxx = 6x, fxy = −6y,

fyx = −6y, fyy = 0

We find that the Hesssian H is identically 0 and therefore the second derivative
test is inconclusive.
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The surface in this example is the monkey saddle defined
by the harmonic function corresponding to the real part of
the complex function w = z3. The surface has no good
quadratic approximation at the origin, so one needs to con-
sider the next order of the Taylor series. In this case the
function is already third order and it is tautologically its
own Taylor series.
The monkey saddle is one of the various possible shapes in the classification of
critical points of cubic surfaces.

3.7.5 Example Let f(x, y) = x3−3xy+y3. Find and classify all the critical
points

Solution

fx = 3x2 − 3y = 0, ⇒ y = x2,

fy = −3x+ 3y2 = 0, ⇒ x = y2.

Therefore, we have

x = x4,⇒ x(x3 − 1) = 0.

The solutions are x = 0 and x = 1. Since y = x2,
We have two critical points (0, 0) and (1, 1). We now
test the critical points using the Hessian.

fxx = 6x, fxy = −3,

fyx = −3 fyy = 6y

H = 36xy − 9

H(0, 0) < 0, so (0, 0) is a saddle point,

H(1, 1) = 37 > 0,

fxx(1, 1) = 6 > 0. Local minimum at (1, 1).

The level curve f(x, y) = x3 − 3xy + y3 = 0 is of historical significance in the
development of calculus. The curve is called the folium of Descartes. It
is said that Descartes challenged Fermat to find the equations of the tangent
lines. Fermat solved the problem easily. Students it this class can also solve
the problem easily by implicit differentiation.

3.7.6 Example Let f(x, y) = x2 + y4 + 2xy. Find the local maximum and
minimum values and saddle points.

Solution

fx = 2x+ 2y = 0.⇒ y = −x,
fy = 4y3 + 2x = 0⇒ −4x3 + 2x = 0,

2x(1− 2x2) = 0⇒ x = 0, 1√
2
,− 1√

2
.

So the critical points are (0, 0), ( 1√
2
,− 1√

2
) and (− 1√

2
, 1√

2
).
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We compute the Hessian

fxx = 2, fxy = 2,

fyx = 2 fyy = 12y2

H = 24y2 − 4

H(0, 0) < 0, so (0, 0)is a saddle point.

H( 1√
2
,− 1√

2
) = H(− 1√

2
,+ 1√

2
) > 0.

fxx( 1√
2
,− 1√

2
) = fxx(− 1√

2
,+ 1√

2
) > 0.

so there are local minima at the other two critical points.
We obtain the minimum values by evaluating the func-
tion at these points. In both cases we get a minimum
value of (−1/4).

The plot here is rendered in Mathematica. To enhance the critical points we fid-
dled with the RegionFunction command to control the height of the z-coordinate
so as not to overwhelm the size of the bumps.

3.7.7 Example Let’s finish this section with a slightly more challenging
problem. Find and classify the critical points of the function

f(x, y) = xye−
1
2 (x2+y2)

Before we proceed with the computations, we observe
that the function is symmetric under an exchange of
the variables x and y. Hence, if compute fx and fxx,
we immediately get fy and fyy by such an exchange
of variables. The computation is a good exercise of
the use of the product rule.

fx = xy e−
1
2 (x2+y2)(−x) + y e−

1
2 (x2+y2),

fx = y(1− x2) e−
1
2 (x2+y2),

fy = x(1− y2) e−
1
2 (x2+y2).

Since the exponential is never 0, setting fx = 0 and fy = 0 gives five critical
points, namely (0, 0), (1,±1) and (−1,±1). We proceed to compute the second
partial derivatives using again the symmetry of the variables to save time in
finding fyy. We leave the computation of fxy to the reader

fxx = y[(1− x2) e−
1
2 (x2+y2)(−x)− 2x e−

1
2 (x2+y2)],

= xy e−
1
2 (x2+y2)[−(1− x2)− 2],

fxx = xy(x2 − 3) e−
1
2 (x2+y2),

fyy = xy(y2 − 3) e−
1
2 (x2+y2),

fxy = (1− x2)(1− y2) e−
1
2 (x2+y2)

The Hessian is

H(x, y) =

∣∣∣∣ xy(x2 − 3) (1− x2)(1− y2)
(1− x2)(1− y2) xy(y2 − 3)

∣∣∣∣ e−(x2+y2)
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This time we will not write the full Hessian; instead, we evaluate it at each
point from the second partial derivatives. We have

� H(0, 0) =

∣∣∣∣ 0 (1)(1)
(1)(1) 0

∣∣∣∣ e0 = −1. Hence (0, 0) is a saddle point.

� H(1, 1) = H(−1,−1) =

∣∣∣∣−2 0
0 −2

∣∣∣∣ e−2 = 4 e−2 > 0.

fxx(1, 1) = fxx(−1,−1) = −2 e−1 < 0.

Hence we have local maxima at (1, 1) and (−1,−1)

� H(1,−1)H(−1, 1) =

∣∣∣∣2 0
0 2

∣∣∣∣ e−2 = 4 e−2 > 0.

fxx(1,−1) = fxx(−1, 1) = 2 e−1 < 0.

Hence we have local minima at (1, 1) and (−1,−1)

3.8 Lagrange Multipliers

Lagrange multipliers is the eponymous name for a method developed in the
1700’s by Joseph-Louis Lagrange, to find the extrema of functions subject to
constraints. Lagrange is one of the giants in the history of mathematics and
physics. He is one of the developer of calculus of variations. The Euler-Lagrange
variational principle transformed Newtonian mechanics into a branch of analysis
that can be used to obtain the field equations of a system by the extrema of
some functional that basically represents the energy of the system. The Euler-
Lagrange method can be used to formulate the field equations of mechanics,
electricity and magnetism, semi-classical quantum mechanics, quantum field
theory and general relativity. We present here a “baby” application to vector
calculus.

We introduce the subject by posing a question I first encountered in a geom-
etry competition in my fifth grade class. I thought this would be good way to
personalize these notes, since winning the competition is what first motivated
me to be a mathematician.
Here is the problem. You are given a picture showing two points
A and B on one side of a line L. Using only a compass and a
straight edge, find the point C on the line such that AC + CB is
as small as possible.
A solution to the problem can be constructed as follows. Find the reflection
A′ of the point A across the line L and draw a straight line from A to B.
The point of intersection C is the desired point. Of course, one needs to prove
by Euclidean geometry that the answer is correct. I encountered the problem
again in my first year calculus course. It turns out that this problem with such
a remarkably simple solution by geometry, can be framed in term of the Fermat
principle that states that, a path taken by a ray of light between two points
is the one that takes minimum time. If one thinks of the line as a mirror, the
solution shows that the angle of incidence is equal to angle of reflection. The
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calculus solution involves adapting a coordinate plane, labelling an arbitrary
point C on L, finding the equation of the sums of the distances from A and B
to the arbitrary point, and finally, applying the second derivative test. This is
by far more difficult.

A variation of this problem that also appears often in calculus books is this.
Suppose the two points are on different sides of the line. Perhaps
one could pretend that the line is the border of a beach and that
a lifeguard at point A sees a person drowning at point B. The life
guard can walk faster than she can swim. If the speed on land is

v1 and on water v2, at what point on the beach should the lifeguard go into
the water so that the time is as short as possible. The problem could just as
well refer to a ray of light entering a glass medium from air. If the angles of
the light ray with the normal at the point of entry are θ1 and θ2, the optimum
path occurs when

sin θ1

v1
=

sin θ2

v2
.

The ratio v1/v2 is called the index of refraction.
The two problems above are examples of optimizing a function subject to

some constraint. We now present a fancier problem based on the same principles
as the previous two. There is a farmhouse located at point A and a pigsty at

Fig. 3.15: Lagrange Multipliers

point B. Nearby there is a reservoir with the shoreline represented by a curve.
Find the point C on the curve such that the distance AC+CB is shortest. The
solution can also be solved by pure geometry by drawing a sequence of confocal
conics with foci at A and B and then picking the point C to be the first one
on which one of the conics is tangential to the curve, as shown in figure 3.15.
Formally with calculus, one adapts a coordinate plane with A and B on the
x-axis and the origin in the middle. Let f(x, y) by the function that represents
the sum of the distances from an arbitrary point X(x, y) to A and B. The
function z = f(x, y) is a surface for which the level curves f(x, y) = 2a are
ellipses with semi-major axis a. By definition, the sum of the two distances
AC+CB = 2a. Thus, tangency points on the shoreline with conics with larger
values of a, are farther away. It is very interesting to note that by the optical
properties of ellipses, at the point C, with respect to the tangent line, the angle
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of incidence is equal to the angle of reflection; thus the first problem above with
the reflection across a flat mirror, is a spacial case.
Since the level curve of f(x, y) is tangential to g(x, y) = 0 at C, their normals
at that point are multiples of each other.

Perhaps a more intuitive understanding is gained from thinking of f(x, y) as
a mountain and the constraint g(x, y) = 0 as a trail. In figure 3.16 we have a real
picture of El Nevado Del Tolima, one of three amazing volcanos visible from my
native city in the central Andes mountains of Colombia. The most impressive
of these volcanos is El Nevado Del Ruiz, but in 1987, a major eruption buried
the city of Armero causing 21,000 deaths. We chose not to exhibit El Ruiz.
Along with the photograph provided by family members, we also show the

Fig. 3.16: Nevado del Tolima, Colombia

volcano as a surface, using geo-elevation data accessed by Mathematica. On
the level curves I have drawn a non-existent trail as an illustration. There is
a difference between the maximum height of the mountain as opposed to the
maximum elevation along the trail. The latter occurs at a point where the trail
is tangential to a level curve.
The examples are motivation for the following theorem that we state without
proof.

3.8.1 Theorem If the extrema of a function f(x, y) subject to constraint
g(x, y) = 0 exist, then they occur at the point(s) where ∇f is parallel to ∇g.
That is, there exist constant(s) λ such that

∇f = −λ∇g

Better yet, let

F (x, y, λ) = f(x, y) + λ(x, y), then ∇F = 0 (3.40)

This is the method of Lagrange multipliers with one constraint. We take all
the components of the gradient of F , set them equal to 0 and solve. Then we
check the values at the critical points to determine the extrema.

3.8.2 Example Find the extrema of f(x, y) = x2 − y2 with constraint x2 +
y2 = 1.
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Solution

The level curves of the saddle f(x, y) are hyperbolas. The con-
straint in 3D is a cylinder of radius 1. A saddle has no maximum
or minimum, but the constraint chops out a pringle of the surface.
The figure shows that there are two points at which we have a

maximum, namely (±1, 0) and two at which there is a minimum, namely (0,±1).
Now we solve the problem by Lagrange multipliers. Let F = f + λg. We have

F (x, y, λ) = x2 − y2 + λ(x2 + y2 − 1),

Fx = 2x+ 2xλ = 2x(1 + λ) = 0,

Fy = −2y + 2yλ = 2y(−1 + λ) = 0,

Fλ = x2 + y2 − 1 = 0

The equation Fλ = 0 always gives back the constraint. Solving the equations,
we get x = 0, or y = 0, or λ = ±1. In this simple case the values of λ are not
needed. If x = 0 the constraint gives y = ±1, and if y = 0, we get x = ±1.We
have 4 critical points. To find the extrema we just evaluate the function at all
the critical points. The largest value is the maximum and the smallest is the
minimum. We have

f(±1, 0) = 1, f(0,±1) = −1

The maximum is 1 and it occurs at points (1, 0) and (−1, 0).

The minimum is -1 and it occurs at points (0, 1) and (0,−1).

3.8.3 Example Find the extrema of f(x, y) = 4x + 6y subject to the con-
straint x2 + y3 = 13

Solution The function z = 4x + 6y is a plane and the intersection with the
cylinder x2 + y3 = 13 is a slanted ellipse. We should get a maximum and a
minimum at the vertices of the ellipse. Let F = f + λg

F = 4x+ 6y + λ(x2 + y2 − 13),

Fx = 4 + 2xλ = 0, ⇒ x = −2/λ,

Fy = 6 + 2yλ = 0, ⇒ y = −3/λ,

Fλ = x2 + y2 − 13 = 0, ⇒ x2 + y2 = 13.

Inserting the values of x and y into the constraint equation, we get

4

λ2
+

9

λ2
= 13,

13

λ2
= 13, ⇒ λ = ±1.

If λ = 1, then (x, y) = (−2,−3) and f(−2,−3) = −26.

If λ = −1, then (x, y) = (2, 3) and f(2, 3) = 26.

fmax = 26 and fmin = −26
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3.9 Taylor’s Theorem

We present a quick overview of Taylor’s theorem for a function of two vari-
ables. We will dispense a bit from the rigor of estimating the error term in
a Taylor polynomial approximation. Let z = f(x, y) be a real analytic func-
tion, so that the function is infinitely differentiable in a neighborhood U of a
point P (x0, y0); all the partial derivatives exist and are continuous. Follow-
ing the introduction to directional derivatives, as illustrated in figure 3.11, let
x(t) = P+ tv be a line containing the point P . we restrict t to range from t = 0
to t = 1. Since P is the point with t = 0, we also use the notation P = x0, and
f(x0) = f(x0, y0)). We call the components of the direction vector v = 〈h, k〉.
We choose h and k to be sufficiently small so that the points in the line segment
are inside U .
In parametric form, we have

x = x0 + ht, y = y0 + kt.

Define g(t) = f(x(t)) = f(x0 + ht, y0 + kt). By the chain rule,

df = fx dx+ fy dy,

g′(t) = fx
dx

dt
+ fy

dy

dt
,

g′(t) = hfx + khy.

We introduce an operator Dt defined by

Dt = h ∂
∂x + k ∂

∂y ,

g′(t) = Dtg = (h ∂
∂x + k ∂

∂y )(f) = hfx + kfy,

g′′(t) = D2
t g = (h ∂

∂x + k ∂
∂y )2(f) = h2fxx + 2hkfxy + k2fyy,

g′′′(t) = D3
t g = (h ∂

∂x + k ∂
∂y )3(f) = h3fxxx + +3h2kfxxy + 3hk2fxyy + k3fyyy,

g(n)(t) = Dn
t g = (h ∂

∂x + k ∂
∂y )n(f).

Now we expand g(t) into a Taylor series, with the usual caution that infinitely
differentiable does not always imply that a Taylor series exists.

g(t) = g(0) + g′(0)t+ 1
2!g
′′(0)t2 + . . .+ 1

n!g
(n)(0)tn + 1

(n+1)!g
(n+1)(c)tn,

where, by the extended mean value theorem, there exists at least one number
c ∈ [0, 1], such that the remainder is given by

1
(n+1)!g

(n+1)(c)tn.

Now, we set t = 1

g(1) = g(0) + g′(0) + 1
2!g
′′(0) + . . .+ 1

n!g
(n)(0) + 1

n!g
(n)(c),
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At t = 1 we have x = 〈x0 + h, y0 + k〉 and x0 = 〈x0, y0〉, so the equation
becomes

f(x0 + h, y0 + k) = f(x0, y0) + [hfx + kfy)]x0 + 1
2!

[h2fxx + 2hkfxy + k2fyy]x0

1
3!

[h3fxxx + +3h2kfxxy + 3hk2fxyy + k3fyyy]x0 + . . .

+ 1
n!

[(h ∂
∂x

+ k ∂
∂y

)n(f)]x0 + 1
(n+1)!

[(h ∂
∂x

+ k ∂
∂y

)n+1(f)](x0+c)

(3.41)

where c = 〈c, c〉, c ∈ [0, 1]. For the analog of Maclaurin series, we take x0 =
−→
0 .

Since the series works for any (h, k), we replace these by variables (x, y). We
get

f(x, y) = f(0, 0) + [xfx + yfy)]−→
0

+ 1
2!

[x2fxx + 2hxyxy + y2fyy]−→
0
,

1
3!

[x3fxxx + +3x2yfxxy + 3xy2fxyy + y3fyyy]−→
0

+ . . .

+ 1
n!

[(x ∂
∂x

+ y ∂
∂y

)n(f)]−→
0

+ 1
(n+1)!

[(x ∂
∂x

+ y ∂
∂y

)n+1(f)]c. (3.42)

We need to be careful with the expression above. The evaluation of the terms
in brackets applies only to the derivatives, and the operator Dt only applies to
f and not to the the variables x and y. The first two terms of 3.41 and 3.42
represent the linear approximation. We take a closer look at 3.42 in the context
of Max-Min. For an extremum to occur at (0, 0) it is a necessary condition that
fx = fy = 0. Therefore the quadratic approximation at the origin is

f(x, y)− f(0, 0) =
1

2
(fxx(0, 0)x2 + 2fxy(0, 0))xy + fyy(0, 0)y2

The behavior of the function at the critical point is dependent on the quadric

Q(x, y) = Ax2 + 2Bxy + Cy2, A = fxx, B = fxy, C = fxx at (0, 0),

that measures the value of the difference between f(x, y) and f(0, 0). The
proper way to analyze such quadratic forms is the theory of eigenvalues and
eigenvector in linear algebra, but we can get a reasonable handle on the situation
by the elementary process of completing the square. We have

Q(x, y) = A

[(
x2 +

2By

x
+
B2

A2
y2

)
+
C

A
y2 − B2

A2
y2

]
,

= A

[(
x+

B

A
y

)2

+
AC −B2

A2
y2

]
The first quantity is a perfect square, so the value of function is determined by
the discriminant

D = AC −B2 = fxxfyy − f2
xy |(0,0)

There are three cases

1. D > 0. Then the quantity in brackets is a sum of squares.

a) If A > 0, then f(x, y) > f(0, 0) at all points nearby and there is a local
minimum at (0, 0).
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b) If A < 0, then f(x, y) < f(0, 0) at all points nearby and there is a local
maximum at (0, 0).

2. D < 0. Then Q(x, y) is a difference of squares and we have a saddle

3. D = 0. Then Q(x, y) = 0 along x + (B/A)y = 0 and can’t tell what
happens.

We include a reminder, that as shown in figure 3.14, the presence of a cross
term means that the approximating quadric is rotated about the origin.



Chapter 4

Multiple Integrals

4.1 Riemann Sums

4.1.1 Review of Riemann Sums in one Variable

We begin with a brief review of Riemann sums for functions of one variable.
Let z = f(x) be a continuous function on the interval [a, b]. Assume f(x) > 0
on this interval.The assumption is not necessary and it makes absolutely no
difference in the definition of integrals by Riemann sums, but if we make the
assumption, the integral we define represents the area under the graph between
a and b. A partition of the interval [a, b] into n subintervals, is a choice of a set

Fig. 4.1: Riemann Sum

of numbers {x0, x1 . . . xn} such that

a = x0 < x1 . . . < xk < . . . < xn = b

For computational reasons, we choose the partition to be equally spaced into
subintervals of width ∆x, so that we can write equations for the width of the
interval and for the partition coordinates. We have

∆x =
b− a
n

, and xk = a+ k∆x

117
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The second equation says that to obtain the xk coordinate, one starts at a and
takes k steps of size ∆x. We approximate the area under the curve by the sum
of areas of rectangles with base ∆x and height f(xk), as shown in figure 4.1.
We define ∫ b

a

f(x) dx ≡ lim
n→∞

n∑
k=1

f(xk) ∆x. (4.1)

We could make the definition a bit more general by taking the height on each
subinterval to be f(x∗) where x∗k ∈ [xk−1, xk] is any coordinate, but then the
definition would not be useful for computation. The typical choices of x∗k for
each interval are the left, the middle or the right coordinate. Here we have
chosen the right coordinates. The approximation by finite number of rectangles
is called the right sum. The theorem of Riemann says that whether or not the
partition is equally spaced and how the points are chosen within each subinterval
to evaluate the height, the limit exists and gives the same answer. Convergence
of the Riemann sums is vastly improved by taking the midpoints or taking the
average of the left and right sums. The left sum just requires that we change
the index of summation to k = 0..n− 1. The average of the right and left sums
is equivalent to the trapezoidal rule.

Figure 4.1 was created in Maple using the Student[CalculusI] package com-
mand Riemann Sum, with the option “method=upper” which in this case is
the right sum. If no method is specified, the default is the midpoint method.
The package is easy to use, but as it is the case with all packages, it is more
instructive to write the code from scratch.

If we had to compute the limit of a Riemann sum every time we needed for
all functions, integral calculus would not have survived for long. Fortunately,
Newton proved the fundamental theorem of calculus that says that if f(x) is
integrable, then∫ b

a

f(x) dx = F (b)− F (a),where F ′(x) = f(x).

4.1.2 Double Riemann Sums

We follow a parallel procedure to introduce double integrals. Let z = f(x, y)
be a continuous function over a rectangle R = [a, b]× [c, d]. We assume that the
function is positive over the rectangle. We wish to compute the volume under
the surface above the yx-plane over the rectangle. Let {a = x0, x1, . . . , xn = b}
be a partition of [a, b], and {c = y0, y1, . . . , ym = d} a partition of [c, d]. For
computational simplicity, we choose the partitions to be equally spaced so that

∆x =
b− a
n

, xk = a+ k∆x,

∆y =
d− c
m

, yl = c+ l∆y,

as shown in figure 4.2. The increment of area is given by ∆A = ∆y∆x. For
each sub-rectangle in the grid, multiply ∆A by the value of the function at the
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Fig. 4.2: Double Riemann Sum

point at the upper right (UR) corner (xk, yl). The product gives the volume of
a cuboid with base ∆A and height f(xk, yl). We define∫ b

a

∫ d

c

f(x, y) dy dx = lim
n→∞

lim
m→∞

n∑
k=1

m∑
l=1

f(xk, yl)∆y∆x, (4.2)

provided the limit exists. One could also evaluate the Riemann sums by choos-
ing the height at the lower left (LL) corner of the rectangles just by changing
the indices of summation to k = 0] . . . , n − 1 and l = 0, . . . ,m − 1. A better
number would be obtained from the average of these two, or by evaluating the
function at the midpoints. The integral on the left-hand-side of equation 4.2 is
called an iterated integral. Technically one should write∫ b

a

∫ d

c

f(x, y) dy dx =

∫ b

a

[∫ d

c

f(x, y) dy

]
dx,

but the bracket is usually suppressed. ]
The summation process can be easily implemented in Maple as illustrated by
the following example.

4.1.1 Example Consider the paraboloid f(x, y) = 9 − x2 − y2, over the
rectangle R = [0, 2]×[0, 2]. For the first finite approximation we take n = m = 2
which gives 4 boxes over a 2 × 2 grid. This makes it very easy to do a pencil
and paper computation of the volume of the four boxes. Here ∆x = ∆y = 1.
The approximation to the volume by upper right (UR) corner sums is

V ≈ [f(1, 1) + f(1, 2) + f(2, 1) + f(2, 2)](1)(1) = 7 + 4 + 4 + 1 = 16

The approximation by the lower left (LL)corner sums is

V ≈ [f(0, 0) + f(0, 1) + f(1, 0) + f(1, 1)](1)(1) = 9 + 8 + 8 + 7 = 32
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Of course these will both be a very poor approximations. The average 24 should
be a bit better. We would like to increase grid to have much larger number
of rectangles such as 12 × 12. Evaluation of the Riemann sum with 144 terms
becomes no task for modern humanoids, but that is the reason we have coded
the process into a computer as shown in figure 4.3. The output of the maple

Fig. 4.3: Maple Code for Riemann Sums

code shown was removed so as to fit the entire code in a smaller window. The
graphics output for n = m = 2 and for n = m = 12 grid are shown in figure 4.4.
There is no need to write separate Maple codes for the (UR), (LL) or midpoint
sums. The “tutor” on multivariate calculus under the “tools” heading provides
a radio button driven menu for the various Riemann sum methods. The applet
allows for input of function f(x, y), the rectangle of integration and the grid
size. The display shows the boxes, the value of the Riemann sums, and for
comparison, the “exact value”.
Here are the results for the various Riemann sums for the two grid sizes we have
chosen

Grid UR LL (UR + LL)/2 Midpoint

2× 2 16 32 24 26
12× 12 23.963 26.630 25.297 25.352

Because the definition of the integral is essentially an extension of the definition
in one variable, we can use the fundamental theorem of calculus. The key for
this to work is that when we integrate with respect to y we are taking the limit
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Fig. 4.4: Riemann sum for f(x, y) = 9 − x2 − y2 with 2 × 2 and 12 × 12 grid.

of Riemann sums in the y direction while we keep the x-coordinates fixed. This
is exactly the reverse process of taking partial derivatives. When we perform
a multiple integral with respect to a variable, one treats the others as if they
were constant. Thus, the process is iterative. We first evaluate the integral
with respect to y using its limits of integration, then we get a single integral
with respect to x. For the example in question, we have∫ 2

0

∫ 2

0

(9− x2 − y2) dy dx =

∫ 2

0

(9y − x2y − 1
3y

3)
∣∣y=2

y=0
dx,

=

∫ 2

0

(18− 2x2 − 8
3 ) dx,

= 18x− 2
3x

3 − 8
3x
∣∣2
0
,

= 36− 16
3 −

16
3 ,

=
76

3
≈ 25.333

As in he case of a single integral, if the function f(x, y) is positive on the
rectangle, the double integral gives the volume under the surface. If the f(x, y)
is not positive on the all or part of the region, the definition and computation
of the integral is not affected in any way, but the result is the volume above the
xy- plane minus the volume under the xy-plane. We have the following

4.1.2 Theorem (Fubini) If f(x, y) is continuous over a rectangle R = [a, b]×
[c, d], then ∫ b

a

∫ d

c

f(x, y) dy dx =

∫ b

a

∫ d

c

f(x, y) dx dy

The proof of the theorem is beyond the scope of this course and it belongs
more in a more theoretical course in analysis. However, the intuition behind
the theorem is easy to visualize. Think of an infinitesimal differential of area
rectangle dA = dy dx. Assuming f(x, y) > 0, the expression f(x, y) dA repre-
sents the volume of ∆V a “French fry” with an infinitesimal rectangle as base
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Fig. 4.5: Fubini’s theorem - Intuition

and with height equal to the height of the surface above dA, as shown in figure
4.5. The illustrations were obtained by the same Maple code included, but
restricting the values of one or both of the do-loops to one number.

� When dA = dy dx, that is dV = f(x, y) dy dx, the first iterated integral
with respect to y adds the volumes of the pillars along the y direction
yielding the volume of a “bread slice” of infinitesimal thickness, as also
shown in figure 4.5. The second integral with respect to x adds the volume
of the bread slices along the x direction to give the entire volume. The
formula V =

∫ ∫
f(x, y) dA just says that the whole is the sum of its

pieces.

� When dA = dx dy, that is dV = f(x, y) dx dy, the first iterated integral
with respect to x adds the volumes of the pillars along the x direction
yielding the volume of a “bread slice” of infinitesimal thickness. The
second integral with respect to y adds the volume of the bread slices
along the y direction to give the same volume.

There is not real need to wait several sections to introduce volumes by triple
integrals. The idea is much the same.

Define an infinitesimal differential of volume dV = dz dy dx.
This is represented by an mini sugar cube. Then the volume
is just given by V =

∫ ∫ ∫
1 dV . The integral with respect

to z goes from the bottom surface, (z = 0 in this case) to
the top surface z = f(x, y). The integral over z just gives
f(x, y) and we are immediately reduced to the double
integral formula for the volume. The advantage of the triple integral at this
point is minimal, except that is more natural to compute areas by double inte-
grals and volumes by triple integrals.

4.1.3 Example Evaluate I =
∫ ∫

R
(6xy2 + 4y) dA, where R is the square

region R = [0, 1]× [0, 1]

Solution. We evaluate the integral in both orders to verify the theorem of Fubini
in this case.
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I =

∫ 1

0

∫ 1

0

(6xy2 + 4y) dy dx,

=

∫ 1

0

[
2xy3 + 2y2

]y=1

y=0
dx,

=

∫ 1

0

(2x+ 2) dx,

= 3

or

I =

∫ 1

0

∫ 1

0

(6xy2 + 4y) dx dy,

=

∫ 1

0

[
3x2y2 + 4xy

]x=1

x=0
dy,

=

∫ 1

0

(3y2 + 4y) dy,

= 3

4.1.4 Example Find the volume under the surface f(x, y) = y exy above the
region R = [0, 1]× [0, 1]
Solution. According to Fubini’s theorem we get the same answer regardless
of the order of integration, however the integral with respect to y requires
integration by parts. Thus, it is easier to integrate with respect to x first.

V =

∫ 1

0

∫ 1

0

∫ y exy

0

1 dz dx dy,

=

∫ 1

0

∫ 1

0

y exy dx dy,

=

∫ 1

0

[exy]
x=1
x=0 dy,

=

∫ 1

0

(ey − 1) dy,

= ey − y]
y=1
y=0 ,

= e− 1− (1) = e− 2.

4.2 Volume Integrals

4.2.1 Double Integrals over General Regions

To calculate a double integral over a region that is not rectangular, one has
to be more attentive to the order of integration. In figure 4.6 we show three
regions with different features In the first two figures, the differential of area
dA is shown as a small black rectangle. We will call (a) a type I region, (b) a
type II region, and c) is of both types.

1. For regions of type I the natural order of integration is dA = dy dx because
if the first integral is with respect to y, we may scan the entire region
with infinitesimal vertical slices, without running into walls or kinks. If
we denote the region of integration by

R = {(x, y) ∈ R2 : a ≤ x ≤ b; f(x) ≤ y ≤ g(x)}.
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Fig. 4.6: Regions of a) Type I, b) Type II, c) Both

then the integral of a surface F (x, y) over this region is given by

I =

∫ b

a

∫ g(x)

f(x)

F (x, y) dy dx.

2. For regions of type II the natural order of integration is dA = dx dy
because if the first integral is with respect to x, we may scan the entire
region with infinitesimal horizontal slices, without running into walls or
kinks. If we denote the region of integration by

R = {(x, y) ∈ R2 : h(y) ≤ x ≤ k(y); c ≤ x ≤ d, }.

then the integral of a surface F (x, y) over this region is given by

I =

∫ d

c

∫ k(y)

h(y)

F (x, y) dx dy.

3. If region is both of type I and type II, the order of integration is dictated
by judgment about which is easier. It might be the case that the degree
of difficulty is about the same in either order of integration, or it could
happen the in one particular order one encounters an integral that does
not exist in terms of elementary functions.

4.2.1 Example Evaluate
∫ ∫

R
(x+ y), dA, where R is the region bounded by

y = x2 and y =
√
x.

Solution

The first step is to graph the region of integration. The region
of integration is bounded by a branch of a parabola that opens
up and a branch of another parabola that opens to the right.
To find the intersection points, we set x2 =

√
x. In this case

we see by inspection that the solutions are x = 0 and x=1.
The region is of both types, so we may choose to integrate in the y-direction
first. We observe that the parabola y = x2 is at the bottom, so this must
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reflected in the limits of integration. We have

I =

∫ 1

0

∫ √x
x2

(x+ y) dy dx,

=

∫ 1

0

[
xy + 1

2y
2
]y=
√
x

y=x2 dx,

=

∫ 1

0

[x
√
x+ 1

2x− (x3 + 1
2x

4)] dx,

=

∫ 1

0

[x3/2 + 1
2x− x

3 − 1
2x

4] dx,

= 2
5 + 1

4 −
1
4 −

1
10 = 3

10 .

4.2.2 Example Evaluate
∫ ∫

R
ey

2

, dA, where R = {(x, y) : 0 ≤ y ≤ 1; 0 ≤
x ≤ y}
Solution

The integral with respect to y of ey
2

is not doable in terms
of elementary functions, so it is clear we should attempt to
integrate with respect to x first. The values of x from x = 0
to the line x = y, so the region of integration is a triangle
above the the line x = y.

We proceed to compute the integral

I =

∫ 1

0

∫ y

0

ey
2

dx dy,

=

∫ 1

0

y ey
2

dy,

= 1
2e
y2
∣∣∣1
0
,

= 1
2 (e− 1).

4.2.2 Triple Integrals

When setting up an integral to compute a volume over a region R is more
natural to define a differential of volume dV and perform a triple iterated inte-
grals. Suppose the volume is over the region R bounded by

G(x, y) ≤z ≤ F (x, y),

g(x) ≤y ≤ f(x),

a ≤x ≤ b.
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Then the triple integral for the volume is

dV = dz dy dx,

V =

∫ ∫ ∫
R

dV =

∫ ∫ ∫
R

1 dz dy dx,

V =

∫ b

a

∫ f(x)

g(x)

∫ F (x,y)

G(x,y)

1 dz dy dx.

The rules are the same as for every iterated integral. When one integrates over
a variable, one treats the other variables as if they were constant.

4.2.3 Example Find the volume in the first octant bounded by y2 + z2 = 4,
x = 2y, x = 0, z = 0
Solution
The first surface y2 + z2 = 4 is a cylinder extruded in the
direction of the missing coordinate x. The second surface
x = 2y is a vertical plane. The two surfaces intersect on a
quarter of an ellipse in the first octant. The shape looks like
a wedge with a triangular base and cylindrical roof.
We set up volumes as triple integrals V =

∫ ∫ ∫
1 dV . The first integral is al-

ways trivial and reduces the problem to a double integral. We have

I =

∫ 2

0

∫ 2y

0

∫ √4−y2

0

1 dz dx dy,

=

∫ 2

0

∫ 2y

0

√
4− y2, dx dy,

=

∫ 2

0

2y
√

4− y2 dy,

= −2 1
2

2
3 (4− y2)3/2

∣∣∣ 02,

= − 2
3 (0− 8) =

16

3

4.2.3 Reversing the Order of Integration

Given a function f(x, y) over a general region D in the xy-plane, one can
enclose the region by a rectangle R. One then extends the function to the
entire rectangle by a new function g(x, y) which is equal to f(x, y) in D and
0 outside of D. Fubini’s theorem applies to

∫ ∫
R
g(x, y) dA. One can easily

argue the the theorem extends to
∫ ∫

D
f(x, y) dA as long as reversing the order

of integration scans the entire region. Reversing the order of integration may
result in an easier integral or in one that would not be doable in terms of
elementary functions in the original order.

4.2.4 Example Let

∫ 1

0

∫ 1

√
x

√
y3 + 1 dy dx. Reverse the order of integration

to compute the integral
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Solution
The integrals of square roots of cubic polynomials result in in-
complete elliptic integrals of the first kind that are way above
the level of this course. Our only hope is to reverse the order
of integration. Since y ranges from y =

√
x to 1, the region of

integration is the triangular-shaped region above the parabola. If we change to
horizontal slices, x now ranges from 0 to x = y2. We proceed to reverse the
order on integration

I =

∫ 1

0

∫ 1

√
x

√
y3 + 1 dy dx,

=

∫ 1

0

∫ y2

0

√
y3 + 1 dx dy,

=

∫ 1

0

y2
√
y3 + 1 dy

= 2
3

1
3 (y3 + 1)3/2

∣∣∣1
0
,

= 2
9 (2
√

2− 1)

4.2.5 Example Volume of Tetrahedron. Consider the tetrahedron in the
first octant bounded by 2x+ 3y+ 4z = 12. We set up the triple integral for the
the volume in two different orders of integration.
The points of intersection with the coordinate axes are given
by x = 6, y = 4, and z = 3. Let dV = dz dy dx meaning
that we wish to integrate first with respect to z resulting on
a “French fry” with infinitesimal footprint on the xy-plane of
area dA = dy dx. We then integrate with respect to y to get
a bread slice of the volume. The limits of the integral with respect to y range
from 0 to the value of y on the line of intersection of the given plane with the
plane z = 0. The equation of the line is therefore 2x + 3y = 12. The triple
integral for the volume is

V =

∫ 6

0

∫ 1
3 (12−2x)

0

∫ 1
4 (12−2x−3y)

0

1 dz dy dx.

On the other hand, if we set dV = dy dz dx, the “roof” is now given by solving
the equation of the original plane for y and the line of intersection with the
xz-plane is given by 2x+ 4z = 12. The volume integral is

V =

∫ 6

0

∫ 1
4 (12−2x)

0

∫ 1
3 (12−2x−4z)

0

1 dy dz dx.

In total, there are six possible orders of integration corresponding to the six
permutations of the variables. The problem is completely academic because no
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one in their right mind would compute the volume of a tetrahedron by triple
integrals when by vector methods all we need is V = 1

6 |(abc)|, where the three
vectors represent edges of the tetrahedron. In the case in question, the absolute
value of the triple product is,

V =
1

6

∣∣∣∣∣∣
6 0 0
0 4 0
0 0 3

∣∣∣∣∣∣ = 12.

4.3 Polar and Cylindrical Coordinates

For integration problems that exhibit symmetry with respect to an axis, it
is most convenient to use cylindrical coordinates as in 2.5.1.
The main item with need for integration is the differential
of area dA. We divide the region into wedges of infinitesimal
central angle dθ and the wedges into rings of radii r and r+dr.
The elements of area have dimension dr and r dθ. Then the
differential of area is dA = r dr dθ.

Given a polar curve r = r(θ), then the area A is given by the double integral

A =

∫ ∫
1 dA =

∫ ∫
r dr dθ =

1

2

∫
r2 dθ,

and we immediately recover the formula one learns in calculus II. The assump-
tion is that students have done a substantial number of polar area problems.

We are interested primarily on triple integrals in coordinates
(z, r, θ). This time we first divide the region into pizza wedges
of infinitesimal thickness dz and infinitesimal angles dθ and
the wedges into rings of radii r and r + dr. The element of

volume is a cube so its volume is the base area of the base dA = r dr dθ times
the thickness dz. Thus, the differential of volume dV is given by

dV = dz(r dr dθ) = r dz dr dθ.

The extra factor r always appears in the multiple integrals when we transform
to polar coordinates on two of the Cartesian coordinates. The factor is called
the Jacobian of the transformation. While we are at it, the arc length element
in cylindrical coordinates is the square of the diagonal of the cube

ds2 = dr2 + r2 dθ2 + dz2 (4.3)

As we introduced quadric surfaces in section 1.6, we pointed out that any curve
on the xy-plane of the form z = f(x) can be transformed into a surface of
revolution

z = f(r),

by just replacing x by r. Here are some basic examples.



4.3. POLAR AND CYLINDRICAL COORDINATES 129

1. Spheres. Start with x2 + z2 = a2. Replace x2 by (r2 = x2 + y2) and we
get

r2 + z2 = a2,

z = ±
√
a2 − r2

The equation with the positive square root is the upper hemisphere and
the one with the negative sign is the lower hemisphere.

2. Circular Paraboloids. Start with z = ax2. Replace x2 by (r2 = x2 + y2)
and we get

z = ar2

If a > 0, the paraboloid points up and if a < 0, the paraboloid points
down. Thus, for example, the paraboloid z = 9 = x2 − y2 in cylindrical
coordinates is given by z = 9− r2

3. Cones. Start with z = mx, then z2 = m2x2. If we replace x2 by (r2 =
x2 + y2) we get

z = ±mr.

If m > 0 we get the upper branch of the cone that opens up, and if
m < 0, we get the lower branch of the cone that opens down. Equations
of cones with axial symmetry about a coordinate axis are particularly
nice in cylindrical coordinates because the functions do not involve square
roots. All we need to know, is the slope of the generating line. Thus, for
example

� z = −r is the cone z = −
√
x2 + y2 that opens down at 45o with axis

of symmetry along the z-axis.

� z =
√

3r is the cone z =
√

3
√
x2 + y2 that opens up at 60o with axis

of symmetry along the z-axis.

� y =
√
x2 + z2. There is nothing special about the z axis. We can

do polar coordinates in any pair of cartesian coordinates. Here we
can let x = r cos θ and z = r sin θ. In cylindrical coordinates, the
equation simplifies to y = r

4.3.1 Example Volume of a Sphere

Find the volume of the sphere x2 + y2 + z2 = a2.
Solution
The equation of a sphere is not a function. Solving for z we actually get
two functions, namely z =

√
a2 − x2 − y2 and z = −

√
a2 − x2 − y2. The full

integral in Cartesian coordinates is

V =

∫ a

−a

∫ √a2−x2

−
√
a2−x2

∫ √a2−x2−y2

−
√
a2−x2−y2

1 dz dy dx,
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We could simplify the integral somewhat by integrating over the first octant
and using symmetry, but no matter, the integral is still rather formidable. The
square root integrands have no chain rule factors outside, so we are bound to
encounter a number of trigonometric substitutions.

The sphere is symmetric with respect to the z-axis, so it is
better to switch to cylindrical coordinates. We save half of
the work by setting of the integral over the top half and then
multiplying by 2.

In cylindrical coordinates the equation of the sphere is z =
√
a2 − r2. To find

the volume we integrate V =
∫ ∫ ∫

1 dV . The integral with respect to z gives
the volume of a “French fry” with an infinitesimal footprint on a circle of radius
a. We scan over the circle using polar coordinates. We get the integral

V = 2

∫ 2π

0

∫ a

0

∫ √a2−r2
0

r dz dr dθ,

= 2

∫ 2π

0

∫ a

0

r
√
a2 − r2 dr dθ (we get the chain rule factor r),

= 2(2π)
[
− 1

2
2
3 (a2 − r2)3/2

]a
0
,

= − 4π
3 ((0− (a2)3/2),

= 4
3πa

3

Thanks to the Jacobian r, we got just the chain rule factor we needed for the
integral of the square root and thus, we avoided the dreaded trigonometric
substitutions. It is remarkable that Archimedes was able to obtain the formula
for the volume of a sphere 2200 years ago by the method of exhaustion.

Lesson. If you have symmetry, use it!

4.3.2 Example Volume of a Cone

We wish to find the volume of circular cone with base radius
R and height h. We adapt the coordinate axes so that the
circular base sits on the xy-plane, centered at the origin. Then
the generator of the cone on the xz- plane is the line segment

with slope −h/R and z-intercept h. The equation of the cone is obtained by
replacing x by r in the equation of the line. Thus, the the cylindrical equation
of the cone is,

z = − h
R
r + h.
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The volume integral is

v =

∫ 2π

0

∫ R

0

∫ − hRr+h
0

r dz dr dθ,

=

∫ 2π

0

∫ R

0

(− h
Rr

2 + hr) dr dθ,

= 2π(− h
R
R3

3 + hR2

2 ),

= 2πR2h( 1
2 −

1
3 )

V = 1
3πR

2h.

4.3.3 Example Volume of Frustum of a Cone
We wish to find the volume of a truncated cone with base
radius b, top radius a and height h. Again We adapt the
coordinate axes so that the circular base sits on the xy-plane,
centered at the origin. Then the generator of the cone on the
xz- plane is the line segment passing through the points (b, 0) and (a, h). It is
tempting to write the equation of line segment in the xy-plane, replace x by r to
get the cylindrical equation of the cone, and integrate to find the volume. But
why do that when we can solve the problem by geometry. Extend the generator
to its point of intersection (0, H) with the z-axis. The volume of the truncated
cone is the difference between the full cone with base b and hight H and the
top cone with base a and height H − h. By ratio and proportions.

b

a
=

H

H − h
,

H =
bh

b− a
Solving forH,

H − h =
bh

b− a
− h =

ah

b− a
.

The volume is

V = 1
3πb

2H − 1
3πa

2(H − h),

= 1
3πb

2 bh

b− a
− 1

3πa
2 ah

b− a
,

= 1
3πh

b3 − a3

b− a
,

= 1
3πh(b2 + ab+ a2).

It is interesting to note how very few people including those in academia, are
acquainted with this formula which was also known to Archimedes.

4.3.4 Example Volume of a SnoKone
Find the volume of the SnoKone bounded above by the sphere x2 +y2 +z2 = a2

and below by the cone z =
√
x2 + y2
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Solution

As in the previous example, the integral would be a nightmare in Cartesian coor-
dinates because now the z integral would range from

√
x2 + y2 to

√
a2 − x2 − y2.

In cylindrical coordinates the only changes we need to the
integral limits is than now z ranges from r to

√
a2 − r2 and

the r limits from 0 to the radius of the circle of intersection of
the sphere and the cone. To find this radius we set r2 = a2−r2,
so r = a/

√
2. .

We get the integral

V =

∫ 2π

0

∫ a/
√

2

0

∫ √a2−r2
r

r dz dr dθ,

=

∫ 2π

0

∫ a/
√

2

0

r[
√
a2 − r2 − r] dr dθ,

=

∫ 2π

0

∫ a/
√

2

0

[r
√
a2 − r2 − r2] dr dθ,

= −2π

3

[
(a2 − r2)3/2 +

r3

3

]a/√2

0

,

= −2π

3
[(a2 − a2

2
)3/2 +

a3

2
√

2
− a3],

= −2π

3
[
a3

2
√

2
+

a3

2
√

2
− a3],

=
2π

3
[a3 − a3

√
2

],

=
π

3
a3(2−

√
2)

We will find later that this volume integral is much easier in spherical coordi-
nates.

4.3.5 Example Find the volume of the “pill capsule” bounded inside the
sphere x2 + y2 + z2 = 4 and the cylinder x2 + y2 = 2

Solution

Using symmetry we evaluate the integral over the plane z = 0 and multiply by 2.
The picture resembling a grain elevator barn represents only half of the volume
In cylindrical coordinates integral over z ranges from z = 0
to z =

√
4− r2. The integral over z gives the volume of a

“French fry” with base on s circle of radius r =
√

2. Thus, to
obtain the entire volume of the top half, we integrate r from
0 to

√
2 and θ from 0 to 2π. .
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We are ready to evaluate the volume integral,

V = 2

∫ 2π

0

∫ √2

0

∫ √4−r2

0

r dz dr dθ,

= 2

∫ 2π

0

∫ √2

0

r[
√

4− r2 − r] dr dθ,

= 2(2π)
[
− 1

2
2
3 (4− r2)3/2

]√2

0
,

= −4π

3
(2
√

2− 8) =
8π

3
(4−

√
2)

4.4 Applications

4.4.1 Center of Mass

Given some mass distribution in space, the center of mass is that point at
which one would have to concentrate the total mass so that the system is in
static equilibrium. To introduce the concept we begin with a discrete distribu-
tion of masses along the axes. Suppose masses {m1,m2,m3, . . . ,mk, . . . ,mn}
are placed on a weightless horizontal rod at positions {x1, x2, x3, . . . , xk, . . . , xn}
respectively, as shown in figure 4.7 We seek a coordinate x where the total mass

Fig. 4.7: Center of Mass - Discrete Distributin

M = m1 + m2 + · · · + mn would have to placed so that its torque about the
origin would be equal to the sum of the torques of the individual masses. The
point x is the point at which a negative torque of magnitude Mgx counterbal-
ances the total torque of the other masses, so that the rod just balances. The
condition we need is,

Mgx = m1gx1 +m2gx2 + . . .+mkgxk + · · ·+mngxn.

The gravity constant g cancels out. Solving for x, we get

x =
m1x1 +m2x2 + . . .+mkxk + · · ·+mnxn

m1 +m2 + · · ·+mk + · · ·+mn

The point x = xc.m is called the center of mass. The equation is the same as
used to compute an average such as the GPA (grade point average.) It is best
to write the equation using the summation symbol, specially if the number of
point masses is large. The more concise and more elegant equation is

x =

n∑
k=1

xkmk

n∑
k=1

mk

=
1

M

n∑
k=1

xkmk. (4.4)
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We are more interested in a continuous distribution of mass. Define the
density ρ(x) = dm/dx. By the usual limiting process of Riemann sums to go
from the discrete to the continuum, the equation for the center of mass becomes,

x =

∫
x dm∫
dm

(4.5)

The numerator of this fraction is usually called the first moment. Now suppose
that instead, we have 2-dimensional plate (a lamina) of area A of density ρ(x, y).

We subdivide the region into infinitesimal rectangles of
mass dm = ρ dA at coordinates (x, y). The moments. The
center of mass is the point (x, y) where the plate would bal-
ance horizontally on a pin. From the point of view physics,
this is because according to Newton, the force of gravity on
a body acts on the center of mass.

The formula for the center of mass in one dimension naturally extends to two
dimensions, because at the end, we are still looking for averages. The equations
are

x =

∫
x dm∫
dm

, y =

∫
y dm∫
dm

, (4.6)

the only difference being that the integrals are now double integrals over the
area. Unless there is some symmetry, one needs to compute three double inte-
grals to find the coordinates of the center of mass in two dimensions

We can actually summarize symbolically the formula for
the center of mass of any coordinate, whether the mass
distribution is one, two or three dimensional. Denote by
dm the differential of mass, let A be some axis. Axes are
usually taken to be the coordinate axes

parallel to the coordinate axes. Let ρ be the density, dm the differential of mass
and rA the distance from a coordinate of the dm to the axis A. Then, we define

MA =

∫
rA dm Moment of Mass,

rA =

∫
rA dm∫
dm

Center of Mass,

IA =

∫
r2
A dm Moment of Inertia, (4.7)

where the integrals are single, double or triple integrals depending on whether
dm

dm =

 ρ ds For a mass distribution along a curve,
ρ dA For a mass distribution on an area,
ρ dV For a mass distribution on a volume

(4.8)

is one, two, or three dimensional.



4.4. APPLICATIONS 135

4.4.1 Example Find the coordinates of the center of mass of a semicircular
lamina y =

√
a2 − x2, y ≥ 0 of homogeneous density ρ = k.

Solution. By symmetry, we expect the center of mass to be along the y-axis.
We could set up the integrals for x but the answer would be 0. It suffices to
compute y. The limits of integration will be exactly the same as if we were
computing an area, since we need to scan the same region. We also save some
time noticing that the total mass M =

∫
dm is k times the area of the semicircle

1
2πa

2. Thus, we have,

My =

∫ ∫
y dm =

∫ a

−a

∫ y

0

y(k dy dx),

=

∫ π

0

∫ a

0

kr sin θ(r dr dθ).

= − 1
3ka

3 cos θ|π0 ,
= 2

3ka
3,

y =
2
3ka

3

1
2πa

2
,

= 4
3πa.

This is about right. There is more area below the center, so the center of mass
should be located below a/2.

4.4.2 Moment of Inertia

We start by providing a most elementary introduction to the motivation for
the definition of moments of inertia given in equation 4.7. Consider a point mass
m constrained to move in a circle of radius r. We apply a force of magnitude F
perpendicular to r to cause the mass to accelerate in circular motion. We have

F = ma, and s = rθ.

We differentiate the arc length s twice to get the speed and acceleration,

v = rω, and a = rα,

where ω and α are the angular speed and the angular acceleration respectively.
To transform F = ma to a rotational second law of motion, we multiply F by
the lever arm r to get the magnitude of the torque,

F = ma,

rF = mra = mr(rα) = mr2α,

τ = Iα, where I = mr2

The quantity I is called the moment of inertia of the point mass. This is a
good name because in rotational motion, I plays the role that m plays in linear
motion. The moment of inertia I is that which opposes angular acceleration
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when a torque is applied. To find the moment of inertia of a body about an axis
A we do what we usually do in calculus. We go to the infinitesimal level and
integrate. Thus, given a blob of mass M and an axis A, we subdivide the mass
into infinitesimal pieces dm with distance rA to the axis. Then we integrate the
moment of inertia of dm over the whole region occupied by the blob. We can
do this because we can effectively consider dm a point mass. Of course this can
be made rigorous with the formalism of Riemann sums, but the simplicity of
the intuition is sufficient at this point. If dm is located a coordinates (x, y) for
a lamina on the plane, or at coordinates (x, y, z) for mass distribution in R3,
the distance to the z axis is (x2 + y2), so the moment of inertial with respect
to the z-axis is

Iz =

∫
(x2 + y2) dm

This is called the polar moment of inertia. It is useful for objects that have
axial symmetry. So, lets get on with the work and compute the moment of iner-
tial of some common geometric shapes that appear in physics and engineering.
This is by far more productive than the typical academic exercises involving
odd shapes that typically appear in standard calculus textbooks.

4.4.2 Example Moment of inertia of solid disk

Consider a solid disk or radius R, thickness h and homogeneous density
ρ = k. We adapt a coordinate frame so that the equation of the disk is

x2 + y2 = R2, 0 ≤ z ≤ h

We set up the polar moment of inertia in cylindrical coordinates.

Iz =

∫∫∫
(x2 + y2)(k dz dy dx),

=

∫ 2π

0

∫ R

0

∫ h

0

r2(k r dz dr dθ,

= 2πk( 1
4R

4)h = 1
2kπR

4h.

We would like to have the formula in terms of the total mass M = kπR2h, so
we perform a common trick of “multiplying by 1”.

Iz = 1
2kπR

4h

[
M

kπR2h

]
,

Iz = 1
2MR2,

4.4.3 Example Moment of inertia of solid sphere.

Let x2 + y2 + z2 = R2 be the equation of a sphere of constant mass density
ρ = k. We are interested in the polar moment of inertia Iz. Because of axial
symmetry, it is convenient to set up the integral in cylindrical coordinates.
Since a sphere is not a function, we compute the integral for the top half and
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multiply by 2.

Iz =

∫∫∫
(x2 + y2) dm,

= 2k

∫ 2π

0

∫ √R2−r2

0

r2k(r dz dr dθ),

= 2k

∫ 2π

0

∫ R

0

r3
√
R2 − r2 dr dθ.

The integral with respect to r could be done by the standard methods of calculus
II using trigonometric substitution or integration by parts. However, one of the
tricks one learns through experience is that since the power of r outside the
radical is odd, a regular calculus I substitution will do. Call the integral J .

J =

∫ R

0

r3
√
R2 − r2 dr,

=

∫ R

0

r2
√
R2 − r2(r dr).

The obvious substitution is

u =
√
R2 − r2, that is, u2 = R2 − r2,

2u du = −2r dr, r2 = R2 − u2,

J = −
∫ 0

R

(R2 − u2)u(u du),

=

∫ R

0

(R2u2 − u4) du,

= R5( 1
3 −

1
5 ) = 2

15R
5

The moment of inertia becomes

Iz = 4πk 2
15R

5,

= 8
15πkR

5

[
M

4
3πR

3k

]
,

= 2
5MR2

4.4.4 Example Moment of inertia of solid cone.

Suppose the cone has base radius R, height h and homogenous density ρ = k.
Position the cone so that it rests on the xy-plane with axis of symmetry aligned
with the z axis. Then, the equation of the cone in cylindrical coordinates is

z = − h
R
r + h.
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The generator of the cone is a straight line on the xz-plane with the same slope
and z-intercept. The polar moment of inertia Iz =

∫∫∫
r2 dm is

Iz =

∫ 2π

0

∫ R

0

∫ h− hRr

0

r2k(r dz dr dθ),

= k

∫ 2π

0

∫ R

0

[hr3 − h
Rr

4] dr dθ,

= 2πkR4( 1
4 −

1
5 ),

= 1
10hπR

4,

= 1
10hπR

4

[
M

1
3kπR

2h

]
,

= 3
10MR2

4.4.3 Normal Distribution

We present a brief introduction to the normal distribution. A full treatment
of concepts associated with the normal distribution would be the principal topic
of an entire first course on probability and there would be no way to do justice
to the subject in a few pages. Hence, we restrict ourselves to the modest task
of deriving the normalization constants to insure we have indeed a probability
density function.

4.4.5 Example Bell-shaped curve. Evaluate

I =

∫ ∞
−∞

e−x
2

dx

Solution

This is a most important integral because it is the foundation of normal dis-
tributions in probability. As it stands the indefinite integral is not doable in
terms of elementary functions. However, there is most famous trick attributed
to the French mathematician and physicist Siméon Denis Poisson, that allows
us the compute the integral exactly. We can write

I =

∫ ∞
−∞

e−y
2

dy

because the definite integral does not depend on the name of the dummy vari-
able of integration. Then we have

I2 =

∫ ∞
−∞

e−x
2

dx

∫ ∞
−∞

e−y
2

dy =

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2) dy dx,

thus transforming into a double improper integral over the entire plane.
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The integrand is now an axially symmetric function in the
shape of a 2 dimensional, bell-shaped surface, and hence it
makes sense to change to polar coordinates. The integral is
over the entire plane, so in polar coordinates θ ranges from 0
to 2π and r ranges from 0 to infinity
.The double integral then transforms to an improper integral,

I2 =

∫ 2π

0

∫ ∞
0

r e−r
2

dr dθ,

= 2π
[

lim
R→∞

− 1
2e
−r2
]R

0

= −π lim
R→∞

e−R
2

− 1,

= π, therefore,

I =
√
π

The appearance of π here is a remarkable result. It is only doable because the
Jacobian r once again provides up to a constant, the chain rule factor needed
to compute the integral of the exponential function. it means that the function

f(x) =
1√
π
e−x

2

(4.9)

integrates to a value of 1 over the entire real line and hence it constitutes a
probability density function. The mean value x for the distribution is given by
the integral

x =

∫ ∞
∞

x f(x) dx =
1√
π

∫ ∞
∞

xe−x
2

The mean is zero because we have an integral of an odd function over a sym-
metric interval. Some modifications are usually made. Consider the integral

J =
1√
π

∫ ∞
−∞

e−
t2

2σ2 dt.

Making the substitution x2 = t2/(2σ2), we have x = t/(σ
√

2) and dt =
(σ
√

2 dx). After the substitution the integral becomes

J = σ
√

2
1√
π

∫ ∞
−∞

e−x
2

dx = σ
√

2

Hence,
1

σ
√

2π

∫ ∞
−∞

e−
t2

2σ2 dt = 1

We then perform a translation by replacing t by (x − x0). The value of the
integral is not affected. The function

P (x) =
1

σ
√

2π
e−

(x−xo)2

2σ2 (4.10)
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is called the normal distribution, also called the Gaussian distribution.
The mean of the distribution is translated to x0. The quantity σ is called the
standard deviation. If σ is small, the distribution has a sharp peak at the
mean value, and if σ is large, the distribution is spread out. As stated before,
the normal distribution constitutes the central topic of discussion on a first
course on probability.

4.5 Spherical Coordinates

To integrate in spherical coordinates, we need a formula for the differential
of volume. We proceed as usual. We subdivide the volume into infinitesimal
pieces and use the principle that the whole is the sum of its pieces. Think of
a spherical orange. We subdivide sphere into wedges, the wedges into sectors
and the sectors, into vesicles.
The key to integrals in spherical coordinates is the concept
depicted in subsection 2.5.2 of a triply orthogonal system.
That means that, as in the case of Cartesian coordinates,
the “vesicle” differential of volume is a cube. As such all
we need to know are the side dimensions of the cube. As
shown in the picture. Let dr, dθ and dφ be the differentials
of the coordinates. One edge of the cube is clearly dr. The
edge subtended by the infinitesimal angle dθ is an arc of a great circle of ra-
dius r, so it has dimension r dθ. The third edge is an arc of a parallel circle
on the sphere and not an arc of a great circle. To find its dimension we must
first project the arc into the xy-plane. The projected arc is subtended by the
infinitesimal angle dφ has dimension r sin θ dφ. Multiplying the lengths of the
edges of the cube, we get

dV = r2 sin θ dr dθ dφ. (4.11)

We may as well note that the square of the element of arc length in spherical
coordinates the square of the diagonal of the cube

ds2 = dr2 + r2dθ2 + r2 sin2 θ dφ2 (4.12)

4.5.1 Example Volume of a Sphere. As the first and most basic example in

spherical coordinates We compute the volume of a sphere x2 + y2 + z2 = R2;
that is r = R. We have

V =

∫ 2π

0

∫ π

0

∫ R

0

r2 sin θ dr dθ dφ,

= −2πR
3

3 cos θ |π0 ,
= − 2

3πR
3(−1− 1) = 4

3πR
3
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4.5.2 Example Volume of SnoKone. We compute the volume of the SnoKone
is bounded above by the sphere x2 + y2 + z2 = a2 and below by the cone
z =

√
x2 + y2. The volume integral is

V =

∫ 2π

0

∫ π/4

0

∫ a

0

r2 sin θ dr dθ dφ,

= −2π a
3

3 cos θ |π/40 ,

= − 2
3πa

3(
√

2
2 − 1),

= π
3 a

3(2−
√

2)

Not surprisingly, the computation is much easier than the integral in cylindrical
coordinates found in example 4.3.4

4.5.3 Example Volume of Ice Cream Cone. We compute the volume of the
ice cream cone bounded above by the shifted sphere r = a cos θ and below by
the cone θ = π/6. The volume integral is

V =

∫ 2π

0

∫ π/6

0

∫ a cos θ

0

r2 sin θ dr dθ dφ,

=

∫ 2π

0

∫ π/6

0

1
3a

3 cos3 θ sin θ dr dθ dφ,

= −2π 1
12a

3 cos4 θ
∣∣π/6
0

= − 1
6πa

3[(
√

3
2 )4 − 14)],

= − 1
6πa

3( 9
16 − 1) = 7

96πa
3

4.6 Change of Variables

As mentioned in the introduction to chapter 2, a multivariate function

f : Rn → Rn

is called a change of coordinates. It is common in this context to call the func-
tion T and to use the term transformation of coordinates. So far we only have
three examples, polar, cylindrical and spherical coordinates, Two examples re-
ally, since cylindrical coordinates are not that different from polar coordinates.
When doing an integration in calculus I and calculus II we call change of vari-
ables a substitution, or in more vernacular terms, a u-substitution. When
performing a definite integral by substitution, it is essential to keep in mind
that the differential of the variable on integration acquires a chain rule factor,
and the limits of integration need to be adjusted to the new variable.

In several variables the situation is more complicated. When changing vari-
ables in double of triple integrals what we have is really more like a simultaneous
double or triple substitution, depending on whether we are in R2 or R3. The
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multivariate “chain rule” factor is what we have been calling the Jacobian. We
have used elegant geometric arguments to obtain the Jacobians,

dA = r dr dθ, for polar coordinates,

dV = r dz dr dθ for cylindrical coordinates,

dV = r2 sin θ dr dθ dφ for spherical coordinates,

We were able to make these geometric arguments and change the limits of
integration because we could easily visualize by geometry, the effect of the
regions of integration due to the coordinate transformations. For example, in
polar coordinates, the transformation T : R2 → R2

(r, θ)
T−→ (x, y)

maps the rectangle R = [0, 2π] × [0, a] in the rθ-plane into a circle of radius
a in the xy-plane. This change of variables falls in the special category of
orthogonal coordinates in the sense that the constant coordinate functions
r = constant and θ= constant form an orthogonal grid of concentric circles and
radial lines.

The elements of area and volume are stated in terms of differentials, so there
must be a way to obtain the Jacobian but a computation using differentials.
Lets begin with the differential of area in the Cartesian plane dA = dx dy. Let’s
give some thought to this expression. What kind of multiplication is this? If
were to treat the differentials dx and dy as variables that can take any value,
as defined in calculus textbooks, then why don’t we see multiple integrals with
squares or cubes of differentials. Certainly something subtle is going on here.
There is no elementary answer to these fundamental questions, so we will take
a leap of faith and jump into some 20th century mathematics. We define a
new type of product of differentials by listing a “multiplication table”. The
new type of product is called the wedge product, first introduced in 1844 by
Hermann Grassmann. Here are the properties

dx ∧ dx = 0,

dy ∧ dy = 0,

dz ∧ dz = 0,

and

dy ∧ dx = −dx ∧ dy,
dy ∧ dz = −dz ∧ dy,
dz ∧ dx = −dx ∧ dz.

The wedge product only affects the differentials. Everything else is treated by
the usual rules of arithmetic. Thus, for example f dx ∧ g dy = fg dx ∧ dy.
The name of the variables or the number of variables do not affect the anti-
commutativity of the wedge product. The idea of the wedge product is to
capture for differentials, the properties of the cross product. After all, what we
formally know about computing areas does indeed go back to cross products. If
one changes the order of the cross product, the answer changes by a minus sign.
The cross product of a vector with itself is zero. For the xy-plane we envision
an infinitesimal rectangle with dimensions dx i and dy j. Then, the differential
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of area
−→
dAxy in the xy-plane would be the vector given by the cross product

−→
dAxy = dx i× dy j,

= dx dy i× j,

= dx dy k

What we get is an oriented differential of area vector, perpendicular to the xy-
plane and with magnitude equal the area of the infinitesimal rectangle. The is
exactly what one expects of the cross product of two vectors. In terms of wedge
products, the differential of area is

dAxy = dx ∧ dy. (4.13)

The one big difference between the cross product and the wedge product is that
that the former is only defined in R3. The differential of volume in terms of
wedges is simply

dV = dx ∧ dy ∧ dz. (4.14)

The wedge product is associative and distributive, so there is no need to in-
clude parenthesis. As long as we recall the definition of differentials in several
variables, this is all we need to compute Jacobians. Let’s compute the Jacobian
in polar coordinates. We have

x = r cos θ,

y = r sin θ,
and

dx = cos θ dr − r sin θ dθ,

dy = sin θ dr + r cos θ dθ,

Using the rules of wedge multiplication and the law of distributivity, we compute
dA = dx ∧ dy,

dA = (cos θ sin θ)(dr ∧ dr) + r cos2 θ dr ∧ dθ − r sin2 θ dθ ∧ dr − r2 sin θ cos θ dθ ∧ dθ,
= r cos2 θ dr ∧ dθ − r sin2 θ dθ ∧ dr,
= r(cos2 θ + sin2 θ)dr ∧ dθ,
= r dr ∧ dθ

It does not take much to realize that if we arrange the coefficients of dx and dy
into a matrix, the Jacobian is just the determinant of the coefficients. That is,

dA = dx ∧ dy =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ dr ∧ dθ,
= r dr ∧ dθ.

The change of variable theorem in this case say that∫∫
D

f(x, y) dx dy =

∫∫
R

f(r cos θ, r sin θ) r dr dθ,

where D is the region in the xy-plane which is the image under T of a region
in the rθ-plane.
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4.6.1 Remark The discussion above appears to contradict Fubini’s theorem.
The resolution to this is also slightly subtle. When one sets up a double iterated
integral I =

∫∫
D
f(x, y) dx dy, what is meant is I =

∫
(
∫
D
f(x, y) dx) dy, so

technically there is no multiplication of the differentials. The parenthesis is
ignored to avoid the clutter. We will worry about orientated areas in chapter 5
when we treat surface integrals.

It is interesting to note that the transformation T maps a rectangle R in
the rθ-plane to a circular sector region D in xy-plane. On the other the, the
integration over dA = dx dy is transformed backward into an integral over
dA = r dr dθ. For this reason, the differential of area dA = r dr dθ called the
pull-back in the literature.

The general equation of the Jacobian for a coordinate transformation in
the plane is easily obtained. Let x = x(u, v) and y = y(u, v). Computing the
differentials,

dx = xu du+ xv dv,

dy = yu du+ yv dv,

dA = dx ∧ dy =

∣∣∣∣xu xv
yu yv

∣∣∣∣ du ∧ dv.
The Jacobian J = ∂(x, y)/∂(u, v) of the transformation T : (u, v) → (x, y) is
then given by,

J ≡ ∂(x,y)
∂(u,v) =

∣∣∣∣∣ ∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ . (4.15)

Thus, if T : R2 → R2 maps a region R in the uv-plane to a region D in the
xy-plane, the formula for change of variables in a double integral is given by
the change of variables theorem∫ ∫

D

f(x, y) dx dy =

∫ ∫
R

f(x(u, v), y(u, v))
∣∣∣∂(x,y)
∂(u,v)

∣∣∣ du dv. (4.16)

The Jacobian factor is always taken in absolute value.

4.6.2 Example Use the transformation T : x = u2 − v2, y = 2uv to find∫ ∫
D
y dx dy, where D is the image under T of the rectangle R = [0, 1]× [0, 1].

Solution

the level curves are mutually orthogonal and thus they make a good coordinate
grid. The curves that bound the region D are the images of the edges of a unit
square, {u = 0, u = 1, v = 0, v = 1}. The equations of the curves are,

C1 : r(v) = 〈−v2, 0〉, Line, y = 0, x ∈ [−1, 0],

C2 : r(v) = 〈1− v2, 2v〉, Parabola, x = 1− 1
4y

2, x ∈ [0, 1],

C3 : r(u) = 〈u2, 0〉, Line, y = 0, x ∈ [0, 1],

C4 : r(v) = 〈u2 − 1, 2u〉, Parabola, x = 1
4y

2 − 1, x ∈ [−1, 0].
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For the Jacobian, we compute the differentials,

dx = 2u du− 2v dv,

dy = 2v du+ 2u dv,

dA = dx ∧ dy =

∣∣∣∣2u −2v
2v 2u

∣∣∣∣ du ∧ dv,
= 4(u2 + v2)du ∧ dv.

Finally, the pull-back integral is

I =

∫ 1

0

∫ 1

0

2uv[4(u2 + v2)] dv du,

=

∫ 1

0

∫ 1

0

8(u3v + uv3) dv du,

= 8

∫ 1

0

1
2u

3 + 1
4u du,

= 8( 1
8 + 1

8 ) = 2

We should note that the problem is kind of a cheat because we specified the pre-
image of D to be a rectangle and we gave away the appropriate transformation.
In practice one knows neither. Furthermore, in this case we could have easily
done the integral directly if D had been specified. Still, there is much to be
gained by the details of what it takes to map a region under a coordinate
transformation.

Obtaining the general formula for the change of coordinates of the differen-
tial of volume for a transformation T : R3 → R3 is just as easy. Suppose the
map takes coordinates (u, v, w) to (x, y, z). We have

dx = xu du+ xv dv + xw dw

dy = yu du+ yv dv + yw dw

dz = zu du+ zv dv + zw dw

dV = dx ∧ dy ∧ dz

dV =

∣∣∣∣∣∣
xu xv xw
yu yv yw
zu zv zw

∣∣∣∣∣∣ du ∧ dv ∧ dw. (4.17)

4.6.3 Example Volume of Ellipsoid. We wish to compute the volume of the
ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1

Solution. We perform the following transformation

x = aX, dx = a dX,

y = b Y, dy = b dY,

z = cZ, dz = c dZ.
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The transformation maps the unit sphere S : X2 + Y 2 + Z2 = 1 into the
ellipsoid. The pullback of the differential of volume is

dV = dx ∧ dy ∧ dz = abc dX ∧ dY ∧ dZ.

Thus, the change of variable theorem gives,

V =

∫∫∫
S

abc dX dY dZ = abc 4
3π(1)3 = 4

3abc. (4.18)

4.6.4 Example Spherical Coordinates
We compute the differentials and wedge product.

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

and

dx = sin θ cosφdr + r cos θ cosφdθ − r sin θ sinφdφ.

dy = sin θ sinφdr + r cos θ sinφdθ + r sin θ cosφdφ.

dz = cos θ dr − r sin θ dθ

dV = dx ∧ dy ∧ dz,

=

∣∣∣∣∣∣
sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

∣∣∣∣∣∣ dr ∧ dθ ∧ dφ,
J = cos θ

∣∣∣∣r cos θ cosφ −r sin θ sinφ
r cos θ sinφ r sin θ cosφ

∣∣∣∣+ r sin θ

∣∣∣∣sin θ cosφ −r sin θ sinφ
sin θ sinφ r sin θ cosφ

∣∣∣∣ ,
= cos θ(r2)(cos θ sin θ) + r2 sin θ sin2 θ,

|J | = r2 sin θ.

So the Jacobian of the transformation is consistent with the differential of vol-
ume we obtained with far less effort by geometry,

dV = r2 sin θ dr dθ dφ. (4.19)

Perhaps it is appropriate to end this subsection by the tantalizing quote by the
famous professor at Oxford, Sir Michael Atiyah

Algebra is the offer made by the devil to the mathematician. The devil
says: “I will give you this powerful machine, and it will answer any ques-
tion you like. All you need to do is give me your soul: give up geometry
and you will have this marvellous machine.” . . . the danger to our soul is
there, because when you pass over into algebraic calculation, essentially
you stop thinking: you stop thinking geometrically, you stop thinking
about the meaning.

Sir Michael Atiyah

4.7 Surface Area

The differential of surface area on R3 is a straightforward generalization of
the differential of area in the xy-plane given by 4.13. As shown in figure 4.8, let
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us consider infinitesimal arc length vectors i dx, j dy and k dz pointing along the
coordinate axes. Recall from the definition, that the cross product of two vectors
is a new vector whose magnitude is the area of the parallelogram subtended by
the two vectors and which points in the direction of a unit vector perpendicular
to the plane containing the two vectors, oriented according to the right hand
rule. As discussed previously, since i, j and k are mutually orthogonal vectors,

Fig. 4.8: Area Forms

the cross product of any pair is again a unit vector pointed in the direction
of the third or the negative thereof. In the xy-plane the differential of area is
really an oriented quantity that can computed by the cross product dSxy =
i dx× j dy = dx dy k). A similar computation yields the differential of areas in
the other two coordinate planes, except that in the xz-plane, the cross product
needs to be taken in the reverse order, so that (dSxz = −dx dz j). In terms of
wedge products, the differential of area in the xy-plane is (dSxy = dx ∧ dy), so
that the oriented nature of the surface element is built-in. Technically, when
reversing the order of variables in a double integral one should introduce a
minus sign. This is typically ignored in basic calculus computations of double
and triple integrals, but it cannot be ignored in vector calculus in the context
of flux of a vector field through a surface. We define the differential of surface
area in R3 as

dS = dy dz i− dx dz j + dx dy k, (4.20)

keeping in mind that this is an oriented element of area and the products of
differentials are really wedge products. In other words,

dS = dy ∧ dz − dx ∧ dz + dx ∧ dy, (4.21)

An equivalent equation for the differential of area for surface in parametric
form as in 2.45 can be obtained as follows. If in the equation for the unit normal
2.46, instead of the tangent vectors ru and rv we take infinitesimal vectors arc
length vectors ru du and rv dv, then the cross product gives

dS = (ru × rv) du dv. (4.22)
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Of course, we need to verify the assertion that 4.20 and 4.22 are equivalent.
Recalling the formula for the Jacobian 4.15 we have

dS = dy dz i− dx dz j + dx dy k,

=

{∣∣∣∣yu yv
zu zv

∣∣∣∣ i− ∣∣∣∣xu xv
zu zv

∣∣∣∣ j +

∣∣∣∣xu xv
yu yv

∣∣∣∣k} du dv

On the other hand

dS = (ru × rv) du dv,

=


∣∣∣∣∣∣

i j k
xu yu zu
xv yv zv

∣∣∣∣∣∣
 du dv,

=

{∣∣∣∣yu zu
yv zv

∣∣∣∣ i− ∣∣∣∣xu zu
xv zv

∣∣∣∣ j +

∣∣∣∣xu yu
xv yv

∣∣∣∣k} du dv

Emulating the one-dimensional case for the arc length element ds2 = ‖dr‖2, we
define the scalar differential of surface area by

dS = ‖dS‖ = ‖ru × rv‖ du dv. (4.23)

The area of a surface in R3 is then given by

S =

∫∫
D

dS =

∫∫
D

‖ru × rv‖ du dv, (4.24)

where D is an appropriate region of integration. I find it more natural to use
4.20 in computation, but some might prefer 4.22. A neat formula for surface
area can be obtained using Lagrange’s identity 1.22. We have

‖ru × rv‖2 =

∣∣∣∣ru · ru ru · rv
rv · ru rv · rv

∣∣∣∣ ,
=

∣∣∣∣E F
F G

∣∣∣∣
= EF −G2,

Where E = ru · ru, F = ru · rv,and G = rv · rv. Therefore, we have

S =

∫∫
D

√
EG− F 2 du dv, (4.25)

It is much easier to compute dot products than length of cross products. In
particular, if the surface grid curves form an orthogonal set, then F = 0. The
geometric reason is that in this case ru du and rv dv are infinitesimal vectors
along the two edges of an infinitesimal rectangle, and the area of the rectangle
is the product of the base times the height.
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While we are at it, we can also get another neat formula for the element of arc
length on a surface. We have

dr = ru du+ rv dv,

ds2 = dr · dr,
= (ru du+ rv dv) · (ru du+ rv dv).

After distributing the multiplication, we get,

ds2 = E du2 + 2F du dv +Gdv2. (4.26)

This is called the metric for parametric surface since the integral of ds along a
curve on the surface would yield the length of the curve. If the coordinate grid
curves are an orthogonal set, then F = 0, and the element of arc length is the
square of the hypothenuse of an infinitesimal right triangle,

ds2 = E du2 +Gdv2.

4.7.1 Example Surface Area for Explicit Function z = f(x, y)
We demonstrate that we get the same answer by computing dS for a general
explicit function z = f(x, y) using either, equation 4.20 or equation 4.22

dz = fx dx+ fy dy,

dy ∧ dz = −fx dx ∧ dy, after reversing the wedge order,

−dx ∧ dz = −fy dx ∧ dy,
dx ∧ dy = dx ∧ dy.

Hence, for the surface z = f(x, y)

dS = −(fx i + fy j− 1 k) dx dy,

dS =
√
f2
x + f2

y + 1 dx dy,

S =

∫∫
D

√
f2
x + f2

y + 1 dx dy, (4.27)

And just like that, we have a “plug-and-chug” formula to compute surface
area for general explicit surfaces. To use the second formula we must first
parametrize the surface. We use the trivial parametrization. We have

r(x, y) = x i + y j + f(x, y) k,

(rx × ry) dx dy, =


∣∣∣∣∣∣
i j k
1 0 fx
0 1 fy

∣∣∣∣∣∣
 dx dy,

= −(fx i + fy j− 1 k) dx dy,

dS =
√
f2
x + f2

y + 1 dx dy.
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Before doing some examples, we can’t resist pointing out that the vector com-
ponent of dS is the 3-dimensional gradient of z = f(x, y). We should not be
surprised, since dS must be orthogonal to the surface.

4.7.2 Example Surface Area of Saddle
Find the surface area of the “pringle” z = x2− y2, in the region D bounded by
x2 + y2 = 4.
Solution. Applying formula 4.27, we get

S =

∫∫
D

√
(2x)2 + (−2y)2 + 1 dx dy,

=

∫∫
D

√
4(x2 + y2) + 1 dx dy,

=

∫ 2π

0

∫ 2

0

r
√

4r2 + 1 dr dθ,

= (2π)( 2
3 )( 1

8 ) (4r2 + 1)3/2
∣∣∣2
0
,

=
π

6
(17
√

17− 1).

4.7.3 Example Surface Area of Paraboloid
Find the area of the part of the paraboloid z = x2+y2, in the region D bounded
by x2 + y2 = 4.
Solution. I find it better to use the original definition(s) for all problems. To
illustrate, we start by parametrizing the surface. We get

r(x, y) = x i + y j + (x2 + y2) k,

(rx × ry) dx dy, =


∣∣∣∣∣∣
i j k
1 0 2x
0 1 2y

∣∣∣∣∣∣
 dx dy,

= −(2x i + 2y j− 1 k) dx dy,

dS =
√

4x2 + 4y2 + 1 dx dy,

=

∫ 2π

0

∫ 2

0

r
√

4r2 + 1 dr dθ,

= (2π)( 2
3 )( 1

8 ) (4r2 + 1)3/2
∣∣∣2
0
,

=
π

6
(17
√

17− 1).

Surprise. We get the same answer. My silly explanation; one gets a pringle by
starting with a thin disk of dough and bending two opposite points up and the
other two down. One gets a paraboloid by bending all in the same direction.
Same amount of dough in both cases.

4.7.4 Example Surface Area of Implicit Function
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Let F (x, y.z) = c be a level curve defining an implicit function of (x, y)

dF = Fx dx+ Fy dy + Fz dz = 0,

dz = −Fx
Fz

dx− Fy
Fz

dy, Fz 6= 0,

dy ∧ dz =
Fx
Fz

dx ∧ dy,

−dx ∧ dz =
Fy
Fz

dx ∧ dy,

dx ∧ dy = dx ∧ dy =
Fz
Fz

dx ∧ dy,

dS =
Fx i + Fy i + Fz k

Fz
dx dy, Fz 6= 0.

Hence.

dS =
∇F
|∇F · k|

dx dy,

dS =
‖∇F‖
|∇F · k|

dx dy, ∇F · k 6= 0. (4.28)

The formula looks rather mysterious, but it is rather simple to explain by
geometry. Let R be the area of the projection onto the xy-plane of the area
S of a tilted parallelogram with unit normal n in R3 . Then S = R/‖n · k‖,
since ‖n · k‖ is just the cosine of the angle between the two planes. The same
must be true at the infinitesimal level. If F (x, y, z) = c, the unit normal is
n = ∇F/‖∇F‖. Hence

dS =
dA∣∣∣ ∇F‖∇F‖ · k∣∣∣ =

‖∇F‖
|∇F · k|

dA, where dA = dx dy

The full area S is then the given by summing the infinitesimal pieces S =
∫∫

dS.
The reader should take a minute to get convinced that if one writes an explicit
surface z = f(x, y) as the level surface F (x, y, z) = f(x, y) − z = 0, the two
formulas for surface area are compatible.

4.7.5 Example Area of Surface of Revolution
Let S be a surface of revolution as in equation 2.50 with generator profile
z = f(r). We have

r(r, θ) = 〈r cos θ, r sin θ, f(r)〉,
rr = 〈cos θ, sin θ, f ′(r)〉,
rθ = 〈−r sin θ, r cos θ, 0〉,
E = 1 + [f ′(r)]2,

F = 0,

G = r2.
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Since F = 0 it must be the case that the mesh curves are orthogonal. Indeed,
the constant coordinate curves are the meridians and the parallels of the surface
of revolution. The formula for the surface area is

S =

∫∫
S

r
√

1 + [f ′(r)]2 dr dθ. (4.29)

If one prefers the equivalent general formula 4.24 for surface area, the details
are as follows,

rr × rθ =

∣∣∣∣∣∣
i j k

cos θ sin θ f ′(r)
−r sin θ r cos θ 0

∣∣∣∣∣∣
= −rf ′(r) cos θ i− rf ′(r) cos θ j + r k,

‖rr × rθ‖ =
√
r2[f ′(r)]2 + r2,

= r
√

1 + [f ′(r)]2,

dS = r
√

1 + [f ′(r)]2 dr dθ.

It is worthwhile pointing out that if surface is generated by revolving the curve
z = f(x) about the z-axis, the formula reads

S =

∫ 2π

0

∫
r
√

1 + [f ′(r)]2 dr dθ,

= 2π

∫
r
√

1 + [f ′(r)]2 dr,

= 2π

∫
x
√

1 + [f ′(x)]2 dx, relabelling the integration variable

= 2π

∫
x ds, (4.30)

where ds is the differential of arc length. The is the formula used in single
variable calculus to compute the area of a surface of revolution.

4.7.6 Example Surface Area of Cone

Determine the surface the lateral surface area of a circular cone with base of
radius R and height h.

Adapt the coordinate axes such that axis of symmetry is the z-axis and the
and the vertex is at the origin. The generator of the cone on the xz-plane is a
straight line with equation z = − h

Rx. The cone of revolution is then given by

r(r, θ) = 〈r cos θ, r sin θ,− h
Rr〉

By equation 4.29, the surface area integral is
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S =

∫ 2π

0

∫ R

0

r

√
1 +

h2

R2
dr dθ,

= 2π 1
2R

2

√
1 +

h2

R2
,

= πR
√
R2 + h2,

= πRL,

where L =
√
R2 + h2 is the length of the generator of the cone.

4.7.7 Example Surface area of Torus
Consider the torus of revolution given by equation 2.52

r(θ, φ) = 〈 (R+ r cos θ) cosφ, (R+ r cos θ) sinφ, r sin θ 〉

We have,

rθ = 〈−r sin θ cosφ,−r sin θ sinφ, r cos θ〉,
rφ = 〈−(R+ r cos θ) sinφ, (R+ r cos θ) cosφ, 0〉,
E = r2,

G = (R+ r cos θ)2, F = 0,

S =

∫ 2π

0

∫ 2π

0

r(R+ r cos θ) dθ dφ,

= (2π)(2π)rR, (the integral of the cosine term is zero),

S = 4π2rR

4.7.8 First Theorem of Pappus
The surprisingly simple answers above could have been obtained by the first
theorem of Pappus; that states that the surface area of a surface of revolution
generated by a curve rotated about an axis is, the product of the length of the
circle traced by the center of mass, times the length of the curve. In the case
of the torus,

S = (2πR)(2πr).

For the cone of base R and generator length L, the center of mass is in the
middle of the segment L. The distance of the center of mass to the z-axis is
R/2m so the surface area of the cone is

S = 2π(R/2)L = πRL.

4.7.9 Example Surface Area of Sphere I
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In this computation we make repeated mental use of the trigonometric version
of Pythagoras theorem encapsulated in the equation cos2 x+ sin2 x = 1.

r(θ, φ) = 〈R sin θ cosφ,R sin θ sinφ,R cos θ〉,
rθ = 〈R cos θ cosφ,R cos θ sinφ,−R sin θ〉,
rφ = 〈−R sin θ sinφ,R sin θ cosφ, 0〉,

E = rθ · rθ = R2,

G = rφ · rφ = R2 sin2 θ,

F = rθ · rφ = 0,√
EG− F 2 =

√
R2(R2 sin2 θ) = R2 sin θ

Therefore,

S =

∫ 2π

0

∫ π

0

R2 sin θ dθ dφ,

= −2πR2 |cosφ|π0 ,
= 4πR2.

It is remarkable that this formula was also obtained by Archimedes. For a unit
sphere the surface area is 4π. Comparing, a circle of radius one has arc length
s = 2π, so we have a natural measure for arcs and angles, namely, there are
2π radians in a circle, or 2π radians in 360o. In the same manner we have a
natural measure for solid angles. There are 4π “somethings” on a sphere. The
“something” is called a steradian. One steradian corresponds to a central cone
subtending an spherical cap of area 1 on a sphere of radius 1. Here is a cute
question, how big does the moon appear to the naked eye. Is it the “size” of
a half- dollar, a quarter, a dime, a round pin head? If you have not done this
before, try putting a circular obstacle a meter away just big enough to cover the
moon. You might be surprised and perhaps better appreciate the job required
to scan the celestial sphere with powerful, finely-focused optical telescopes.

4.7.10 Example Surface Area of Sphere II

Consider a sphere x2 + y2 + z2 = R2 of radius R. In spherical coordinates,
the equation is r = R. Following Atiyah’s philosophy, we use simple geometry
instead of convoluted algebra to find dS. All we have to do is look at the
differential of volume 4.11 and set r = R and integrate. We get

dS = R2 sin θ dθ dφ,

S =

∫ 2π

0

∫ π

0

R2 sin θ dθ dφ,

= 4πR2.

Now, this is neat.



Chapter 5

Integral Vector Calculus

5.1 Vector Fields

A vector field is a smooth assignment of a vector to each point in space.
We have a very good intuition on how vector fields are represented graphically
because we are bombarded daily with meteorological diagrams of wind patterns,
ocean currents, and propagation of weather fronts. Plain vectors in Rn are
represented by n-tuples of numbers; vector fields are represented by n-tuples of
smooth functions. A good way to interpret vector fields is that a each point, the
corresponding vector represents the velocity vector of a fluid, the force vector of
some gravitational or electromagnetic field or some other physical phenomenon
that exhibits vector-like qualities.

We begin with a very easy example. Consider the vector field

F = 〈−y, x〉

If we wanted to render this vector field by hand we would
prescribe a grid on the xy-plane, make a table of the coordinates of each point
in the grid, and for each point, compute the the components of the vector to
be drawn at that point. Here we choose the grid with integer coordinates on
[−1, 1]× [−1, 1]. We compute

x y 〈−y, x〉
1 0 〈0, 1〉
1 1 〈−1, 1〉
0 1 〈−1, 0〉
-1 1 〈−1,−1〉
-1 0 〈0,−1〉

I already got tired of doing this and I have only computed the vectors in the
top half plane. What we need is to render the vector field on a sizeable grid
like 10× 10 or larger if needed. This is yet another task nowadays better done
by computers.

155
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Here is the vector field rendered in Maple by the “fieldplot”
command on a [−5, 5] × [−5, 5] grid. Even for this small size
window, one would need draw 100 vectors by hand. This would
be what we call a rotational vector field. In this case
the rotation is counterclockwise as it is apparent by visual inspection. Maple
automatically scales the relative length of the arrow to fit the longest ones
on the grid. This would not represent a typical vector field in physics as the
vectors get larger as one recedes from the origin. True vector fields in physics
we observe locally, usually tend to 0 in magnitude far away from the origin.
This is the case for gravitational and electromagnetic fields. There are always
exceptions. In the modern view of the universe, galaxies tend to recede faster,
the farther away from us, so the velocity vectors would indeed get larger.

The notion of vector fields is not new in this course. Given a function
f(x, y), we have already encountered the gradient vector field ∇f . If one can
render the level curves, as in the case of the function z = x2− y2, we can easily
visualize the vector field since at each point, the gradient vector is orthogonal
to the level curve. The gradient vector field in the case in question is plotted in
figure 3.10. Here is another neat vector field. Consider the harmonic function

f(x, y) = tan−1(y/x)

which corresponds to the imaginary part of the of the main branch of the
complex function w = ln z, as discussed in subsection 3.3.2. The gradient of
this function is

∇f = 〈 −y
x2 + y2

,
x

x2 + y2
〉 =

〈−y, x〉
(x2 + y2)

.

The gradient field of course has the same rotation feature as
the vector 〈−y, x〉, the difference being that this one is nor-
malized by the square of the length. The gradient vectors are
orthogonal to the gradient vectors of the conjugate harmonic
function g(x, y) = ln

√
x2 + y2.

In physics, the vector field F associated with a potential function is given by
the negative of the gradient of that function. A short computation gives

φ = ln(1/r) = − ln
√
x2 + y2,

F = −∇φ =
〈x, y〉

(x2 + y2)

The vector field points in the radial direction r = 〈x, y〉 from
the origin. As r → 0 the magnitude of the vector field goes
to infinity, so the field is singular at the origin. The function
φ = ln(1/r), up to a constant, represents the potential of a
(long) uniformly charged wire. The vector field is an example of one with ei-
ther a source or a sink. In section 5.4 we write simple conditions to determine
whether or not a vector field is rotational, and whether or not a vector field has
a source or a sink.

Talking about vector fields with a source or a sink, the most important of
all in R3 is F = ∇(1/r). The potential φ = 1/r, up to a constant, yields the
inverse square law, as shown in equation 3.6.
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5.2 Line Integrals

As a snake biting its tail, we finally come back to the topic of work and line
integrals that was introduced in equation 1.13. Let C be a curve whose position
vector is given as in equation 2.1

r(t) = x(t) i + y(t) j + z(t) k.

There are two versions of the differential of arc length; a vector form and a
scalar form, given by

dr = dx i + dy j + dz k, Vector form, (5.1)

ds2 = ‖dr‖2 = dx2 + dy2 + dz2, Scalar form. (5.2)

The vector form dr is an infinitesimal vector tangential to the curve. The unit
tangent vector T given by equation 2.23

T =
dr

ds
where

ds

dt
= v.

Let C : r(t), a ≤ t ≤ b be a segment of a curve, and

w = f(x, y, z) be a scalar field, and

F = P i +QP j +Rk be a vector field,

where P , Q and R are functions of (x, y, z). We have two types of line integrals,
scalar and vector types,

I =

∫
C

f(x, y, z) ds, Scalar type ,

W =

∫
C

F · dr, Vector type.

In both cases, the integrals can be computed directly by parametrizing the
curve, computing the appropriate differentials, and then performing the one-
variable integral with respect to t. we should note that in most physics text-
books the vector differential of arc length is denoted by d l as in the case of the
formula for the voltage drop 4V = −

∫
C

E · d l over a path in an electric field.
In some sense, we have already encountered line integrals of type I when we

computed the length of a curve, which is the special case in which f(x, y, z) = 1,
or in computing surface area by the single variable formula 4.30. Among the
few other physical applications of scalar-type line integrals, we have moment
integrals for density distributions along a curve. That is, we may think of
f(x, y, z) as some sort of density function. We provide but a single example in
R2 to illustrate that is just a “plug-and-chug” procedure. This is a good time
to review how to parametrize basic curves as we learned in chapter 2.

5.2.1 Example Moment of inertia of ring
Let C be a mass of constant density ρ = k in the shape of a circle of radius R
centered at the origin. Compute the polar moment of inertia Iz.



158 CHAPTER 5. INTEGRAL VECTOR CALCULUS

Solution. We have,

r(t) = 〈R cos t, R sin t〉, 0 ≤ t ≤ 2π,

v(t) = 〈−R sin t, R cos t〉,
v = ‖v‖ = R,

ds = v dt = Rdt

Next, we recall that Iz =
∫

(x2 + y2) dm, with dm = ρ ds

Iz =

∫
C

R2k ds,

=

∫ 2π

0

R2(kR dt),

= 2πkR3 = πkR3

[
M

kπR2

]
,

= M R2.

Possible difficulty in doing scalar-type line integrals most likely can be traced
back to insufficient practice parametrizing curves, computing the differential of
arc length, or calculating a one variable integral. Again, good time to review
that material. If a curve C is piecewise smooth, that is, a union of smooth curves
{C1, C2, . . .} which connect one to the next at a point, then, symbolically∫

C

=

∫
C1

+

∫
C2

+ . . . .

Basically, if the curve C has n different smooth pieces, then, effectively, one has
n line integrals to perform.

Line Integrals of type W =
∫
C

F · dr represent work done by a force field
along the curve. At the infinitesimal level dW = F · dr is the differential of
work done by the force in moving a particle an infinitesimal distance along the
curve. The formal definition of the computation is

W =

∫
C

F · dr =

∫ b

a

F(r(t)) · r′(t) dt.

The definition of the integral might look intimidating at first, but all it says is
“plug-in” the curve. If the vector field has components F = 〈P,Q,R〉, we can
expand the dot product

W =

∫
C

F · dr =

∫
C

P dx+Qdy +Rdz.

The quantity α inside the integrand

α = F · dr = P dx+Qdy +Rdz, (5.3)

is called a differential one-form.
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If the curve is parametrized by arc length r(s), one can write the integral as

W =

∫
C

F · dr =

∫ b

a

F(r(s)) · dr
ds
ds =

∫
C

F ·T ds.

This alternative formulation offers absolutely no computational advantage, but
it brings out two important points. First, it shows that there is really only kind
of line integral type, since F · T is just a scalar field (a function). Secondly,
the properties of a dot product with a unit vector, show that it is only the
projection component of the force along the tangent vector that has any con-
tribution to pushing the particle along the curve. It is important to note that
the curves must be treated as oriented curves, with natural (ccw) orientation
along increasing parameter t.

5.2.2 Example Compute W =
∫
C

F · dr, where F = x i + y j + xy k and C
is the curve r(t) = cos t i + sin t j + tk, with t ∈ [0, π].
Solution. Not that it matters in the computation, but we observe that the curve
is a helix. We have

x = cos t

y = sin t

z = t

and

dx = − sin t dt

dy = cos t dt,

dz = dt,

Substitution into the line integral gives

W =

∫
C

F · dr =

∫
C

x dx+ y dy + xy dz,

=

∫ π

0

[cos t(− sin t) + sin t(cos t) + cos t sin t] dt,

=

∫ π

0

cos t sin t dt,

= 1
2 sin2 t

∣∣π
0
,

= 0

5.2.3 Example Compute W =
∫
C
xy dx+ (x−y) dy where C consists of the

line segment joining (0, 0) to (2, 0) followed by the line segment from (2, 0) to
(3, 2)
Solution. we call the line segments C1 and C2. We start by writing parametric
equations for the line segments.

C1 : r(t) = 〈0, 0〉+ t〈2, 0〉, 0 ≤ t ≤ 1,

C2 : r(t) = 〈2, 0〉+ t〈1, 2〉, 0 ≤ t ≤ 1,

In coordinates, we have

C1 :

x = 2t

y = 0

and dx = 2 dt

dy = 0,

C2 :

x = 2 + t,

y = 2t,

and dx = dt,

dy = 2 dt.
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In the integral over C1 the first term dies because y = 0 and the second because
dy = 0. The line integral is,

W =

∫
C2

xy dx+ (x− y) dy

=

∫ 1

0

[(2 + t)(2t) + ((2 + t)− 2t)(2)] dt,

=

∫ 1

0

[4t+ 2t2 + 4− 2t] dt =

∫ 1

0

[4 + 2t+ 2t2] dt,

= 4 + 1 + 2
3 = 17

3

5.3 Conservative Vector Fields

5.3.1 Definition A vector field F is called conservative if there exists a
function f such that F = ∇f . We will call f a potential. This differs slightly
from the use of the term in physics where, if φ is a scalar potential, then the
field is given by F = −∇φ. I know it is repetitious, but the most well-know
example is the scalar potential φ = 1/r that gives rise to the 1/r2 law.

Line integrals of conservative vector fields have very special properties. Let
r(t) be smooth or piecewise smooth curve with end points A = r(a) and B =
r(b). Suppose that

F = ∇f = fx i + fy j + fz k.

Recall that

dr = dx i + dy j + dz k.

Then

W =

∫
C

F · dr,

=

∫
C

fx dx+ fy dy + fz dz,

=

∫
C

df, by the definition of the differential,

= f |BA = f(B)− f(A).

This application of the fundamental theorem of calculus is a very significant re-
sult. It says that line integral of a conservative vector field is path-independent!
Another way of saying this is that the integral depends only on the boundary
δC, which in the case of a segment of a curve, consists of the two endpoints.
For a conservative vector field, the integral over any two paths that have the
same end points yields the same amount of work. The prototype of conserva-
tive vector fields is the gravitational field. If in the laboratory, where we can
consider the acceleration due to gravity to have constant magnitude g, we lift
a mass from point A at height 0 to a point B at height h, the magnitude of the
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work is the same as the potential energy PE = mgh, no matter what path we
take.

For a line integral of a conservative vector field, being able to replace a
complicated the curve by the simplest curve with same boundary, namely a
line segment, already results in a major simplification. But we can do better.
First, we need a tool that will guarantee that the vector field is the gradient
of a potential function. Then we need a process to find the potential. We “lay
on the table” direct computation of the line integral while we introduce more
vector tools.

5.4 Curl and Divergence

5.4.1 The Del Operator

Let F be a vector field with smooth components.

F = P (x, y, z)i +Q(x, y, z)j +R(x, y, z)k.

Recall the definition of the Del operator

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k

We already know that the Del operator acting on function f produces a vector
field ∇f called the gradient. But, we can also apply the Del operator to vector
field in two different ways. First, we define

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

P Q R,

∣∣∣∣∣∣
= (Ry −Qz) i− (Rx − Pz) j + (Qx − Py) k. (5.4)

This operation yields a new vector (∇×F) called the Curl of the vector field.
A second way we can apply the Del operator is the by definition

∇ · F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
(5.5)

In this case, the result of the operation is a function ∇ · F that we call the
Divergence of the vector field. We have the following theorem

5.4.1 Theorem Let f be a smooth function and F a smooth vector field.
Then

a) ∇×∇f =
−→
0 ,

b) ∇ · (∇× F) = 0 (5.6)

The proofs are by simple direct computation. First, if

F = ∇f = fxi + fyj + fzk
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equation 5.4 yields

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

fx fy fz

∣∣∣∣∣∣ ,
= (fzy − fyz) i− (fzx − fxz) j + (fyx − fxy) k,

=
−→
0

Secondly,

∇ · (∇× F) = ∇ · [(Ry −Qz) i− (Rx − Pz) j + (Qx − Py) k],

=
∂

∂x
(Ry −Qz)−

∂

∂y
(Rx − Pz) +

∂

∂z
(Qx − Py),

= (Ryx −Qzx)− (Rxy − Pzy) + (Qxz − Pyz),
= 0

The most important information to extract from this section are the following
facts.

1. (a) ∇× F = 0⇔ F is irrotational (Conservative).

(b) ∇ · F = 0⇔ F has no sources or sinks (Incompressible).

2. For the situations that arise in this book, the reverse of equations 5.4.1
also hold.

(a) ∇× F = 0⇔ F = ∇f for some function.

(b) ∇ ·G = 0⇔ G = ∇× F for some vector field F.

Theorem 5.4.1 implies that
a) If F is conservative, that is, if F = ∇f , then F is irrotational.
b) If G = ∇× F, then ∇× F has no sinks or holes.

The reader might find it helpful to consider the following diagram. Let F be the
set of functions in R3 and VF the set of vector fields. Let f ∈ F and F ∈ VF .
The Del operator acts in three different ways according to the scheme

F ∇f−−−−−→
Grad

VF ∇×F−−−−−−−→
Curl

VF ∇·F−−−−−−→
Div

F . (5.7)

In terms of the diagram, theorem 5.4.1 says that if we apply the Del operator
twice in a row along the diagram, the result is zero. On the other hand, if one
skips the middle arrow and applies the divergence the gradient, the result in
general is not zero. In fact one gets the Laplacian.

∇ · ∇f = ∇2f. (5.8)

We will show the relation between curl of a vector field and rotation later in a
more advanced exercise. The jewel relating vector field to sources or sinks is
captured in the first two of Maxwell’s equations

∇ ·E = 4πρ ∇ ·B = 0.
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The former states that the vector field has a source/sink, namely a charge
density ρ that generates the electric field E. The latter is indicative that the
magnetic field B is the curl B = ∇ × A of some vector A called the vector
potential. The magnetic field has no sources or sinks. Field lines of a magnet
do not begin at the north pole and end at the south pole. The field lines are
actually loops that continue inside the magnet. There is no magnetic monopole!

The proof of the converse equations 5.4.1 is beyond the scope of this course.
The argument requires some subtle topological considerations without which
the result may be false. Fortunately other than the vector field in R2 given by

F =
〈−y, x〉

(x2 + y2)

there are no problems with converse of the theorem in this book. If the curl of a
vector field is zero, then the vector field is the gradient of some scalar potential.

5.4.2 Path Independent Integrals

We now have the tool we need to treat properly line integrals W =
∫
C

F ·dr
of conservative vector fields.

A 1-form α = F · dr is called an exact differential 1-form, if there exists
some function f called a potential such that

α = df (5.9)

In terms of differential forms, a vector field F = 〈P,Q,R〉 is conservative if the
1-form

α = F · dr = P dx+Qdy + Rdz,

is exact. To find the work line integral is a three step process.

1. Compute ∇ × F. If the answer is the zero vector, then F = ∇f for a
function f , unique up to the addition of a constant. The line integral is
path independent.

2. Integrate to find the potential f .

3. Evaluate the line integral by the fundamental theorem of calculus.

Finding a potential for a conservative vector field in R2 is equivalent to solving
an exact, first order ordinary differential equation

P (x, y) dx+Q(x, y) dy = 0

This sums up just about all the applications of calculus III that appear in a
first course in ordinary differential equations.

5.4.2 Example Find W =
∫
C

F · dr, where F = 〈y2z3, 2xyz3, 3xy2z2〉, and
C is the curve r(t) = 〈cos t, sin t, sin 2t〉, t ∈ [0, π].
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Solution. All line integrals can be done by the direct method, but in this case,
the integral is nasty. It is wise to start all line integrals by first establishing
whether or not the vector field is conservative.

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

y2z3 2xyz3 3xy2z2

∣∣∣∣∣∣ ,
= (6xyz2 − 6xyz2) i− (3y2z2 − 3y2z2) j + (2yz3 − 2yz3) k,

=
−→
0 .

We conclude that F is conservative and F = ∇f for some function. That is

F = 〈fx, fy, fz〉.

We start by picking the easiest of the partial derivatives to integrate, and keep
only the terms that are not redundant. In this case, all integrals are easy

fx = y2z3 f = xy2z3 (integrating with respect to x),

fy = 2xyz3 f = xy2z3 (integrating with respect to y),

fz = 3xy2z2 f = xy2z3 (integrating with respect to z).

The potential is f = xy2z3 + C, where is C is constant. the constant of
integration plays no role when we evaluate the line integral. Formally, when
one performs an iterated integral with respect to a variable, say x, one should
add an arbitrary function of the other two variables. However, in most cases, it
is much more practical to integrate with respect to each variable and just pick
the terms that make f consistent with ∇f = F, as we have done here. The
endpoints are A = r(0) and B = r(π), so the value of the line integral is,

W =

∫
C

F · dr,

= xy2z3
∣∣B
A

= xy2z3
∣∣(−1,0,0)

(1,0,0)
= 0.

5.4.3 Example Find the work done by F = (2xz+sin y) i+(x cos y) j+x2 k,
over the curve C given by one cycle of the helix r(t) = cos t i+sin t j+tk, where
t ∈ [0, 2π].
Solution.

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

2xz + sin y x cos y x2

∣∣∣∣∣∣ ,
= (0) i− (2x− 2x) j + (cos y − cos y) k,

=
−→
0 .
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So F is conservative and F = ∇f = 〈fx, fy, fz〉 for some potential function. We
proceed to find f ,

fx = 2xz + sin y, f = x2z + x sin y (integrating with respect to x),

fy = x cos y f = x sin y (we already got this term),

fz = x2 f = x2z (we already got this one as well).

Hence f = x2z + x sin y + C. The endpoints are A = r(0) and B = r(2π), so
the value of the line integral is,

W =

∫
C

F · dr,

= x2z + x sin y
∣∣B
A
,

= x2z + x sin y
∣∣(1,0,2π)

(1,0,0)
= 2π.

Occasionally, the vector field is generated from a potential for which the
gradient involves the product rule with respect to one of the variables, say for
example f = xy ey

2

. In such cases the practical way to find the potential is
to integrate fx with respect to x, which does not require integrating by parts.
Then one computes fy to check for consistency.

5.4.3 Applications to Physics

Gravitational Field

Newton’s Law of gravitation is based on the 1/r potential. Specifically, the
gravitational potential of a mass m due to a celestial body of mass M , is given
by

ϕ = −mGM
r

(5.10)

where r =
√
x2 + y2 + z2 is the distance between the center of masses, and G

is a universal constant. It is convenient to set the origin at the center of mass
of the larger mass M . The gravitational force that the mass M exerts on the
mass m is

F = −∇ϕ (5.11)
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implying that the gravitational vector field is a conservative vector field. We
compute the force field,

F = ∇
(
mMG

r

)
,

= mMG∇

(
1√

x2 + y2 + z2

)
,

= mMG

(
∂

∂x
i +

∂

∂y
j +

∂

∂z
k

)(
1√

x2 + y2 + z2

)
,

= −mMG
xi + yj + zk

(x2 + y2 + z2)3/2
.

Hence, the gravitational force is

F = −mMG
r

r3
(5.12)

The magnitude F of the force is F = mMG/r2, so this is a 1/r2 law.

Conservation of Energy

The most fundamental law of physics is conservation of energy. No physical
system has ever been observed in which energy is not conserved. Some times
energy might hide, most commonly in the form of heat, but when all the energy
is counted, the final energy is the same as the initial energy. A version of
conservation of kinetic energy can be easily derived from line integrals. Let F
be a force acting on a particle of mass m along a curve r(t), starting at an
initial point A = r(ti), and ending at a final point B = r(tf ). The work done
by the force is

W =

∫
C

F · dr.

By Newton’s law,
F = a = mr̈

Inserting into the work line integral, we get,

W =

∫ tf

ti

F · dr
dt
dt,

=

∫ tf

ti

m r̈ · ṙ dt,

= m

∫ tf

ti

1
2

d

dt
(ṙ · ṙ) dt

= 1
2m

∫ tf

ti

d

dt
v2 dt where v is the speed.



5.4. CURL AND DIVERGENCE 167

Hence the work done,

W = 1
2m(v2

f − v2
i ) = ∆(KE) (5.13)

is the difference between the final and the initial kinetic energy, that is, the
change ∆(KE) in kinetic energy. For example, if a mass is sliding on a table
with initial speed v and comes to a complete stop, then it must be that the
work W done by friction has magnitude 1

2mv
2. The kinetic energy is converted

into heat.

To connect the conservation equation 5.13 with an equation more familiar in
first year physics, consider the case of uniform motion in which the acceleration
a is constant, and the work is done along a straight line segment of magnitude
x. The work is given by W = Fx, where F is the magnitude of the constant
force vector. We get

max = 1
2m(v2

f − v2
i ),

2ax = (v2
f − v2

i )

This is one of the most basic equations in elementary physics. For example, in
a conservative vector field like gravity in which the work is path independent,
if a frustrated physics student climbs to the second floor by any path and drops
the book from a height h, the equation reads 2gh = v2

f , so the book hits the

ground with speed
√

2gh. Fortunately, the concept is so easy, that this silly
situation is most unlikely to occur. More generally, if the conservative vector
field F is the gradient of a potential

F = −∇ϕ,

resulting on a path independent work integral, then equation 5.13 reads,

−ϕ(B) + ϕ(A) = KE(B)−KE(A) or,

ϕ(A) +KE(A) = ϕ(B) +KE(B) (5.14)

This is the law of conservation of energy. Under the action of a conservative
vector field, the sum of the potential and kinetic energy is constant.

Maxwell’s Equations with no Sources or Currents

Here is a quote from the first edition of the Encyclopedia Britannica first pub-
lished in 1768.

Of Light

Light consists of an inconceivably great number of particles flowing from
a luminous body in all manner of directions; and these particles are so
small, as to surpass all human comprehension.

Encyclopedia Britannica - Optics (1768)
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Before treating Maxwell’s equations in the special case noted in the title, we first
need to mention some important vector identities. The Del operator on func-
tions is a linear derivation, meaning that it satisfies the basic linear properties
of derivatives and Leibnitz rule for derivatives

∇(kf) = k∇f, where k is constant,

∇f ± g = ∇f ±∇g,
∇(fg) = f∇g + g∇f.

The curl and divergence are linear operators, but not surprisingly the deriva-
tives of “products” are slightly more complicated. We leave as a non-inspiring
computation to verify the following identities,

∇× (fF) = f(∇× F) + F×∇f,
∇ · (fF) = f(∇ · F) + F · ∇f,

∇ · (F×G) = G · (∇× F)− F · (∇×G),

∇× (∇× F) = ∇(∇ · F)−∇2F. (5.15)

In the last equation in 5.15, by the Laplacian of a vector we just mean we apply
the Laplacian to each component. The proofs of these identities are much more
elegant in the tensor formalism which is beyond the scope of this course. On
the other hand, there are just four computations that can be done directly by
the definitions. There are no clever mysteries to be discovered here.

Now, consider Maxwell’s equations for electromagnetic fields in a region with
no charges or currents, as it is the case in vacuum. The equations in Gaussian
units are

∇ ·E = 0,

∇×E = −1

c

∂B

∂t
,

and
∇ ·B = 0,

∇×B =
1

c

∂E

∂t
.

These equations must have looked odd when they were first considered by
Maxwell in the 1860’s, since there is no charge density to act as a source for
the electric field in Gauss’s law. and no current to generate a magnetic field in
Ampére’s law. To complicate matters, cross products had only recently been
discovered by Hamilton in the context of quaternions and the formalism was
still not trusted by the general physics community. Hence, Maxwell worked
with the explicit set of 20 partial differential equations. Let’s compute the curl
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of the curl of the electric field.

∇× (∇×E) = ∇×
(
−1

c

∂B

∂t

)
,

∇(∇ ·E)−∇2E = −1

c
∇×

(
−∂B

∂t

)
, by equation 5.15,

−∇2E = −1

c

∂

∂t
(∇×B), since ∇ ·E = 0.

= −1

c

∂

∂t

(
1

c

∂E

∂t

)
,

= − 1

c2
∂2E

∂t2
.

Hence

∇2E =
1

c2
∂2E

∂t2
. (5.16)

By a homologous computation we can also deduce that

∇2B =
1

c2
∂2B

∂t2
. (5.17)

Therefore, the electric and magnetic fields satisfy the wave equation with a
speed of light. Actually, in MKS units the coefficient that appears in the wave
equations is (εoµ0), where εo is the permitivity of free space and the µo is the
permeability. The revolutionary conclusion of Maxwell is that light must be an
electromagnetic phenomenon propagating with speed c = 1/

√
εoµ0. Let there

be light! The discovery is probably the most significant event in science and
mathematics of the 19th century.

5.5 Stokes’ Theorem

Traditional calculus textbooks typically take a repetitious approach to Stokes’
theorem. They first introduce the theorem in two dimensions, then they rein-
troduce the theorem in two dimensions using curls of vectors, and finally they
do the theorem in three dimensions. We see no reason for that. Our approach
is to present the theorem once, but do it right. Then it is easy to specialize
to dimension two. The ingredients that we need are a vector field F a sur-
face S whose boundary is a curve C = δS. Think for example of the surface
S : z = 4− x2 − y2, x ≥ 0. This surface is a concave down circular paraboloid
with boundary C : x2 + y2 = 4. We will also need the differential of surface
area in R3.

5.5.1 Stoke’s Theorem Let S be an oriented piecewise smooth surface
whose boundary C = δS is a simple, piecewise smooth closed curve. Let F be
a vector field whose components have continuous partial derivatives. Then

W =

∮
C

F · dr =

∫∫
S

(∇× F) · dS. (5.18)
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The loop on the line integral indicates that the curve is closed. We do not often
see Stokes’ theorem expanded in terms of the components, but for the sake of
completeness, here it is,∮

C

Pdx+Qdy+Rdz =

∫∫
S

(Ry−Qz)dydz− (Pz−Rx)dxdz+(Qx−Py)dxdy. (5.19)

Consider the the special case where the vector field and the curve are in the
xy- plane. We have

F = P (x, y) i +Q(x, y) j

Since the curl is only defined in three dimensions, we have to embed the vector
field in R3 by taking the z-component equal to zero. We get,

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

P (x, y) Q(x, y) 0,

∣∣∣∣∣∣
= (Qx − Py) k.

The differential of surface area in the xy- plane is

dSxy = dx dy k.

Therefore Stokes’ theorem on the xy-plane reduces to

5.5.2 Green’s theorem∮
δD

P dx+Q dy =

∫∫
D

[
∂Q

∂x
− ∂P

∂y

]
dA. (5.20)

This version of Stokes’ theorem in dimension two in the xy-plane is called
Green’s Theorem. We present a proof of Green’s Theorem. We first prove
that for a type I region such as the one bounded between a and b shown in 5.1
We say that a region D in the plane is of type I if it is enclosed between the

Fig. 5.1: Simple closed curve.

graphs of two continuous functions of x. The region inside the simple closed
curve in figure 5.1 bounded by f1(x) and f2(x), between a and b, is a region
of type I. A region in the plane is of type II if it lies between two continuous
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functions of y. The region in 5.1 bounded between c ≤ y ≤ d, would be a region
of type II. For a region of type I, we claim that∮

C

P dx = −
∫∫

D

∂P

∂y
dA (5.21)

Where C comprises the curves C1, C2, C3 and C4. By the fundamental theorem
of calculus, we have on the right,∫∫

D

∂P

∂y
dA =

∫ b

a

∫ f2(x)

f1(x)

∂P

∂y
dydx,

=

∫ b

a

[P (x, f2(x))− P (x, f1(x))] dx.

On the left, the integrals along C2 and C4 vanish, since there is no variation on
x. The integral along C3 is traversed in opposite direction of C1, so we have,∮

C

P (x, y) dx =

∫
C1

+

∫
C2

+

∫
C3

+

∫
C4

P (x, y) dx,

=

∫
C1

P (x, y) dx−
∫
C3

P (x, y) dx,

=

∫ b

a

P (x, f1(x)) dx−
∫ b

a

P (x, f2(x)) dx

This establishes the veracity of equation 5.21 for type I regions. By a completely
analogous process on type II regions, we find that∮

C

Q dy =

∫∫
D

∂Q

∂x
dA. (5.22)

The theorem follows by subdividing R into a grid of regions of both types, all
oriented in the same direction as shown on the right in figure 5.1. Then one
applies equations 5.21 or 5.22, as appropriate, for each of the subdomains. All
contributions from internal boundaries cancel since each is traversed twice, each
in opposite directions. All that remains of the line integrals is the contribution
along the boundary δD.
It is possible to extend Green’s Theorem to more complicated regions that are
not simple connected, such as the region between two concentric circles.

5.5.3 Example Find
∫
C
y3 dx− x3 dy, where C is the circle x2 + y2 = 4.

Solution. The vector field here is F = y3 i− x3 j. First we compute the curl of
the vector field to see if by chance F is conservative.

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

y3 −x3 0,

∣∣∣∣∣∣
= (−3x2 − 3y2) k.
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Since curve C is closed and it is the boundary C = δD of a disk in the xy-plane,
the differential of surface is dS = dx dy k. By Stokes’ theorem we have,

W =

∮
C

F · dr =

∫∫
D

−3(x2 + y2) dx dy,

= −3

∫ 2π

0

∫ 2

0

r2(r dr dθ),

= −3(2π)( 24

4 ),

= −24π.

5.5.4 Example Evaluate
∮
C

(2y+ cos
√
x) dx+ (4x+ ey

2

) dy, where C is the
boundary of the region enclosed by y = x and y = x2.

Solution. The vector field is F = (2y + cos
√
x) i + (4x+ ey

2

) j. We have.

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

2y + cos
√
x 4x+ ey

2

0,

∣∣∣∣∣∣
= (4− 2) k = 2k

dS = dx dy k

Stokes’ theorem gives

W =

∮
F · dr =

∫ 1

0

∫ x

x2

2 dy dx,

= 2

∫ 1

0

(x− x2) dx,

= 2( 1
2 −

1
3 ) = 1

3 .

5.5.5 Example Find W =
∮
C

(x3 − y3) dx + (x3 + y3) dy, where C is the
boundary of the annulus D between x2 + y2 = 4 and x2 + y2 = 1.

Solution. F = (x3 − y3) i + (x3 + y3) j.

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

x3 − y3 x3 + y3 0,

∣∣∣∣∣∣
= (3x2 + 3y2) k,

dS = dx dy k
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Stokes’ theorem gives

W =

∮
F · dr =

∫∫
D

(3x2 + 3y2) dy dx,

= 3

∫ 2π

0

∫ 2

1

r2(r dr dθ)

= 3(2π)( 24

4 −
1
4 ),

= 6π( 15
4 ) = 45

2 π.

Much of the power of Stokes’ theorem 5.5.1 comes from the following observa-
tion. Let S and S′ be two surfaces that satisfy the hypothesis of the theorem,
with common boundary C = δS = δS′. Then∫∫

S

(∇× F) · dS = W =

∮
C

F · dr =

∫∫
S′

(∇× F) · dS′. (5.23)

This means that the surface S can be replaced by another surface S′ that
could make the integral easier to compute. The physics behind this process is
very neat. Interpret a vector field G as some sort of flow. A surface integral of
the form

Φ =

∫∫
S

G · dS

then represents what call the flux of the vector field through the surface. In
crude terms, the surface integral gives the amount of G goo passing through
the surface. But if G = ∇×F is the curl of some vector field, by theorem 5.4.1,
the divergence of ∇ ·G is zero and the vector field (∇× F) has no sources or
sinks inside the surface. Thus, as with a fishing net, the flux through the net
does not depend of the shape of the net, as long the boundary does not change.
The main payoff is that if the boundary lies on a flat plane that is parallel to
one of the coordinate planes, the simplest surface with the same boundary is
a plane, and by equation 4.20, the differential of surface requires absolutely no
computation. The surface integral collapses to a two-dimensional case as in
Green’s theorem.

5.5.6 Example Let F = y i− x j. Compute W =
∫∫
S
∇×F · dS, where S is

the hemisphere x2 + y2 + z2 = 4, z ≥ 0.
Solution. It is always true that ∇ · (∇ × F) = 0. Therefore the vector field
∇×F has no sources or sinks and we can replace S by the simplest surface S′

with the same boundary. The boundary of S is the circle C : x2 + y2 = 4 on
the xy-plane. The simplest surface S′ with the same boundary δS′ = δS = C
is z = 0.

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

y −x 0,

∣∣∣∣∣∣
= −2 k,

dS′ = dx dy k
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So, Stokes’ theorem gives W =
∫∫
S′
−2 dy dx,= −2(π22) = −8π. The surface

integral is (−2) times the area of a circle of radius 2.

5.5.7 Example Let F = (z − y) i + (z + x) j − (x + y) k). Compute W =∫∫
S
∇×F ·dS, where S is the portion of the paraboloid z = 4−x2− y2, z ≥ 0.

Solution. ∇ · (∇× F) = 0. Therefore the vector field ∇× F has no sources or
sinks and we can replace S by the surface S′ : z = 0 with the same boundary.
The common boundary is the circle C : x2 + y2 = 4 on the xy-plane.

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

x− y z + x −x− y,

∣∣∣∣∣∣
= −2 i + 2 j + 2 k,

dS′ = dx dy k

So, Stokes’ theorem givesW =
∫∫
S′

2 dy dx,= 2(π22) = 8π. The surface integral
is (2) times the area of a circle of radius 2.

5.5.8 Example Let F = xz i + yz j + xy k. Compute W =
∫∫
S
∇× F · dS,

where S is the spherical cap of the sphere x2 + y2 + z2 = 4, z > 0, inside the
cylinder x2 + y2 = 1.

Solution. It is always true that ∇ · (∇ × F) = 0. Therefore the vector field
∇×F has no sources or sinks and we can replace S by the simplest surface S′

with the same boundary. The boundary of S is a circle C at height given by
solving 1 + z2 = 4, that is z =

√
3. This is a plane S′ parallel to the xy-plane

with boundary δS′ = δS = C. We have

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

xz yz xy,

∣∣∣∣∣∣
= (x− y) i− (y − x)j + 0 k,

dS′ = dx dy k

So, Stokes’ theorem gives W =
∮

F · dr =
∫∫
S′

0 dy dx,= 0. It is hard to over-
stress how powerful this theorem is. Without stokes’ theorem we would work
with the complicated differential of the sphere in spherical coordinates and a
resulting proliferation of integrals of powers of sines and cosines.

5.5.9 Example Let F = tan−1(x2yz2) i + x2y j + x2z2 k. Compute W =∫∫
S
∇× F · dS, where S is the cone x =

√
y2 + z2, 0 ≤ x ≤ 2.

Solution. Since ∇ · (∇ × F) = 0, the integral depends only on the boundary.
We can replace S by the plane surface S′ : x = 2 provided δS′ = δS = C. The
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curve C is a circle of radius 2.

dS′ = dy dz i,

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

tan−1(x2yz2) x2y x2z2,

∣∣∣∣∣∣
= 0 i + . . . All we need is the i component

W =

∫∫
S′

0 dy dz = 0

5.5.10 Example Compute W =
∮

F · dr, where F = x2z i + xy2 j + z2 k,
and C is the curve of intersection of the plane x + y + z = 1 and the cylinder
x2 + y2 = 9.
Solution. The curve of intersection is neither a circle nor does it lie on a plane
parallel to one of the coordinate planes. What do we do now? Answer, we use
the same process. The ellipse C is the boundary of the surface S : z = 1−x−y
with circular projection x2 + y2 = 9 on the xy-plane. From the equation of the
plane we get dz = −dx− dy. From formula 4.20, we get dy ∧ dz = dx∧ dy and
−dx ∧ dz = dx ∧ dy. Hence

dS = (1 i + 1 j + 1 j) dx dy

Notice that the vector components of dS are the same as the gradient of f =
x+ y + z − 1, so that indeed, the dS is normal to the surface, as it should be.
We also have

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

x2z xy2 z2,

∣∣∣∣∣∣
= 0 i + x2 i + y2 i

W =

∫∫
S

∇× F · dS,

=

∫ ∫
S

(x2 + y2) dx dy,

=

∫ 2π

0

∫ 3

0

r2(r dr dθ) = 2π( 34

4 ) = 81π
2

5.6 Surface Integrals

A surface integral is tautologically, an integral over a surface. As in the case of
line integrals, there are two flavors of surface integrals

a) Scalar: I =
∫∫
S
g(x, y, z) dS, where dS = ‖dS‖,

b) Vector: Φ =
∫∫

F · dS
Again, completely analogous to line integrals, we can compute all surface inte-
grals by parametrizing the surface, and substituting dS or dS from the defini-
tions in section 4.7. Computations of scalar surface integrals are set up exactly
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as one sets up surface area problems, except that instead of integrating
∫∫
D
dS

one inserts into the integrand the given function g(x, y, z) evaluated over the
surface. For the differential of surface, we may use either of the two equivalent
formulas 4.20, or 4.22.

I =

∫∫
D

g(x(u, v), y(u, v), z(u, v))‖ru × rv‖ du dv. (5.24)

If the surface S is given by an explicit function z = g(x, y) then the surface
integral is obtained by substitution into

I =

∫∫
D

g(x, y, f(x, y) )
√
f2
x + f2

y + 1 dx dy. (5.25)

Of course, the most interesting problems are when g(x, y, z) = 1 which give the
surface area. If g(x, y, z) 6= 1, the most applicable problems are those involving
moments of mass or moments of inertia.

We have also encountered vector type surface integrals in the context of
Stokes’ theorem. In such cases the surface S has a boundary C = δS and the
surface integral is the flux of the curl of a vector field. We already know that
a vector field of the form ∇ × F has zero divergence, and we can replace the
surface by the simplest surface with the same boundary. The meaning of a flux
integral of a vector field F over a surface S parametrized by r(u, v) is more
clear if one writes,

Φ =

∫∫
S

F · dS,

=

∫∫
S

F · (ru × rv) du dv,

=

∫∫
S

F · (ru × rv)

‖ru × rv‖
‖ru × rv‖ du dv,

=

∫∫
S

F · n ‖ru × rv‖ du dv,

Φ =

∫∫
S

F · n dS

Just as in the case of work line integrals, the formula offers absolutely no com-
putational advantage, but it elucidates two things:

1. There is really only one kind of surface integral since F ·n is just a scalar
function.

2. Since n is a unit vector normal to the surface, the dot product shows that
only the component of F onto the normal, contributes to the flux. The
tangential components does not result in any flow through the surface.

5.6.1 Scalar Surface Integrals

From the point of view of physics and engineering, the most interesting
problems of scalar surface integrals are those related to center of mass and
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moments of inertia. For that reason, we limit the examples to these type of
applications.

5.6.1 Example Center of Mass of a Thin Spherical Shell.

We wish to compute the center of mass of the hollow hemisphere Σ : x2 + y2 +
z2 = R2, z ≥ 0, with constant density ρ = k. The total mass M is the density
times the surface area M = 2πR2k. By symmetry, it suffices to compute zc.m..
We have,

Mzc.m. =

∫∫
Σ

z dm =

∫∫
Σ

z k dS,

=

∫ 2π

0

∫ π/2

0

R cos θ(kR2 sin θ) dθ dφ,

= −2πR3k 1
2 cos2 θ

∣∣π/2
0

,

= πR3k,

zc.m. =
πR3k

2πR2k
=

1

2
R.

5.6.2 Example Moment of Inertia of a Thin Spherical Shell.

We compute the moment of inertia of a thin hollow sphere Σ : x2 +y2 +z2−R2

of constant density ρ = k about an axis through the origin.

Iz =

∫∫
Σ

(x2 + y2) k dS,

=

∫ 2π

0

∫ π

0

(R2 sin2 θ)(kR2 sin θ) dθ dφ,

=

∫ 2π

0

∫ π

0

(R2 sin2 θ)(kR2 sin θ) dθ dφ,

=

∫ 2π

0

∫ π

0

R2k(1− cos2 θ)(kR2 sin θ) dθ dφ,

= −2πR4k
[
cos θ − 1

3 cos3 θ
]π
0
,

= −2πR4[−1 + 1
3 − (1− 1

3 )],

= 8
3πR

4k,

= 8
3πR

4k
M

4πR2k
,

Iz = 2
3MR2

5.6.3 Example Moment of Inertia of weighted Spherical Shell

We compute the moment of inertia of a thin hollow hemisphere Σ : x2 + y2 +
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z2 −R2, z ≥ 0, with density ρ = z about an axis through the origin.

Iz =

∫∫
Σ

(x2 + y2) z dS,

=

∫ 2π

0

∫ π

0

(R2 sin2 θ)R2 cos θ(R2 sin θ dθ dφ, )

=

∫ 2π

0

∫ π

0

(R2 sin2 θ)(kR2 sin θ) dθ dφ,

=

∫ 2π

0

∫ π

0

R5 sin3 θ) cos θ dθ dφ,

= 2πR5k 1
4 sin4 θ

]π/2
0

,

Iz = 1
2πR

5

The total mass M is

M =

∫ 2π

0

∫ π/2

0

(R cos θ)(R2 sin θ dθ dφ),

= 2π 1
2 sin2 θ

]π/2
0

,

= πR3.

Hence

Iz = 1
2πR

5 M

πR3
= 1

2MR2.

5.6.4 Example Moment of Inertia of a Thin Paraboloid Shell

We find the moment of inertia Ix of the paraboloid shell x = 4−y2−z2, x ≥ 0
with density ρ = 1. First, we need to compute the differential of surface area.
As usual, we prefer to start from the general definition. We have,

dx = −2y dy − 2z dz,

dy ∧ dz = 1dy ∧ dz,
−dx ∧ dz = 2y dy ∧ dz,
dx ∧ dy = 2z dy ∧ dz,

dS = 〈1, 2y, 2z〉 dy dz,

dS =
√

1 + 4y2 + 4z2 dy dz.
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The surface integral is

Ix =

∫ ∫
(y2 + z2) dm,

=

∫ ∫
(y2 + z2)

√
1 + 4y2 + 4z2 dy dz,

=

∫ 2π

0

∫ 2

0

r2
√

1 + 4r2 r dr dθ,

=

∫ 2

0

∫ √17

1

1
4 (u2 − 1)u ( 1

4u du) dθ (with the substitution, u2 = 1 + 4r2),

= 2π( 1
16 )

∫ √17

0

(u4 − u2) du,

= 1
8π
[

1
5u

5 − 1
3u

3
]√17

1
,

=
1

60
π[23(17)

√
17 + 1] = .

1

60
π(391

√
17 + 1)

We spared the reader some arithmetic on the last line.

5.6.2 Vector Surface Integrals

All vector surface integrals can be computed directly from the definition, by
“parametrizing and integrating”. It might not always be the best way but it
can always be done. Let

F = P (x, y, z)i +Q(x, y, z)j +R(x, y, z)k

be a vector field in R3 and S be a surface

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k.

Recalling the definition(s) of the vector differential of surface 4.20 we can write
the flux of the vector field across the surface as

Φ =

∫∫
S

F · dS =

∫∫
S

P dy dz −Qdy dz +Rdxdy.

The expression should really be written more precisely as,

Φ =

∫∫
S

P dy ∧ dz −Qdy ∧ dz +Rdx ∧ dy. (5.26)

The quantity α inside the integrand

α = F · dS = P dy ∧ dz −Qdy ∧ dz +Rdx ∧ dy, (5.27)

is called a differential 2-form. The process of computation is simply to sub-
stitute the surface components into 5.26 and integrate. Alternatively, we can
use 4.22 and just compute

Φ =

∫∫
S

F · dS =

∫∫
S

F · (ru × rv) du dv. (5.28)
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5.6.5 Example Flux of Constant Vector Field across a Plane
The simplest example of a line integral is the case in which the vector field

F is constant, and the path is a straight line r(t) = P + tv. The work done by
the force to move a particle from P to (P + v) is just the dot product F · v.
The analogous example for flux is the case where again, the vector field F is
constant and the surface is the parallelogram R spanned by vectors a and b on
the plane

r(u, v) = P + ua + vb

Then, the differential of surface is also constant,

dS = (a× b) du dv,

dS = ‖a× b‖ du dv, u ∈ [0, 1], v ∈ [0, 1].

The flux integral gives

Φ =

∫∫
R

F · dS =

∫∫
R

F · n dS,

=

∫∫
R

F · (a× b)

‖a× b‖
‖a× b‖ du dv,

= F · (a× b)

∫ 1

0

∫ 1

0

du dv,

= F · (a× b).

The integral is trivial because were able to pull the constant triple product
outside the integral. The answer is most intuitive. Suppose that F represents
the velocity of some fluid of density ρ = 1. The flux is the triple product (Fab)
which is the volume of the parallelepiped where the base is the parallelogram
spanned by a and b. This is the rate at which the fluid flows through the
parallelogram. To illustrate the concept, we post the following problem.

5.6.6 Example Calculate the flux of the vector field F = 〈2,−1, 3〉 across
the triangle with vertices at A(0, 1,−2), B(3, 1, 0), C(−2, 2, 1).
Solution. Let

a =
−−→
AB = 〈3, 0, 2〉, b =

−→
AC = 〈−2, 1, 3〉,

Then

Φ =
1

2

∣∣∣∣∣∣
2 −1 3
3 0 2
−2 2 3

∣∣∣∣∣∣ =
1

2
[2(−2) + 1(13) + 3(3)] = 9.

5.6.7 Example Flux of Non-constant Vector Field across a Plane We cal-
culate the flux of the vector field F = 〈x.xy, xz〉 across the part of the plane
S : 3x + 2y + z = 6 with the natural orientation and which lies in the first
octant. To be clear, the natural orientation is the orientation of the gradient.
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Although a direct computation of a flux integral is a totally routine matter in
the sense that all it requires is to substitute into the formulas and compute,
many students struggle because of the various ways to manifest the differential
of surface area vector. For the purposes of showing the equivalence of the
methods, we compute dS in three different ways

Method 1. We use the wedge definition given by equation 4.20. This is my
favorite method because it is based precisely on the definition, the definition is
intuitive, and it always works. We have

z = 6− 3x− 2y,

dz = −3 dx− 2 dy,

dy ∧ dz = 3 dx ∧ dy,
−dx ∧ dz = 2 dx ∧ dy,
dx ∧ dy = 1 dx ∧ dy,

dS = (3 i + 2 j + 1 k) dx dy

Method 2. We use the parametric equation definition 4.22. This method also
works every time. We parametrize and compute,

r(x, y) = 〈x, y, 6− 3x− 2y〉,
rx = 〈1, 0,−3〉,
ry = 〈0, 1,−2〉,

rx × ry = 〈3, 2, 1〉,
dS = (3 i + 2 j + 1 k) dx dy

Method 3. We use equation for implicit functions given by 4.28. Here, the
implicit function is F (x, y, z) = 3x+ 2y + z = 6, so

∇F = 〈3, 2, 1〉,
∇F · k = 1,

dS = (3 i + 2 j + 1 k) dx dy

This method is specialized for implicit functions and it is very efficient. But we
must not forget the reason it works fast is that in the derivation of the formula,
we have already applied the definition 4.20. In addition, the formula must be
revised if the differential of surface is projected instead in another coordinate
plane.

We proceed to calculate the flux integral. The region R of integration is the
triangle in the first quadrant given z = 0, that is 3x+ 2y = 6. We also need to



182 CHAPTER 5. INTEGRAL VECTOR CALCULUS

evaluate the vector field on the surface S.

F|S = 〈x, xy, x(6− 3x− 2y)〉,
dS = 〈3, 2, 1〉 dy dx,

Φ =

∫∫
R

F · dS,

=

∫ 2

0

∫ 3− 3
2x

0

[3x+ 2xy + x(6− 3x− 2y)] dy dx,

=

∫ 2

0

∫ 3− 3
2x

0

(9x− 3x2) dy dx,

=

∫ 2

0

(3− 3
2x)(9x− 3x2) dx,

= 9
2

∫ 2

0

(6− 5x2 + x3) dx,

= 9
2

[
3x2 − 5

2x
3 + 1

4x
4
]2
0

= 12

5.6.8 Example Flux across a Cone

We compute the flux of the vector field F = 〈xy, 0, z〉 across the part S of

the cone z =
√
x2 + y2 x ≤ 1 with the natural orientation.

Solution. There is nothing special about this surface integral. It just illustrates
that direct integration always works, provided one has enough temperance to
work out the double integrals. We start with the differential dz and follow up
by an easy mental computation of the wedges.

dz =
x√

x2 + y2
dx+

y√
x2 + y2

dy,

dS = 〈 −x√
x2 + y2

,
−y√
x2 + y2

, 1〉 dx dy,

F|S = 〈xy, 0,−
√
x2 + y2〉,

Φ =

∫ ∫
S

(
−x2y√
x2 + y2

−
√
x2 + y2

)
dx dy,

=

∫ 2π

0

∫ 1

0

(−r2 cos2 θ sin θ − r)(r dr dθ),

= −(2π)
[

1
3r

3
]1
0

= − 2
3π.

The first integral makes no contribution over a full cycle of the (cos3 θ) function.

5.6.9 Example Find the flux of a vector field over a closed surface

Solution. First learn Gauss’s theorem in section 5.7.
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5.6.3 Curl and Circulation

Consider a positively oriented, simple closed curve {C : r(t)}. Let v the
velocity vector and T the unit tangent vector. Think of the vector field v as
representing the velocity field of a fluid. The line integral∮

v · dr =

∮
v ·T ds

represents the rotation tangentially around the curve. The line integral is there-
fore called the circulation.

We use Stoke’s theorem to show the relation between the curl
of a vector field and the circulation. The figure here illustrates
the notion of circulation. If v represents the velocity field of a
fluid, then the field has a circulation if

∮
C

v · dr is not zero.

Let C be the boundary of region S. The region could be any region in R3 ,
but we might as well assume the region is the simplest one that has the same
boundary. By Stokes’ theorem, we have∮

C

v · dr =

∫∫
S

(∇× v) · dS.

To find the circulation at a point P consider the curve C to be a very small
circle Cε of radius Rε, centered at P . If ε is sufficiently small, the vector field
will not vary much within the disk enclosed by Cε so the curl of the vector field
is approximately a constant. Hence∫∫

S

(∇× v) · dS =

∫∫
S

(∇× v) · n dS,

≈ (∇× v) · n)

∫∫
S

dS,

≈ [(∇× v) · n](πR2
ε ).

In the limit as ε→ 0, we get

[(∇× v) · n)](P ) = lim
ε→0

1

(πR2
ε )

∮
C

v · dr. (5.29)

This means that the curl of the velocity vector is a measure of the circulation
of the fluid at the point P .

5.7 Gauss’ Theorem

5.7.1 Gauss’ Theorem Let V is a simple solid region with a piecewise
smooth boundary S = δV with outward orientation. Let F be a vector field
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with continuously differentiable components in an open region that contains V .
then, ∫∫

S

F · dS =

∫∫∫
V

∇ · F dV. (5.30)

Proof To prove the theorem we first state it in its full components, namely∫∫
S

P dy dz −Qdxdz +Rdxdy =

∫∫∫
V

(Px +Qy +Rz) dV

The proof of Gauss’ theorem here follows the same mode of
thinking as was done for the proof of Green’s theorem. We
star with a proof that

∫∫
Rdxdy =

∫∫∫
Rz dV . For this,

take the special case where the surface is the boundary of a
volume over a rectangle D enclosed between the functions
z = f(x, y) and z = g(x, y). The idea is to compute the surface and the volume
integral and show they are the same. For the vertical walls, either dx = 0 or
dy = 0, so the only contribution to the flux is the z component of the flux
corresponding to dS = dx dy k.

Φz =

∫∫
S

Rdx ∧ dy =

∫∫
D

[R(x, y, f(x, y))−R(x, y, f(x, y)] dx dy.

On the other hand,∫∫∫
V

∂R

∂z
dz dy dx =

∫∫
D

(∫ f(x,y)

g(x,y)

∂R

∂z
dz

)
dy dx,

=

∫∫
D

[R(x, y, f(x, y))−R(x, y, f(x, y)] dx dy.

By taking special regions over rectangles over the other two coordinate planes,
we can establish the corresponding parts of the theorem

Φx =
∫∫

P dy dz =
∫∫∫

Px dV ,
Φy = −

∫∫
Qdxdz =

∫∫∫
Qy dV .

For general volumes bounded by simple closed surfaces, we dice the solid into
small regions of each of the three types and then on argues that all the interior
wall surface integrals cancel out, because in an interior cube, there is an equal
flux in each direction.

The physics about the theorem is most intuitive once we understand that
the divergence of a vector field is associated with the existence of sources or
sinks. If we think of a vector field F as flow, and ∇·F = 0 inside a closed surface
such as a sphere, then there are no sources or sinks inside the region and what
ever flows in, must flow out. Thus, the net flux is zero. On the other hand, if
∇ ·F is not zero, then the volume integral generates a net flux Φ =

∫∫
S

F · dS.
A more quantitative explanation appears in section 5.8.

5.7.2 Example Find Φ =
∫∫
S

F · dS, where F = y4 i + 2x3 j + 3z k, and S is
the unit sphere x2 + y2 + z2 = 1.



5.7. GAUSS’ THEOREM 185

Solution. The sphere is a closed surface and it bounds a solid sphere V , so
Gauss’ theorem applies. Hence∫∫

S

F · dS =

∫∫∫
V

∇ · F dV,

=

∫∫∫
V

3 dV,

= 3( 4
3π13) = 4π.

Yes, this one is as simple as that. Computing the surface integral would have
been laborious leading to a proliferation of integrals of power of sines and cosines
stemming from the parametrization of the sphere.

5.7.3 Example Find Φ =
∫∫
S

F · dS, where F = y i + z j + z k and S is the
boundary of the solid region V bounded above by z = 1 − x2 − y2 and below
by the plane z = 0.
Solution. Since S = δV is the boundary of a volume, it is a closed surface and
Gauss’ theorem applies. We get,∫∫

S

F · dS =

∫∫∫
V

∇ · F dV,

=

∫∫∫
V

1 dV,

=

∫ 2π

0

∫ 1

0

∫ 1−r2

0

r dz dr dθ,

=

∫ 2π

0

∫ 1

0

(r − r3) dr dθ,

= 2π( 1
2 −

1
4 ) = π

2 .

5.7.4 Example Find the flux Φ =
∫∫
S

F · dS, where

F =
r

r3
=

〈x, y, z〉
(x2 + y2 + z2)3/2

, S : 0 < a2 ≤ x2 + y2 + z2 ≤ b2.

Solution. The surface is the boundary of the solid region V between two hemi-
spheres, so Gauss’s theorem applies. Computing the the divergence, we get

∇ · F =

(
1

r3
− 3x2

r5

)
+

(
1

r3
− 3y2

r5

)
+

(
1

r3
− 3z2

r5

)
,

=
3

r3
− 3

r5
(x2 + y2 + z2),

=
3

r3
− 3r2

r5
= 0,

Φ =

∫ ∫ ∫
V

∇ · F dV = 0
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The vector field, represents a 1/r2 point source, but the source is outside the
region bounded inside the two hemispheres, so the total outward flux is zero.
Whatever “goo” flows in, flows out.

5.7.5 Example Find the flux Φ =
∫∫
S

F · dS, where,

F = (5x3 + 12xy2) i + (y3 + ey sin z) j + (5z3 + ey cos z) j,

and S is the boundary of the solid region 1 ≤ x2 + y2 + z2 ≤ 2.
Solution

∇ · F = (15x2 + 12y2) + (3y2 + ey sin z) + (15z2 − ey sin z),

= 15x2 + 15y2 + 15z2 = 15r2

By Gauss’s theorem,

Φ =

∫∫∫
V

15r2(r2 sin θ dr dθ dφ),

=

∫ 2π

0

∫ π

0

∫ 2

1

r4 sin θ dr dθ dφ,

= −2π( 25

5 −
15

5 ) cos θ |π0 ,
= −2π 31

5 (−1− 1) = 124
5 π

5.7.6 Example Gauss’s Law. The first equation of Maxwell for electric fields
in Gaussian units reads

∇ ·E = 4πρ,

where ρ is the charge density per unit volume. In elementary physics one gets
away with not doing a fancy flux integral by assuming the source is a point
charge. Then we can enclose the total charge Q centered a at the origin by a
sphere S : x2 + y2 + z2 = r2. By symmetry, the electric field E is normal to
the sphere and it has constant strength E = E ·n on the sphere. We can easily
compute the flux by Gauss’ theorem,∫∫∫

V

∇ ·E dV =

∫∫ ∫
V

4πρ dV,∫∫
S

E · dS = 4πQ,∫∫
S

E · n dS = 4πQ,

E

∫∫
S

dS = 4πQ,

E(4πr2) = 4πQ,

E =
Q

r2

This is the 1/r2 law.
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5.8 Vector Theorems in Physics

5.8.1 Continuity Equation

In this section we elaborate more on the assertion that the divergence of
a vector field has something to do with sources. We do this in the context of
hydrodynamics of smooth flow of vector fields.
Let v represent the velocity vector field of a fluid of density
ρ. Suppose the fluid is flowing through a surface S. As
it is usual in calculus we zoom to a very small rectangle
centered at a point P on the surface. We consider the flux
of the vector field F = ρv. Denote the unit normal to the
surface by the vector n. Since the region is very small, as in example 5.6.2, the
amount of fluid passing through the rectangle of area ∆S in time ∆t is given
by the volume of the parallelepiped with base ∆S and height equal to the
projection of v ∆t onto the normal

∆V = v ∆t · n ∆S.

Recalling that density is mass per unit volume. that is ∆m = ρ∆V , we get

∆m = ρv · n ∆t∆S.

Now, with the magic of Riemann sums, we add all the contributions and take
the limit as the increments go to zero. The sums become integrals and the
result is

dm

dt
=

∫∫
S

ρv · n dS,

=

∫∫
S

ρv · dS,

=

∫∫
S

F · dS.

Now, take a small sphere Bε, with radius rε. Let Vε be the volume of the sphere.
The average value of ∇ · F over the sphere is

1

Vε

∫∫∫
Bε

∇ · F dV.

The divergence of the vector field is a continuous function, so it must attain
the average value at at last one point P ∈ Bε,

(∇ · F)P =
1

Vε

∫∫∫
Bε

∇ · F dV,

=
1

Vε

∫∫
Sε

F · dS

The right hand side represents the rate of decrease of mass per unit volume.
Now we take the limit as ε goes to 0. The left hand side approaches (∇ · F)P .
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We get

(∇ · F)P = −∂ρ
∂t
,

∇ · (ρv) +
∂ρ

∂t
= 0. (5.31)

This is the hydrodynamics continuity equation. The divergence represents a
flow through the surface, but this can only happen at the expense of the rate of
change of the matter inside the volume. The conclusion is that Gauss’s theorem,∫∫

S

F · dS =

∫∫∫
V

∇ · F dV,

at least in the context of fluids, is a statement of conservation of mass.

5.8.2 Continuity Equation in E & M

The complete set of Maxwell’s equations in Gaussian units is

∇ ·E = 4πρ,

∇×E = −1

c

∂B

∂t
,

and
∇ ·B = 0,

∇×B =
4π

c
J +

1

c

∂E

∂t
,

where ρ is the charge density ρ = dQ/dV , and J is the charge current density
per unit area passing through a surface. In other words, if we integrate J over
a surface Σ we get the net electric current on the surface

IΣ =

∫ ∫
Σ

J · dS

Now, let’s take the divergence of the curl of B,

∇ · (∇×B) =
4π

c
∇ · J +

1

c
∇ · ∂E

∂t
,

0 =
4π

c
∇ · J +

1

c

∂

∂t
(∇ ·E),

0 =
4π

c
∇ · J +

4π

c

∂ρ

∂t
.

Hence

∇ · J +
∂ρ

∂t
= 0 (5.32)

This is the continuity equation for the electric field. If we integrate over a vol-
ume V whose boundary is a closed surface S = δV and apply Gauss’s theorem,
we get ∫∫∫

V

∇ · J dV = −
∫∫∫

V

∂ρ

∂t
dV,∫∫

S

J · dS = − d

dt

∫∫∫
V

ρ dV,

IS = − d

dt
QS
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The physics is that the net rate of change of the charge over the volume V is
the negative of the net current flowing through the boundary δV .

5.8.3 Green’s Identities

Let f and g be smooth functions (continuous second partial derivatives suffices),
and S be a simple closed surface that is the boundary of a volume V . The
surface integral ∫∫

S

f∇g · dS =

∫∫
S

f∇g · ndS

is often written ∫∫
S

f∇g · dS =

∫∫
S

f
∂g

∂n
dS

because ∇g · n is the directional derivative of g in the direction of the normal.
The notation is meant be read as the normal derivative of g. Applying Gauss’s
theorem, we get∫∫

S

f∇g · dS =

∫∫∫
S

∇ · (f∇g) dV,

=

∫∫∫
S

[f∇ · (∇g) +∇f · ∇g] dV,∫∫
S

f∇g · dS =

∫∫∫
S

(f∇2g +∇f · ∇g) dV. (5.33)

Equation 5.33 is called Green’s first identity
If we interchange f and g in 5.33 and subtract, we get∫∫

S

f∇g · dS =

∫∫∫
S

(f∇2g +∇f · ∇g) dV,∫∫
S

g∇f · dS =

∫∫∫
S

(g∇2f +∇g · ∇f) dV∫∫
S

(f∇g − g∇f) · dS =

∫∫∫
S

(f∇2g − g∇2f) dV (5.34)

Equation 5.34 is called Green’s second identity. I am not sure I should
call Green’s identities an application in physics, because it is just as well an
application to partial differential equations. With the addition Green’s third
identity which we do not include here, we are lead to a neat process to treat
solutions of equations that involve the Laplacian. The general procedure is
called the method of Green’s functions. More appetizers to pursue further
acquisition of knowledge. There are analogous formulas in other dimensions, so
the method can be made quite general.

5.9 General Stokes’ Theorem in R3

As an appetizer for continuing the pursuit of knowledge, we present a tanta-
lizing result that consolidate the three major vector integration theorems into



190 CHAPTER 5. INTEGRAL VECTOR CALCULUS

a single one. Let f by a smooth function and F = 〈P,Q,R〉 be a smooth vector
field in R3. Following equations 5.3 in connection with line integrals and 5.27
in connection we surface integrals, we extend the definition of forms to also
include the vector integrands in one and three dimensions. That is,

0-form ω = f 1,

1-form ω = F · dr = P dx+Qdy +Rdz,

2-form ω = F · dS = P dy ∧ dz −Qdx ∧ dz +Rdx ∧ dy,
3-form ω = f dx ∧ dy ∧ dz.

To keep track of where things live, we introduce the following notation for the
spaces of forms in R3

Λ0(R3) = Λ0 = Space of 0-forms,

Λ1(R3) = Λ1 = Space of 1-forms,

Λ2(R3) = Λ2 = Space of 2-forms,

Λ3(R3) = Λ3 = Space of 2-forms,

There are no 4-forms in R3 because that would require 4 wedges and two of
the them would necessarily be repeated. The key to consolidation is a simple
extension of the notion of differential. Recall the definition of differential of a
0-form, which we may think as a map from 0-forms to 1-forms.

df = fx dx+ fy dy + fz dz = ∇f · dr.

We can write the fundamental theorem of line integrals (essentially the fun-
damental theorem of calculus) on terms of forms. Let C be a curve with end
points at A and B. We say that the boundary δC of the curve is the set of
points {A,B}. If F = ∇f , then F · dr = df , and we have

W = f |δC =

∫
C

df. (5.35)

Just as reminder, this says that for a conservative vector field, the work line
integral is path independent.

We now define define the extended differential

d : Λk −→ Λk+1,

d(f ω) = df ∧ ω, where, ω ∈ Λk (5.36)

We assume that d satisfies the usual linearity properties

d(k ω) = k dω, for k = constant,

d(ω1 ± ω2) = dω1 ± dω2 where α, β ∈ Λk.
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Example Let ω = x2y3 dx+ 3x dy. Then

dω = d(x2y3) ∧ dx+ d(3x) ∧ dy,
= (2xy3 dx+ 3x2y3 dy) ∧ dx+ 3 dx ∧ dy,
= 2xy3 dx ∧ dy + 3 dx ∧ dy,
= (2xy3 + 3) dx ∧ dy.

Easy. If one can compute the differential of a function and one knows the
antisymmetry rule for the multiplication of dx, dy and dz, one can compute
the differential of any k-form. Specifically, let us compute the differential,

ω = F · dr = P dx+Qdy +Rdz,

dω = dP ∧ dx+ dQ ∧ dy + +dR ∧ dz,
= (Px dx+ Py dy + Pz dz) ∧ dx+

(Qx dx+Qy dy +Qz dz) ∧ dy+

(Rx dx+Ry dy +Rz dz) ∧ dz.

Now we pick out the coefficients of the differential of surface 2-forms (dy ∧ dz),
(dx∧dz) and (dx∧dy), respectively. In doing so we need to be careful that the
order of the basis wedge products are as stated. We get

dω = (Ry −Qz) dy ∧ dz − (Pz −Rx) dx ∧ dz + (Qx − Py) dx ∧ dy. (5.37)

We recognize the the coefficients are precisely the components of ∇ × F. In
terms of the dot product, dω is the integrand of Stokes’ theorem 5.19. Hence,
we have just shown that if C = δR is a simple closed curve that is the boundary
of some surface R, Stokes’ theorem can be rewritten as∮

δR

ω =

∫∫
R

dω. (5.38)

Finally, we compute the differential of the flux 2-form 5.26. This one is actually
much easier since up to permutations, there is one one 3-form, so we only have
to pick out the terms that have distinct variables in the wedges.

ω = F · dS = P dy ∧ dz −Qdx ∧ dz +Rdx ∧ dz,
dω = dP ∧ dy ∧ dz − dQ ∧ dx ∧ dz + dR ∧ dx ∧ dy,

= Px dx ∧ dy ∧ dz −Qy dy ∧ dx ∧ dz +Rz dz ∧ dx ∧ dz,
= (Px +Qy +Rz, dx ∧ dy ∧ dz,
= ∇ · F dV.

Thus, in terms of forms, if a simple close surface S is the boundary of some
region S = δR, Gauss’s divergence theorem reads∫∫

δR

ω =

∫∫∫
R

dω. (5.39)
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We see that the gradient, curl and divergence are three manifestation of the
same differential operator d depending on the order of the differential form on
which it acts. We can replace the Del operator diagram by 5.7

Λ0(R3)
d−−−−→

Grad
Λ1(R3)

d−−−−→
Curl

Λ2(R3)
d−−−−→

Divf
Λ3(R3). (5.40)

If one applies d twice to a form, the answer is 0. That is, theorem 5.4.1 can be
summarized as follows

(d ◦ d)ω = 0 (5.41)

At the end there is really one theorem - Stokes’ theorem, which we symbolically
write as ∫

δR

ω =

∫∫
R

dω. (5.42)

where the integral of dω is a single, double or triple integral, depending on the
dimension of the space.



5.10. SUMMARY OF VECTOR INTEGRALS 193

5.10 Summary of Vector Integrals

5.10.1 Hints on Line Integrals

Fig. 5.2: Line Integrals Flow Chart

The computation of a work line integrals is facilitated if the answer is yes
to either of two binary questions: a) Is the curl of the vector field zero? b) Is
the curve closed? As a result, there are essentially four possible scenarios.

� Case 1. The curl is not zero and the curve is not closed. The integral
is done directly from the definition W =

∫
C

F(r(t))ṙ dt. We call this the
“parametrize and integrate method”. It is presumed that the student
has mastered the equations of the basic parametric curves if not given
explicitly in the problem. This is the kind of problem students would call
“plug’n-chug”. The integrals are reduced to integral of a single variable

� Case 2. The curl is not zero but the curve is closed. Apply Stoke’s
theorem. Chose simplest surface with same boundary. The differential of
surface can be computed by two general but equivalent methods:

a) dS = dy dz i − dx dz j + dx dy k. Best method if the curve is a plane
curve and parallel to a coordinate plane. Remember that the products or
differentials are really wedges.

b) dS = (ru × rv) du dv.

� Case 3. The curl is zero but the curve is not closed. The vector field
is conservative, so the integral os path independent. Find a potential
F = ∇f . Then the work integral is f(B)− f(A), where A and B are the
beginning and end points of the curve respectively.

� Case 4. The curl is zero and the curve is closed. The work integral is
zero.
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5.10.2 Hints on Surface Integrals

Fig. 5.3: Surface Integrals Flow Chart

The computation of a flux surface integrals is facilitated if the answer is
yes to either of two binary questions: a) Is the divergence of the vector field
zero? b) Is the surface closed? As a result, there are essentially four possible
scenarios.

� Case 1. The divergence is not zero and the surface is not closed. The
integral is done directly from the definition W =

∫
C

F · dS. We call this
the “parametrize and integrate method”. It is presumed that the student
is well acquainted with parametric equations of surfaces if not given ex-
plicitly in the problem. If the surface is of the form z = f(x, y) one can
parametrize by r = 〈x, y, f(x, y)〉 This is the also kind of problem students
would call “plug’n-chug”. The differential of surface can be computed by
two general but equivalent methods:

a) dS = dy dz i − dx dz j + dx dy k. Best method if the curve is a plane
curve and parallel to a coordinate plane. Remember that the products or
differentials are really wedges.

b) dS = (ru × rv) du dv.

The integrals are reduced to a double integral

� Case 2. The divergence is not zero but the surface is closed. Apply
Gauss’s theorem.

� Case 3. The divergence is zero but the surface is not closed. The vector
field is incompressible, so the integral depends only on the boundary. The
analogous idea of finding vector a potential F = ∇×A is not practical. If
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the integrand is already of he form ∇×A, then this is a Stokes’ theorem
problem

� Case 4. The divergence is zero and the surface is closed. The work integral
is zero.
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