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Preface

These notes were developed as part of a course on differential geometry which
the author has taught for many years at UNCW. The first five chapters plus
chapter six, constitute the foundation of the three-hour course. The course is
cross-listed at the level of seniors and first year graduate students. In addition to
applied mathematics majors, the class usually attracts a good cohort of double
majors in mathematics and physics. Material from other chapters have inspired
a number of honors and master level theses. This book should be accessible to
students who have completed traditional training in advanced calculus, linear
algebra, and differential equations. Students who master the entirety of this
material will have gained insight on very powerful tools in mathematical physics
at the graduate level.

There are many excellent texts in differential geometry but very few have
an early introduction to differential forms and their applications to physics. It
is the purpose of these notes to:

1. Provide a bridge between the very practical formulation of classical differ-
ential geometry created by early masters of the late 1800’s, and the more
elegant but less intuitive modern formulation in terms of manifolds, bun-
dles and differential forms. In particular, the central topic of curvature is
presented in three different but equivalent formalisms.

2. Present the subject of differential geometry with an emphasis on making
the material readable to physicists who may have encountered some of
the concepts in the context of classical or quantum mechanics, but wish
to strengthen the rigor of the mathematics. A source of inspiration for
this goal is rooted in the shock to this author as a graduate student in
the 70’s at Berkeley, at observing the gasping failure of communications
between the particle physicists working on gauge theories and differential
geometers working on connection on fiber bundles. They seemed to be
completely unaware at the time, that they were working on the same
subject.

3. Make the material as readable as possible for those who stand at the
boundary between theoretical physics and applied mathematics. For this
reason, it will be occasionally necessary to sacrifice some mathematical
rigor or depth of physics, in favor of ease of comprehension.

viii



4. Provide the formal geometrical background for the mathematical theory
of general relativity.

5. Introduce examples of other applications of differential geometry to physics
that might not appear in traditional texts used in courses for mathematics
students. For example, several students at UNCW have written masters’
theses in the theory of solitons, but usually they have followed the path
of Lie symmetries in the style of Olver. We hope that the elegance of
Bäcklund transforms will attract students to a geometric approach to the
subject. The book is also a stepping stone to other interconnected ar-
eas of mathematics such as representation theory, complex variables and
algebraic topology.

G. Lugo (2021)

The main change in this second edition is the inclusion of exercises and
projects suitable for a course using this textbook. The edition includes correc-
tions of errors and misprints that seem to have a way of infiltrating on the first
pass of most mathematics books. A list of known errors and misprints is found
at the course web site,

http://people.uncw.edu/lugo/courses/DiffGeom/index.htm.
The author is grateful to any readers pointing out other needed corrections and
welcomes suggestions for revisions that would improve the content.

G. Lugo (2022)



Chapter 1

Vectors and Curves

1.1 Tangent Vectors

1.1.1 Definition Euclidean n-space Rn is defined as the set of ordered n-
tuples p(p1, . . . , pn), where pi ∈ R, for i = 1, . . . , n. We may associate a position
vector p = (p1, . . . , pn) with any given point p in n-space. Given any two n-
tuples p = (p1, . . . , pn), q = (q1, . . . , qn) and any real number c, we define two
operations:

p + q = (p1 + q1, . . . , pn + qn), (1.1)

cp = (c p1, . . . , c pn).

These two operations of vector sum and multiplication by a scalar satisfy all
the 8 properties needed to give the set V = Rn a natural structure of a vector
space. It is common to use the same notation Rn for the space of n-tuples and
for the vector space of position vectors. Technically, we should write p ∈ Rn

when we think of Rn as a metric space and p ∈ Rn when we think of it as
vector space, but as most authors, we will freely abuse the notation. 1

1.1.2 Definition Let xi be the real valued functions in Rn such that

xi(p) = pi

for any point p = (p1, . . . , pn). The functions xi are then called the natural
coordinate functions. When convenient, we revert to the usual names for the
coordinates, x1 = x, x2 = y and x3 = z in R3. A small awkwardness might

1In these notes we will use the following index conventions:

� In Rn, indices such as i, j, k, l,m, n, run from 1 to n.

� In space-time, indices such as µ, ν, ρ, σ, run from 0 to 3.

� On surfaces in R3, indices such as α, β, γ, δ, run from 1 to 2.

� Spinor indices such as A,B, Ȧ, Ḃ run from 1 to 2.

1



2 CHAPTER 1. VECTORS AND CURVES

occur in the transition to modern notation. In classical vector calculus, a point
in Rn is often denoted by x, in which case, we pick up the coordinates with the
slot projection functions ui : Rn → R defined by

ui(x) = xi.

1.1.3 Definition A real valued function in Rn is of class Cr if all the partial
derivatives of the function up to order r exist and are continuous. The space
of infinitely differentiable (smooth) functions will be denoted by C∞(Rn) or
F (Rn).

1.1.4 Definition Let V and V ′ be finite dimensional vector spaces such as
V = Rk and V ′ = Rn, and let L(V, V ′) be the space of linear transformations
from V to V ′. The set of linear functionals L(V,R) is called the dual vector
space V ∗. This space has the same dimension as V .

In calculus, vectors are usually regarded as arrows characterized by a direc-
tion and a length. Thus, vectors are considered as independent of their location
in space. Because of physical and mathematical reasons, it is advantageous to
introduce a notion of vectors that does depend on location. For example, if the
vector is to represent a force acting on a rigid body, then the resulting equations
of motion will obviously depend on the point at which the force is applied. In
later chapters, we will consider vectors on curved spaces; in these cases, the
positions of the vectors are crucial. For instance, a unit vector pointing north
at the earth’s equator is not at all the same as a unit vector pointing north
at the tropic of Capricorn. This example should help motivate the following
definition.

1.1.5 Definition A tangent vector Xp in Rn, is an ordered pair {x,p}. We
may regard x as an ordinary advanced calculus “arrow-vector” and p is the
position vector of the foot of the arrow.

The collection of all tangent vectors at a point p ∈ Rn is called the tangent
space at p and will be denoted by Tp(R

n). Given two tangent vectors Xp, Yp
and a constant c, we can define new tangent vectors at p by (X+Y )p=Xp+Yp
and (cX)p = cXp. With this definition, it is clear that for each point p, the
corresponding tangent space Tp(R

n) at that point has the structure of a vector
space. On the other hand, there is no natural way to add two tangent vectors
at different points.

The set T (Rn) (or simply TRn) consisting of the union of all tangent spaces
at all points in Rn is called the tangent bundle. This object is not a vector space,
but as we will see later it has much more structure than just a set.

1.1.6 Definition A vector field X in U ⊂ Rn is a section of the tangent
bundle, that is, a smooth function from U to T (U). The space of sections
Γ(T (U) is also denoted by X (U).

The difference between a tangent vector and a vector field is that in the
latter case, the coefficients vi of x are smooth functions of xi. Since in general
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Fig. 1.1: Tangent Bundle

there are not enough dimensions to depict a tangent bundle and vector fields
as sections thereof, we use abstract diagrams such as shown Figure 1.1. In such
a picture, the base space M (in this case M = Rn) is compressed into the
continuum at the bottom of the picture in which several points p1, . . . ,pk are
shown. To each such point one attaches a tangent space. Here, the tangent
spaces are just copies of Rn shown as vertical “fibers” in the diagram. The
vector component xp of a tangent vector at the point p is depicted as an arrow
embedded in the fiber. The union of all such fibers constitutes the tangent
bundle TM = TRn. A section of the bundle amounts to assigning a tangent
vector to every point in the base. It is required that such assignment of vectors
is done in a smooth way so that there are no major “changes” of the vector
field between nearby points.

Fig. 1.2: Vector Field

Given any two vector fields X and Y and any
smooth function f , we can define new vector fields
X + Y and fX by

(X + Y )p = Xp + Yp (1.2)

(fX)p = fXp,

so that X (U) has the structure of a vector space
over R. The subscript notation Xp indicating the
location of a tangent vector is sometimes cum-
bersome, but necessary to distinguish them from
vector fields.

Vector fields are essential objects in physical
applications. If we consider the flow of a fluid in
a region, the velocity vector field represents the
speed and direction of the flow of the fluid at that point. Other examples of
vector fields in classical physics are the electric, magnetic, and gravitational
fields. The vector field in figure 1.2 represents a magnetic field around an
electrical wire pointing out of the page.

1.1.7 Definition Let Xp = {x,p} be a tangent vector in an open neighbor-
hood U of a point p ∈ Rn and let f be a C∞ function in U . The directional
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derivative of f at the point p, in the direction of x, is defined by

Xp(f) = ∇f(p) · x, (1.3)

where ∇f(p) is the gradient of the function f at the point p. The notation

Xp(f) ≡ ∇Xpf,

is also commonly used. This notation emphasizes that, in differential geometry,
we may think of a tangent vector at a point as an operator on the space of
smooth functions in a neighborhood of the point. The operator assigns to a
function f , the directional derivative of that function in the direction of the
vector. Here we need not assume as in calculus that the direction vectors have
unit length.

It is easy to generalize the notion of directional derivatives to vector fields
by defining

X(f) ≡ ∇Xf = ∇f · x, (1.4)

where the function f and the components of x depend smoothly on the points
of Rn.

The tangent space at a point p in Rn can be envisioned as another copy of
Rn superimposed at the point p. Thus, at a point p in R2, the tangent space
consist of the point p and a copy of the vector space R2 attached as a “tangent
plane” at the point p. Since the base space is a flat 2-dimensional continuum,
the tangent plane for each point appears indistinguishable from the base space
as in figure 1.2.

Later we will define the tangent space for a curved continuum such as a
surface in R3 as shown in figure 1.3. In this case, the tangent space at a point
p consists of the vector space of all vectors actually tangent to the surface at
the given point.

Fig. 1.3: Tangent vectors Xp, Yp on a surface in R3.

1.1.8 Proposition If f, g ∈ F (Rn), a, b ∈ R, and X ∈ X (Rn) is a vector
field, then

X(af + bg) = aX(f) + bX(g), (1.5)

X(fg) = fX(g) + gX(f).
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1.1.9 Remark The space of smooth functions is a ring, ignoring a small
technicality with domains. An operator such as a vector field with the properties
above, is called a linear derivation on F (Rn).
Proof First, let us develop an mathematical expression for tangent vectors and
vector fields that will facilitate computation.
Let p ∈ U be a point and let xi be the coordinate functions in U . Suppose that
Xp = {x,p}, where the components of the Euclidean vector x are (v1, . . . , vn).
Then, for any function f , the tangent vector Xp operates on f according to the
formula

Xp(f) =

n∑
i=1

vi
(
∂f

∂xi

)
(p). (1.6)

It is therefore natural to identify the tangent vector Xp with the differential
operator

Xp =

n∑
i=1

vi
(

∂

∂xi

)
p

(1.7)

Xp = v1
(

∂

∂x1

)
p

+ · · ·+ vn
(

∂

∂xn

)
p

.

Notation: We will be using Einstein’s convention to suppress the summation
symbol whenever an expression contains a repeated index. Thus, for example,
the equation above could be simply written as

Xp = vi
(

∂

∂xi

)
p

. (1.8)

This equation implies that the action of the vector Xp on the coordinate func-
tions xi yields the components vi of the vector. In elementary treatments,
vectors are often identified with the components of the vector, and this may
cause some confusion.
The operators

{e1, . . . , ek}|p =

{(
∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

}
form a basis for the tangent space Tp(R

n) at the point p, and any tangent vector
can be written as a linear combination of these basis vectors. The quantities
vi are called the contravariant components of the tangent vector. Thus, for
example, the Euclidean vector in R3

x = 3i + 4j− 3k

located at a point p, would correspond to the tangent vector

Xp = 3

(
∂

∂x

)
p

+ 4

(
∂

∂y

)
p

− 3

(
∂

∂z

)
p

.
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Let X = vi
∂

∂xi
be an arbitrary vector field and let f and g be real-valued

functions. Then

X(af + bg) = vi
∂

∂xi
(af + bg)

= vi
∂

∂xi
(af) + vi

∂

∂xi
(bg)

= avi
∂f

∂xi
+ bvi

∂g

∂xi

= aX(f) + bX(g).

Similarly,

X(fg) = vi
∂

∂xi
(fg)

= vif
∂

∂xi
(g) + vig

∂

∂xi
(f)

= fvi
∂g

∂xi
+ gvi

∂f

∂xi

= fX(g) + gX(f).

To re-emphasize, any quantity in Euclidean space which satisfies relations 1.5
is a called a linear derivation on the space of smooth functions. The word linear
here is used in the usual sense of a linear operator in linear algebra, and the
word derivation means that the operator satisfies Leibnitz’ rule.

The proof of the following proposition is slightly beyond the scope of this
course, but the proposition is important because it characterizes vector fields
in a coordinate-independent manner.

1.1.10 Proposition Any linear derivation on F (Rn) is a vector field.
This result allows us to identify vector fields with linear derivations. This

step is a big departure from the usual concept of a “calculus” vector. To a
differential geometer, a vector is a linear operator whose inputs are functions
and whose output are functions that at each point represent the directional
derivative in the direction of the Euclidean vector.

1.1.11 Example Given the point p(1, 1), the Euclidean vector x = (3, 4),
and the function f(x, y) = x2 + y2, we associate x with the tangent vector

Xp = 3
∂

∂x
+ 4

∂

∂y
.

Then,

Xp(f) = 3

(
∂f

∂x

)
p

+ 4

(
∂f

∂y

)
p

,

= 3(2x)|p + 4(2y)|p,
= 3(2) + 4(2) = 14.
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1.1.12 Example Let f(x, y, z) = xy2z3 and x = (3x, 2y, z). Then

X(f) = 3x

(
∂f

∂x

)
+ 2y

(
∂f

∂y

)
+ z

(
∂f

∂z

)
= 3x(y2z3) + 2y(2xyz3) + z(3xy2z2),

= 3xy2z3 + 4xy2z3 + 3xy2z3 = 10xy2z3.

1.1.13 Definition Let X be a vector field in Rn and p be a point. A curve
α(t) with α(0) = p is called an integral curve of X if α′(0) = Xp, and, whenever
α(t) is the domain of the vector field, α′(t) = Xα(t).

In elementary calculus and differential equations, the families of integral
curves of a vector field are called the streamlines, suggesting the trajectories
of a fluid with velocity vector X. In figure 1.2, the integral curves would be
circles that fit neatly along the flow of the vector field. In local coordinates,
the expression defining integral curves of X constitutes a system of first order
differential equations, so the existence and uniqueness of solutions apply locally.
We will treat this in more detail in subsection ??

1.2 Differentiable Maps

1.2.1 Definition Let F : Rn → Rm be a vector function defined by coor-
dinate entries F (p) = (f1(p), f2(p), . . . fm(p)). The vector function is called
a mapping if the coordinate functions are all differentiable. If the coordinate
functions are C∞, F is called a smooth mapping. If (x1, x2, . . . xn) are local
coordinates in Rn and (y1, y2, . . . ym) local coordinates in Rm, a map y = F (x)
is represented in advanced calculus by m functions of n variables

yj = f j(xi), i = 1 . . . n, j = 1 . . .m. (1.9)

A map F : Rn → Rm is differentiable at a point p ∈ Rn if there exists a linear
transformation DF (p) : Rn → Rm such that

lim
h→0

|F (p + h)− F (p)−DF (p)(h)|
|h|

= 0 (1.10)

The linear transformation DF (p)is called the Jacobian. A differentiable map
that is invertible and the inverse is differentiable, is called a diffeomorphism.

Remarks

1. A differentiable mapping F : I ∈ R → Rn is what we called a curve. If
t ∈ I = [a, b], the mapping gives a parametrization x(t), as we discussed
in the previous section.

2. A differentiable mapping F : R ∈ Rn → Rn is called a coordinate trans-
formation. Thus, for example, the mapping F : (u, v) ∈ R2 → (x, y) ∈
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R2, given by functions x = x(u, v), y = y(u, v), would constitute a change
of coordinates from (u, v) to (x, y). The most familiar case is the polar
coordinates transformation x = r cos θ, y = r sin θ.

3. A differentiable mapping F : R ∈ R2 → R3 is what in calculus we
called a parametric surface. Typically, one assumes that R is a simple
closed region, such as a rectangle. If one denotes the coordinates in R2

by (u, v) ∈ R, and x ∈ R3, the parametrization is written as x(u, v) =
(x(u, v), y(u, v), z(u, v)). The treatment of surfaces in R3 is presented in
chapter 4. If R3 is replaced by Rn, the mapping locally represents a
2-dimensional surface in a space of n dimensions.

For each point p ∈ Rn, we say that the Jacobian induces a linear trans-
formation F∗ from the tangent space TpR

n to the tangent space TF (p)R
m. In

differential geometry we this Jacobian map is also called the push-forward. If
we let X be a tangent vector in Rn, then the tangent vector F∗X in Rm is
defined by

F∗X(f) = X(f ◦ F ), (1.11)

where f ∈ F (Rm). (See figure 1.4)

Fig. 1.4: Jacobian Map.

As shown in the diagram, F∗X(f) is evaluated at F (p) whereas X is evalu-
ated at p. So, to be precise, equation 1.11 should really be written as

F∗X(f)(F (p)) = X(f ◦ F )(p), (1.12)

F∗X(f) ◦ F = X(f ◦ F ), (1.13)

As we have learned from linear algebra, to find a matrix representation of a
linear map in a particular basis, one applies the map to the basis vectors. If
we denote by { ∂

∂xi } the basis for the tangent space at a point p ∈ Rn and by

{ ∂
∂yj } the basis for the tangent space at the corresponding point F (p) ∈ Rm

with coordinates given by yj = f j(xi), the push-forward definition reads,

F∗(
∂

∂xi
)(f) =

∂

∂xi
(f ◦ F ),

=
∂f

∂yj
∂yj

∂xi
,

F∗(
∂

∂xi
) =

∂yj

∂xi
∂

∂yj
.
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In other words, the matrix representation of F∗ in standard basis is in fact the
Jacobian matrix. In classical notation, we simply write the Jacobian map in
the familiar form,

∂

∂xi
=
∂yj

∂xi
∂

∂yj
. (1.14)

1.2.2 Theorem If F : Rn → Rm and G : Rm → Rp are mappings, then
(G ◦ F )∗ = G∗ ◦ F∗.
Proof Let X ∈ Tp(R)n, and f be a smooth function f : Rp → R. Then,

(G ◦ F )∗(X)(f) = X(f ◦ (G ◦ F ),

= X((f ◦G) ◦ F ),

= F∗(X)(f ◦G),

= G∗(F∗(X)(f)),

= (G∗ ◦ F∗)(X)(f).

1.2.3 Inverse Function Theorem. When m = n, mappings are called
change of coordinates. In the terminology of tangent spaces, the classical in-
verse function theorem states that if the Jacobian map F∗ is a vector space
isomorphism at a point, then there exists a neighborhood of the point in which
F is a diffeomorphism.

1.2.4 Remarks

1. Equation 1.14 shows that under change of coordinates, basis tangent vec-
tors and by linearity all tangent vectors transform by multiplication by
the matrix representation of the Jacobian. This is the source of the almost
tautological definition in physics, that a contravariant tensor of rank one,
is one that transforms like a contravariant tensor of rank one.

2. Many authors use the notation dF to denote the push-forward map F∗.

3. If F : Rn → Rm and G : Rm → Rp are mappings, we leave it as an
exercise for the reader to verify that the formula (G ◦ F )∗ = G∗ ◦ F∗
for the composition of linear transformations corresponds to the classical
chain rule.

4. As we will see later, the concept of the push-forward extends to manifold
mappings F : M → N .
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1.3 Curves in R3

1.3.1 Parametric Curves

1.3.1 Definition A curve α(t) in R3 is a C∞ map from an interval I ⊂
R into R3. The curve assigns to each value of a parameter t ∈ R, a point
(α1(t), α2(t), α3(t)) ∈ R3.

I ⊂ R
α7−→ R3

t 7−→ α(t) = (α1(t), α2(t), α3(t))

One may think of the parameter t as representing time, and the curve α as
representing the trajectory of a moving point particle as a function of time.
When convenient, we also use classical notation for the position vector

x(t) = (x1(t), x2(t), x3(t)), (1.15)

which is more prevalent in vector calculus and elementary physics textbooks.
Of course, what this notation really means is

xi(t) = (ui ◦ α)(t), (1.16)

where ui are the coordinate slot functions in an open set in R3

1.3.2 Example Let

α(t) = (a1t+ b1, a2t+ b2, a3t+ b3). (1.17)

This equation represents a straight line passing through the point p = (b1, b2, b3),
in the direction of the vector v = (a1, a2, a3).

1.3.3 Example Let

α(t) = (a cosωt, a sinωt, bt). (1.18)

This curve is called a circular helix. Geometrically, we may view the curve as the
path described by the hypotenuse of a triangle with slope b, which is wrapped
around a circular cylinder of radius a. The projection of the helix onto the
xy-plane is a circle and the curve rises at a constant rate in the z-direction
(See Figure 1.5a). Similarly, the equation α(t) = (a coshωt, a sinhωt, bt) is
called a hyperbolic “helix.” It represents the graph of curve that wraps around
a hyperbolic cylinder rising at a constant rate.

1.3.4 Example Let

α(t) = (a(1 + cos t), a sin t, 2a sin(t/2)). (1.19)

This curve is called the Temple of Viviani. Geometrically, this is the curve
of intersection of a sphere x2 + y2 + z2 = 4a2 of radius 2a, and the cylinder



1.3. CURVES IN R3 11

Fig. 1.5: a) Circular Helix. b) Temple of Viviani

x2 + y2 = 2ax of radius a, with a generator tangent to the diameter of the
sphere along the z-axis (See Figure 1.5b).

The Temple of Viviani is of historical interest in the development of calculus.
The problem was posed anonymously by Viviani to Leibnitz, to determine on
the surface of a semi-sphere, four identical windows, in such a way that the
remaining surface be equivalent to a square. It appears as if Viviani was chal-
lenging the effectiveness of the new methods of calculus against the power of
traditional geometry.

It is said that Leibnitz understood the nature
of the challenge and solved the problem in one
day. Not knowing the proposer of the enigma,
he sent the solution to his Serenity Ferdinando,
as he guessed that the challenge must have orig-
inated from prominent Italian mathematicians.
Upon receipt of the solution by Leibnitz, Viviani
posted a mechanical solution without proof. He
described it as using a boring device to remove
from a semisphere, the surface area cut by two
cylinders with half the radius, and which are tan-
gential to a diameter of the base. Upon realizing this could not physically be
rendered as a temple since the roof surface would rest on only four points,
Viviani no longer spoke of a temple but referred to the shape as a “sail.”

1.3.5 Definition Let α : I → R3 be a curve in R3 given in components as
above α = (α1, α2, α3). For each point t ∈ I we define the velocity or tangent
vector of the curve by

α′(t) =

(
dα1

dt
,
dα2

dt
,
dα3

dt

)
α(t)

. (1.20)

At each point of the curve, the velocity vector is tangent to the curve and thus
the velocity constitutes a vector field representing the velocity flow along that
curve. In a similar manner the second derivative α′′(t) is a vector field called
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the acceleration along the curve. The length v = ‖α′(t)‖ of the velocity vector
is called the speed of the curve. The classical components of the velocity vector
are simply given by

v(t) = ẋ ≡ dx

dt
=

(
dx1

dt
,
dx2

dt
,
dx3

dt

)
, (1.21)

and the speed is

v =

√(
dx1

dt

)2

+

(
dx2

dt

)2

+

(
dx3

dt

)2

. (1.22)

The notation T (t) or Tα(t) is also used for the tangent vector α′(t), but for now,
we reserve T (t) for the unit tangent vector to be introduced in section 1.3.3 on
Frenet frames.

As is well known, the vector form of the equa-
tion of the line 1.17 can be written as x(t) =
p + tv, which is consistent with the Euclidean
axiom stating that given a point and a direction,
there is only one line passing through that point
in that direction. In this case, the velocity ẋ = v
is constant and hence the acceleration ẍ = 0.
This is as one would expect from Newton’s law
of inertia.

The differential dx of the position vector given by

dx = (dx1, dx2, dx3) =

(
dx1

dt
,
dx2

dt
,
dx3

dt

)
dt (1.23)

which appears in line integrals in advanced calculus is some sort of an infinitesi-
mal tangent vector. The norm ‖dx‖ of this infinitesimal tangent vector is called
the differential of arc length ds. Clearly, we have

ds = ‖dx‖ = v dt. (1.24)

If one identifies the parameter t as time in some given units, what this says
is that for a particle moving along a curve, the speed is the rate of change of
the arc length with respect to time. This is intuitively exactly what one would
expect.

The notion of infinitesimal objects needs to be treated in a more rigorous
mathematical setting. At the same time, we must not discard the great intuitive
value of this notion as envisioned by the masters who invented calculus, even
at the risk of some possible confusion! Thus, whereas in the more strict sense
of modern differential geometry, the velocity is a tangent vector and hence it
is a differential operator on the space of functions, the quantity dx can be
viewed as a traditional vector which, at the infinitesimal level, represents a
linear approximation to the curve and points tangentially in the direction of v.
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1.3.2 Velocity

For any smooth function f : R3 → R , we formally define the action of the
velocity vector field α′(t) as a linear derivation by the formula

α′(t)(f) |α(t)=
d

dt
(f ◦ α) |t . (1.25)

The modern notation is more precise, since it takes into account that the veloc-
ity has a vector part as well as point of application. Given a point on the curve,
the velocity of the curve acting on a function, yields the directional derivative
of that function in the direction tangential to the curve at the point in question.
The diagram in figure 1.6 below provides a more visual interpretation of the
velocity vector formula 1.25, as a linear mapping between tangent spaces.

Fig. 1.6: Velocity Vector Operator

The map α(t) from R to R3 induces a push-forward map α∗ from the
tangent space of R to the tangent space of R3 . The image α∗(

d
dt ) in TR3 of

the tangent vector d
dt is what we call α′(t).

α∗(d/dt) = α′(t).

Since α′(t) is a tangent vector in R3, it acts on functions in R3 . The action of
α′(t) on a function f on R3 is the same as the action of d/dt on the composition
(f ◦ α). In particular, if we apply α′(t) to the coordinate functions xi, we get
the components of the tangent vector

α′(t)(xi) |α(t)=
d

dt
(xi ◦ α)|t. (1.26)

To unpack the above discussion in the simplest possible terms, we associate
with the classical velocity vector v = ẋ a linear derivation α′(t) given by

α′(t) =
d

dt
(xi ◦ α)t(∂/∂x

i)α(t),

=
dx1

dt

∂

∂x1
+
dx2

dt

∂

∂x2
+
dx3

dt

∂

∂x3
. (1.27)

So, given a real valued function f in R3, the action of the velocity vector is
given by the chain rule

α′(t)(f) =
∂f

∂x1
dx1

dt
+

∂f

∂x2
dx2

dt
+

∂f

∂x3
dx3

dt
= ∇f · v.
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If α(t) is a curve in Rn with tangent vector X = α′(t), and F : Rn → Rm

is differentiable map, then F∗X is a tangent vector to the curve F ◦ α in Rm.
That is, F∗ maps tangent vectors of α to tangent vectors of F ◦ α.

1.3.6 Definition If t = t(s) is a smooth, real valued function and α(t) is a
curve in R3 , we say that the curve β(s) = α(t(s)) is a reparametrization of α.

A common reparametrization of curve is obtained by using the arc length
as the parameter. Using this reparametrization is quite natural, since we know
from basic physics that the rate of change of the arc length is what we call
speed

v =
ds

dt
= ‖α′(t)‖. (1.28)

The arc length is obtained by integrating the above formula

s =

∫
‖α′(t)‖ dt =

∫ √(
dx1

dt

)2

+

(
dx2

dt

)2

+

(
dx3

dt

)2

dt (1.29)

In practice, it is typically difficult to find an explicit arc length parametrization
of a curve since not only does one have to calculate the integral, but also one
needs to be able to find the inverse function t in terms of s. On the other hand,
from a theoretical point of view, arc length parameterizations are ideal, since
any curve so parametrized has unit speed. The proof of this fact is a simple
application of the chain rule and the inverse function theorem.

β′(s) = [α(t(s))]′

= α′(t(s))t′(s)

= α′(t(s))
1

s′(t(s))

=
α′(t(s))

‖α′(t(s))‖
,

and any vector divided by its length is a unit vector. Leibnitz notation makes
this even more self-evident

dx

ds
=

dx

dt

dt

ds
=

dx
dt
ds
dt

=
dx
dt

‖dxdt ‖

1.3.7 Example Let α(t) = (a cosωt, a sinωt, bt). Then

v(t) = (−aω sinωt, aω cosωt, b),
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s(t) =

∫ t

0

√
(−aω sinωu)2 + (aω cosωu)2 + b2 du

=

∫ t

0

√
a2ω2 + b2 du

= ct, where, c =
√
a2ω2 + b2.

The helix of unit speed is then given by

β(s) = (a cos
ωs

c
, a sin

ωs

c
, b
ωs

c
).

1.3.3 Frenet Frames

Let β(s) be a curve parametrized by arc length and let T (s) be the vector

T (s) = β′(s). (1.30)

The vector T (s) is tangential to the curve and it has unit length. Hereafter, we
will call T the unit tangent vector. Differentiating the relation

T · T = 1, (1.31)

we get

2 T · T ′ = 0, (1.32)

so we conclude that the vector T ′ is orthogonal to T . Let N be a unit vector
orthogonal to T , and let κ be the scalar such that

T ′(s) = κN(s). (1.33)

We call N the unit normal to the curve, and κ the curvature. Taking the length
of both sides of last equation, and recalling that N has unit length, we deduce
that

κ = ‖T ′(s)‖. (1.34)

It makes sense to call κ the curvature because, if T is a unit vector, then T ′(s)
is not zero only if the direction of T is changing. The rate of change of the
direction of the tangent vector is precisely what one would expect to measure
how much a curve is curving. We now introduce a third vector

B = T ×N, (1.35)

which we will call the binormal vector. The triplet of vectors (T,N,B) forms
an orthonormal set; that is,

T · T = N ·N = B ·B = 1,

T ·N = T ·B = N ·B = 0. (1.36)
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If we differentiate the relation B · B = 1, we find that B · B′ = 0, hence B′ is
orthogonal to B. Furthermore, differentiating the equation T ·B = 0, we get

B′ · T +B · T ′ = 0.

rewriting the last equation

B′ · T = −T ′ ·B = −κN ·B = 0,

we also conclude that B′ must also be orthogonal to T . This can only happen
if B′ is orthogonal to the TB-plane, so B′ must be proportional to N . In other
words, we must have

B′(s) = −τN(s), (1.37)

for some quantity τ , which we will call the torsion. The torsion is similar to
the curvature in the sense that it measures the rate of change of the binormal.
Since the binormal also has unit length, the only way one can have a non-zero
derivative is if B is changing directions. This means that if in addition B did
not change directions, the vector would truly be a constant vector, so the curve
would be a flat curve embedded into the TN -plane.

Fig. 1.7: Frenet Frame.

The quantity B′ then measures the rate of
change in the up and down direction of an ob-
server moving with the curve always facing for-
ward in the direction of the tangent vector. The
binormal B is something like the flag in the back
of sand dune buggy.

The set of basis vectors {T,N,B} is called
the Frenet frame or the repère mobile (moving
frame). The advantage of this basis over the fixed
{i, j,k} basis is that the Frenet frame is naturally
adapted to the curve. It propagates along the
curve with the tangent vector always pointing in the direction of motion, and
the normal and binormal vectors pointing in the directions in which the curve
is tending to curve. In particular, a complete description of how the curve is
curving can be obtained by calculating the rate of change of the frame in terms
of the frame itself.

1.3.8 Theorem Let β(s) be a unit speed curve with curvature κ and torsion
τ . Then

T ′ = κN
N ′ = −κT τB
B′ = −τN

. (1.38)

Proof We need only establish the equation for N ′. Differentiating the equation
N ·N = 1, we get 2N ·N ′ = 0, so N ′ is orthogonal to N. Hence, N ′ must be a
linear combination of T and B.

N ′ = aT + bB.
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Taking the dot product of last equation with T and B respectively, we see that

a = N ′ · T, and b = N ′ ·B.

On the other hand, differentiating the equations N · T = 0, and N ·B = 0, we
find that

N ′ · T = −N · T ′ = −N · (κN) = −κ
N ′ ·B = −N ·B′ = −N · (−τN) = τ.

We conclude that a = −κ, b = τ , and thus

N ′ = −κT + τB.

The Frenet frame equations (1.38) can also be written in matrix form as shown
below.  T

N
B

′ =

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B

 . (1.39)

The group-theoretic significance of this matrix formulation is quite important
and we will come back to this later when we talk about general orthonormal
frames. Presently, perhaps it suffices to point out that the appearance of an
antisymmetric matrix in the Frenet equations is not at all coincidental.

The following theorem provides a computational method to calculate the
curvature and torsion directly from the equation of a given unit speed curve.

1.3.9 Proposition Let β(s) be a unit speed curve with curvature κ > 0 and
torsion τ . Then

κ = ‖β′′(s)‖

τ =
β′ · [β′′ × β′′′]

β′′ · β′′
(1.40)

Proof If β(s) is a unit speed curve, we have β′(s) = T . Then

T ′ = β′′(s) = κN,

β′′ · β′′ = (κN) · (κN),

β′′ · β′′ = κ2

κ2 = ‖β′′‖2

β′′′(s) = κ′N + κN ′

= κ′N + κ(−κT + τB)

= κ′N +−κ2T + κτB.
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β′ · [β′′ × β′′′] = T · [κN × (κ′N +−κ2T + κτB)]

= T · [κ3B + κ2τT ]

= κ2τ

τ =
β′ · [β′′ × β′′′]

κ2

=
β′ · [β′′ × β′′′]

β′′ · β′′

1.3.10 Example Consider a circle of radius r whose equation is given by

α(t) = (r cos t, r sin t, 0).

Then,

α′(t) = (−r sin t, r cos t, 0)

‖α′(t)‖ =
√

(−r sin t)2 + (r cos t)2 + 02

=

√
r2(sin2 t+ cos2 t)

= r.

Therefore, ds/dt = r and s = rt, which we recognize as the formula for the
length of an arc of circle of radius r, subtended by a central angle whose measure
is t radians. We conclude that

β(s) = (r cos
s

r
, r sin

s

r
, 0)

is a unit speed reparametrization. The curvature of the circle can now be easily
computed

T = β′(s) = (− sin
s

r
, cos

s

r
, 0),

T ′ = (−1

r
cos

s

r
,−1

r
sin

s

r
, 0),

κ = ‖β′′‖ = ‖T ′‖,

=

√
1

r2
cos2

s

r
+

1

r2
sin2 s

r
+ 02,

=

√
1

r2
(cos2

s

r
+ sin2 s

r
),

=
1

r
.

This is a very simple but important example. The fact that for a circle of radius
r the curvature is κ = 1/r could not be more intuitive. A small circle has large
curvature and a large circle has small curvature. As the radius of the circle
approaches infinity, the circle locally looks more and more like a straight line,
and the curvature approaches 0. If one were walking along a great circle on a
very large sphere (like the earth) one would be perceive the space to be locally
flat.
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Fig. 1.8: Osculating Circle

1.3.11 Proposition Let α(t) be a curve of
velocity v, acceleration a, speed v and curva-
ture κ, then

v = vT,

a =
dv

dt
T + v2κN. (1.41)

Proof Let s(t) be the arc length and let
β(s) be a unit speed reparametrization. Then
α(t) = β(s(t)) and by the chain rule

v = α′(t),

= β′(s(t))s′(t),

= vT.

a = α′′(t),

=
dv

dt
T + vT ′(s(t))s′(t),

=
dv

dt
T + v(κN)v,

=
dv

dt
T + v2κN.

Equation 1.41 is important in physics. The equation states that a particle
moving along a curve in space feels a component of acceleration along the
direction of motion whenever there is a change of speed, and a centripetal
acceleration in the direction of the normal whenever it changes direction. The
centripetal Acceleration and any point is

a = v2κ =
v2

r

where r is the radius of a circle called the osculating circle.
The osculating circle has maximal tangential contact with the curve at the

point in question. This is called contact of order 2, in the sense that the circle
passes through two nearby in the curve. The osculating circle can be envisioned
by a limiting process similar to that of the tangent to a curve in differential
calculus. Let p be point on the curve, and let q1 and q2 be two nearby points. If
the three points are not collinear, they uniquely determine a circle. The center
of this circle is located at the intersection of the perpendicular bisectors of the
segments joining two consecutive points. This circle is a “secant” approximation
to the tangent circle. As the points q1 and q2 approach the point p, the “secant”
circle approaches the osculating circle. The osculating circle, as shown in figure
1.8, always lies in the TN -plane, which by analogy is called the osculating
plane. If T ′ = 0, then κ = 0 and the osculating circle degenerates into a circle
of infinite radius, that is, a straight line. The physics interpretation of equation
1.41 is that as a particle moves along a curve, in some sense at an infinitesimal



20 CHAPTER 1. VECTORS AND CURVES

level, it is moving tangential to a circle, and hence, the centripetal acceleration
at each point coincides with the centripetal acceleration along the osculating
circle. As the points move along, the osculating circles move along with them,
changing their radii appropriately.

1.3.12 Example (Helix)

β(s) = (a cos
ωs

c
, a sin

ωs

c
,
bs

c
), where c =

√
a2ω2 + b2,

β′(s) = (−aω
c

sin
ωs

c
,
aω

c
cos

ωs

c
,
b

c
),

β′′(s) = (−aω
2

c2
cos

ωs

c
,−aω

2

c2
sin

ωs

c
, 0),

β′′′(s) = (
aω3

c3
sin

ωs

c
,−aω

3

c3
cos

ωs

c
, 0),

κ2 = β′′ · β′′,

=
a2ω4

c4
,

κ = ±aω
2

c2
.

τ =
(β′β′′β′′′)

β′′ · β′′
,

=
b

c

[
−aω

2

c2 cos ωsc −aω
2

c2 sin ωs
c ,

aω3

c2 sin ωs
c −aω

3

c2 cos ωsc

]
c4

a2ω4
,

=
b

c

a2ω5

c5
c4

a2ω4
.

Simplifying the last expression and substituting the value of c, we get

τ =
bω

a2ω2 + b2
,

κ = ± aω2

a2ω2 + b2
.

Notice that if b = 0, the helix collapses to a circle in the xy-plane. In this case,
the formulas above reduce to κ = 1/a and τ = 0. The ratio κ/τ = aω/b is
particularly simple. Any curve for which κ/τ = constant, is called a helix; the
circular helix is a special case.
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1.3.13 Example (Plane curves) Let α(t) = (x(t), y(t), 0). Then

α′ = (x′, y′, 0),

α′′ = (x′′, y′′, 0),

α′′′ = (x′′′, y′′′, 0),

κ =
‖α′ × α′′‖
‖α′‖3

,

=
| x′y′′ − y′x′′ |
(x′2 + y′2)3/2

.

τ = 0.

1.3.14 Example Let β(s) = (x(s), y(s), 0), where

x(s) =

∫ s

0

cos
t2

2c2
dt,

y(s) =

∫ s

0

sin
t2

2c2
dt. (1.42)

Then, using the fundamental theorem of calculus, we have

β′(s) = (cos
s2

2c2
, sin

s2

2c2
, 0),

Since ‖β′‖ = v = 1, the curve is of unit speed, and s is indeed the arc length.
The curvature is given by

κ = ‖x′y′′ − y′x′′‖ = (β′ · β′)1/2,

= ‖ − s

c2
sin

s2

2c2
,
s

c2
cos

s2

2c2
, 0‖,

=
s

c2
.

The functions (1.42) are the classical Fresnel integrals which we will discuss in
more detail in the next section.

In cases where the given curve α(t) is not of unit speed, the following propo-
sition provides formulas to compute the curvature and torsion in terms of α.

1.3.15 Proposition If α(t) is a regular curve in R3 , then

κ2 =
‖α′ × α′′‖2

‖α′‖6
, (1.43)

τ =
(α′α′′α′′′)

‖α′ × α′′‖2
, (1.44)

where (α′α′′α′′′) is the triple vector product [α′ × α′′] · α′′′.
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Proof

α′ = vT,

α′′ = v′T + v2κN,

α′′′ = (v2κ)N ′ + . . . ,

= v3κN ′ + . . . ,

= v3κτB + . . . .

As the computation below shows, the other terms in α′′′ are unimportant here
because α′ × α′′ is proportional to B, so all we need is the B component to
solve for τ .

α′ × α′′ = v3κ(T ×N) = v3κB,

‖α′ × α′′‖ = v3κ,

κ =
‖α′ × α′′‖

v3
.

(α′ × α′′) · α′′′ = v6κ2τ,

τ =
(α′α′′α′′′)

v6κ2
,

=
(α′α′′α′′′)

‖α′ × α′′‖2
.

1.4 Fundamental Theorem of Curves

The fundamental theorem of curves basically states that prescribing a cur-
vature and torsion as functions of some parameter s, completely determines up
to position and orientation, a curve β(s) with that given curvature and torsion.
Some geometrical insight into the significance of the curvature and torsion can
be gained by considering the Taylor series expansion of an arbitrary unit speed
curve β(s) about s = 0.

β(s) = β(0) + β′(0)s+
β′′(0)

2!
s2 +

β′′′(0)

3!
s3 + . . . (1.45)

Since we are assuming that s is an arc length parameter,

β′(0) = T (0) = T0

β′′(0) = (κN)(0) = κ0N0

β′′′(0) = (−κ2T + κ′N + κτB)(0) = −κ20T0 + κ′0N0 + κ0τ0B0

Keeping only the lowest terms in the components of T , N , and B, we get the
first order Frenet approximation to the curve

β(s)
.
= β(0) + T0s+

1

2
κ0N0s

2 +
1

6
κ0τ0B0s

3. (1.46)
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The first two terms represent the linear approximation to the curve. The first
three terms approximate the curve by a parabola which lies in the osculating
plane (TN -plane). If κ0 = 0, then locally the curve looks like a straight line.
If τ0 = 0, then locally the curve is a plane curve contained on the osculating
plane. In this sense, the curvature measures the deviation of the curve from
a straight line and the torsion (also called the second curvature) measures the
deviation of the curve from a plane curve. As shown in figure 1.9 a non-planar
space curve locally looks like a wire that has first been bent into a parabolic
shape in the TN and twisted into a cubic along the B axis. So suppose that p

Fig. 1.9: Cubic Approximation to a Curve

is an arbitrary point on a curve β(s) parametrized by arc length. We position
the curve so that p is at the origin so that β(0) = 0 coincides with the point
p. We chose the orthonormal basis vectors {e1, e2, e3} in R3 to coincide with
the Frenet Frame T0, N0, B0 at that point. then, the equation (1.46) provides
a canonical representation of the curve near that point. This then constitutes
a proof of the fundamental theorem of curves under the assumption the curve,
curvature and torsion are analytic. (One could also treat the Frenet formulas
as a system of differential equations and apply the conditions of existence and
uniqueness of solutions for such systems.)

1.4.1 Proposition A curve with κ = 0 is part of a straight line.

If κ = 0 then β(s) = β(0) + sT0.

1.4.2 Proposition A curve α(t) with τ = 0 is a plane curve.

Proof If τ = 0, then (α′α′′α′′′) = 0. This means that the three vectors α′, α′′,
and α′′′ are linearly dependent and hence there exist functions a1(s),a2(s) and
a3(s) such that

a3α
′′′ + a2α

′′ + a1α
′ = 0.
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This linear homogeneous equation will have a solution of the form

α = c1α1 + c2α2 + c3, ci = constant vectors.

This curve lies in the plane

(x− c3) · n = 0, where n = c1 × c2

A consequence of the Frenet Equations is that given two curves in space C
and C∗ such that κ(s) = κ∗(s) and τ(s) = τ ∗ (s), the two curves are the same
up to their position in space. To clarify what we mean by their ”position” we
need to review some basic concepts of linear algebra leading to the notion of
isometries.

1.4.1 Isometries

1.4.3 Definition Let x and y be two column vectors in Rn and let xT

represent the transposed row vector. To keep track on whether a vector is
a row vector or a column vector, hereafter we write the components {xi} of a
column vector with the indices up and the components {xi} of a row vector with
the indices down. Similarly, if A is an n × n matrix, we write its components
as A = (aij). The standard inner product is given by matrix multiplication of
the row and column vectors

< x,y > = xTy, (1.47)

=< y,x > . (1.48)

The inner product gives Rn the structure of a normed space by defining ‖x‖ =<
x,x >1/2 and the structure of a metric space in which d(x,y) = ‖x− y‖. The
real inner product is bilinear (linear in each slot), from which it follows that

‖x± y‖2 = ‖x‖2 ± 2 < x,y > +‖y‖2. (1.49)

Thus, we have the polarization identity

< x,y >= 1
4‖x + y‖2 − 1

4‖x− y‖2. (1.50)

The Euclidean inner product satisfies the relation

< x,y >= ‖x‖ · ‖y‖ cos θ, (1.51)

where θ is the angle subtended by the two vectors.

Two vectors x and y are called orthogonal if < x,y >= 0, and a set of
basis vectors B = {e1, . . . en} is called an orthonormal basis if < ei, ej >= δij .
Given an orthonormal basis, the dual basis is the set of linear functionals {αi}
such that αi(ej) = δij . In terms of basis components, column vectors are given
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by x = xiei, row vectors by xT = xjα
j , and the inner product

< x,y > = xTy,

= (xiα
i)(yjej),

= (xiy
j)αi(ej) = (xiy

j)δij .

= xiy
i,

=
[
x1 x2... xn

] 
y1

y2

...
yn


Since | cos θ| ≤ 1, it follows from equation 1.51, a special case of the Schwarz

inequality

| < x,y > | ≤ ‖x‖ · ‖y‖. (1.52)

Let F be a linear transformation from Rn to Rn and B = {e1, . . . en} be an
orthonormal basis. Then, there exists a matrix A = [F ]B given by

A = (aij) = αi(F (ej)), (1.53)

or in terms of the inner product,

A = (aij) =< ei, F (ej) > . (1.54)

On the other hand, if A is a fixed n× n matrix, the map F defined by F (x) =
Ax is a linear transformation from Rn to Rn whose matrix representation
in the standard basis is the matrix A itself. It follows that given a linear
transformation represented by a matrix A, we have

< x, Ay > = xTAy, (1.55)

= (ATx)Ty,

=< ATx,y > . (1.56)

1.4.4 Definition A real n×n matrix A is called orthogonal if ATA = AAT =
I. The linear transformation represented by A is called an orthogonal transfor-
mation. Equivalently, the transformation represented by A is orthogonal if

< x, Ay >=< A−1x,y > . (1.57)

Thus, real orthogonal transformations are represented by symmetric matrices
(Hermitian in the complex case) and the condition ATA = I implies that
det(A) = ±1.

1.4.5 Theorem If A is an orthogonal matrix, then the transformation de-
termined by A preserves the inner product and the norm.
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Proof

< Ax, Ay > =< ATAx,y >,

=< x,y > .

Furthermore, setting y = x:

< Ax, Ax > =< x,x >,

‖Ax‖2 = ‖x‖2,
‖Ax‖ = ‖x‖.

As a corollary, if {ei} is an orthonormal basis, then so is {fi = Aei}. That is,
an orthogonal transformation represents a rotation if detA = 1 and a rotation
with a reflection if detA = −1.

1.4.6 Definition A mapping F : Rn → Rn called an isometry if it preserves
distances. That is, if for all x,y

d(F (x), F (y)) = d(x,y). (1.58)

1.4.7 Example (Translations) Let q be fixed vector. The map F (x) =
x + q is called a translation. It is clearly an isometry since ‖F (x) − F (y)‖ =
‖x + p− (y + p)‖ = ‖x− y‖.

1.4.8 Theorem An orthogonal transformation is an isometry.

Proof Let F be an isometry represented by an orthogonal matrix A. Then,
since the transformation is linear and preserves norms, we have:

d(F (x), F (x)) = ‖Ax−Ay‖,
= ‖A(x− y)‖,
= ‖x− y‖

The composition of two isometries is also an isometry. The inverse of a
translation by q is a translation by −q. The inverse of an orthogonal transfor-
mation represented by A is an orthogonal transformation represented by A−1.
Consequently, the set of isometries consisting of translations and orthogonal
transformations constitutes a group. Given a general isometry, we can use a
translation to insure that F (0) = 0. We now prove the following theorem.

1.4.9 Theorem If F is an isometry such that F (0) = 0, then F is an
orthogonal transformation.

Proof We need to prove that F preserves the inner product and that it is
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linear. We first show that F preserves norms. In fact

‖F (x)‖ = d(F (x),0),

= d(F (x), F (0),

= d(x,0),

= ‖x− 0‖,
= ‖x‖.

Now, using 1.49 and the norm preserving property above, we have:

d(F (x), F (y)) = d(x,y),

‖F (x)− F (y)‖2 = ‖x− y‖2,
‖F (x)‖2 − 2 < F (x), F (y) > +‖F (y)‖2 = ‖x‖2 − 2 < x,y > +‖y‖2.

< F (x), F (y) > =< x,y > .

To show F is linear, let ei be an orthonormal basis, which implies that fi = F (ei)
is also an orthonormal basis. Then

F (ax + by) =

n∑
i=1

< F (ax + by, fi > fi,

=

n∑
i=1

< F (ax + by), F (ei) > fi,

=

n∑
i=1

< (ax + by), ei > fi,

= a

n∑
i=1

< x, ei > fi + b

n∑
i=1

< y, ei > fi,

= a

n∑
i=1

< F (x), fi > fi + b

n∑
i=1

< F (y), fi > fi,

= aF (x) + bF (y).

1.4.10 Theorem If F : Rn → Rn is an isometry then

F (x) = Ax + q, (1.59)

where A is orthogonal.
Proof If F (0 = q, then F̃ = F − q is an isometry with F̃ (0) = 0 and hence

by the previous theorem F̃ is an orthogonal transformation represented by an
orthogonal matrix F̃x = Ax. It follows that F (x) = Ax + q.

We have just shown that any isometry is the composition of translation and
an orthogonal transformation. The latter is the linear part of the isometry.
The orthogonal transformation preserves the inner product, lengths, and maps
orthonormal bases to orthonormal bases.
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1.4.11 Theorem If α is a curve in Rn and β is the image of α under a
mapping F , then vectors tangent to α get mapped to tangent vectors to β.
Proof Let β = F ◦ α. The proof follows trivially from the properties of the
Jacobian map β∗ = (F ◦ α)∗ = F∗α∗ that takes tangent vectors to tangent
vectors. If in addition F is an isometry, then F∗ maps the Frenet frame of α to
the Frenet frame of β.

We now have all the ingredients to prove the following:

1.4.12 Theorem (Fundamental theorem of curves) If C and C̃ are space
curves such that κ(s) = κ̃(s), and τ(s) = τ̃(s) for all s, the curves are isometric.
Proof Given two such curves, we can perform a translation so that, for some
s = s0, the corresponding points on C and C̃ are made to coincide. Without
loss of generality, we can make this point be the origin. Now we perform an
orthogonal transformation to make the Frenet frame {T0, N0, B0} of C coincide
with the Frenet frame {T̃0, Ñ0, B̃0} of C̃. By Schwarz inequality, the inner
product of two unit vectors is also a unit vector, if and only if the vectors are
equal. With this in mind, let

L = T · T̃ +N · Ñ +B · B̃.

A simple computation using the Frenet equations shows that L′ = 0, so L =
constant. But at s = 0 the Frenet frames of the two curves coincide, so the
constant is 3 and this can only happen if for all s, T = T̃ , N = Ñ , B = B̃.
Finally, since T = T̃ , we have β′(s) = β̃′(s), so β(s) = β̃(s)+ constant. But
since β(0) = β̃(0), the constant is 0 and β(s) = β̃(s) for all s.

1.4.2 Natural Equations

The fundamental theorem of curves states that up to an isometry, that is
up to location and orientation, a curve is completely determined by the curva-
ture and torsion. However, the formulas for computing κ and τ are sufficiently
complicated that solving the Frenet system of differential equations could be a
daunting task indeed. With the invention of modern computers, obtaining and
plotting numerical solutions is a routine matter. There is a plethora of differ-
ential equations solvers available nowadays, including the solvers built-in into
Maple, Mathematica, and Matlab. For plane curves, which are characterized

Fig. 1.10: Tangent

by τ = 0, it is possible to find an integral formula for the curve coordinates in
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terms of the curvature. Given a curve parametrized by arc length, consider an
arbitrary point with position vector x = (x, y) on the curve, and let ϕ be the
angle that the tangent vector T makes with the horizontal, as shown in figure
1.10. Then, the Euclidean vector components of the unit tangent vector are
given by

dx

ds
= T = (cosϕ, sinϕ).

This means that
dx

ds
= cosϕ, and

dy

ds
= sinϕ.

From the first Frenet equation we also have

dT

ds
= (− sinϕ

dϕ

ds
, cosϕ

dϕ

ds
) = κN,

so that, ∥∥∥∥dTds
∥∥∥∥ =

dϕ

ds
= κ.

We conclude that

x(s) =

∫
cosϕ ds, y(s) =

∫
sinϕ ds,where, ϕ =

∫
κ ds. (1.60)

Equations 1.60 are called the natural equations of a plane curve. Given the
curvature κ, the equation of the curve can be obtained by “quadratures,” the
classical term for integrals.

1.4.13 Example Circle: κ = 1/R
The simplest natural equation is one where the curvature is constant. For
obvious geometrical reasons we choose this constant to be 1/R. Then, ϕ = s/R
and

x = (R sin
s

R
,−R cos

s

R
),

which is the equation of a unit speed circle of radius R.

1.4.14 Example Cornu spiral: κ = πs
This is the most basic linear natural equation, except for the scaling factor of
π which is inserted for historical conventions. Then ϕ = 1

2πs
2, and

x(s) = C(s) =

∫
cos( 1

2πs
2) ds; y(s) = S(s) =

∫
sin( 1

2πs
2) ds. (1.61)

The functions C(s) and S(s) are called Fresnel Integrals. In the standard clas-
sical function libraries of Maple and Mathematica, they are listed as FresnelC
and FresnelS respectively. The fast-increasing frequency of oscillations of the
integrands here make the computation prohibitive without the use of high-speed
computers. Graphing calculators are inadequate to render the rapid oscillations
for s ranging from 0 to 15, for example, and simple computer programs for the
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Fig. 1.11: Fresnel Diffraction

trapezoidal rule as taught in typical calculus courses, completely fall apart in
this range. The Cornu spiral is the curve x(s) = (x(s), y(s)) parametrized by
Fresnel integrals (See figure 1.11a). It is a tribute to the mathematicians of
the 1800’s that not only were they able to compute the values of the Fresnel
integrals to 4 or 5 decimal places, but they did it for the range of s from 0 to
15 as mentioned above, producing remarkably accurate renditions of the spiral.
Fresnel integrals appear in the study of diffraction. If a coherent beam of light
such as a laser beam, hits a sharp straight edge and a screen is placed behind,
there will appear on the screen a pattern of diffraction fringes. The amplitude
and intensity of the diffraction pattern can be obtained by a geometrical con-
struction involving the Fresnel integrals. First consider the function Ψ(s) = ‖x‖
that measures the distance from the origin to the points in the Cornu spiral in
the first quadrant. The square of this function is then proportional to the in-
tensity of the diffraction pattern, The graph of |Ψ(s)|2 is shown in figure 1.11b.
Translating this curve along an axis coinciding with that of the straight edge,
generates a three dimensional surface as shown from ”above” in figure 1.11c. A
color scheme was used here to depict a model of the Fresnel diffraction by the
straight edge.

1.4.15 Example Logarithmic Spiral κ = 1/(as+ b)
A logarithmic spiral is a curve in which the position vector x makes a constant
angle with the tangent vector, as shown in figure 1.12. A formula for the curve
can be found easily if one uses the calculus formula in polar coordinates

tanψ =
r

dr/dθ
. (1.62)

Here, ψ is the angle between the polar direction and the tangent. If ψ is con-
stant, then one can immediately integrate the equation to get the exponential
function below, in which k is the constant of integration

r(θ) = ke(cotψ)θ (1.63)

Derivation of formula 1.62 has fallen through the cracks in standard fat cal-
culus textbooks, at best relegated to an advanced exercise which most students
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Fig. 1.12: Logarithmic Spiral

will not do. Perhaps the reason is that the section on polar coordinates is typi-
cally covered in Calculus II, so students have not yet been exposed to the tools
of vector calculus that facilitate the otherwise messy computation. To fill-in
this gap, we present a short derivation of this neat formula. For a plane curve
in parametric polar coordinates, we have

x(t) = (r(t) cos θ(t), r(t) sin θ(t)),

ẋ = (ṙ cos θ − r sin θ θ̇, ṙ sin θ + r cos θ θ̇).

A direct computation of the dot product gives,

| < x, ẋ > |2 = (rṙ)2.

On the other hand,

| < x, ẋ > |2 = ‖x‖2 ‖ẋ‖2 cos2 ψ,

= r2(ṙ2 + r2θ̇2) cos2 ψ.

Equating the two, we find,

ṙ2 = (ṙ2 + r2θ̇2) cos2 ψ,

(sin2 ψ)ṙ2 = r2θ̇2 cos2 ψ,

(sinψ) dr = r cosψ dθ,

tanψ =
r

dr/dθ
.

We leave it to the reader to do a direct computation of the curvature. Instead,
we prove that if κ = 1/(as + b), where a and b are constant, then the curve is
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a logarithmic spiral. From the natural equations, we have,

dθ

ds
= κ =

1

as+ b
,

θ =
1

a
ln(as+ b) + C, C = const,

eaθ = B(as+ b), B = eaC = 1/A,

1

κ
= Aeaθ =

ds

dθ
,

ds = Aeas dθ.

Back to the natural equations, the x and y coordinates are obtained by inte-
grating,

x =

∫
Aeaθ cos θ dθ,

y =

∫
Aeaθ sin θ dθ.

We can avoid the integrations by parts by letting z = x+ iy = reiθ. We get

z = A

∫
eaθeiθ dθ,

= A

∫
e(a+i)θ dθ,

=
A

a+ i
e(a+i)θ,

=
A

a+ i
eaθeiθ.

Extracting the real part ‖z‖ = r, we get

r =
A√
a2 + 1

eaθ, (1.64)

which is the equation of a logarithmic spiral with a = cotψ. As shown in figure
1.12, families of concentric logarithmic spirals are ubiquitous in nature as in
flowers and pine cones, in architectural designs. The projection of a conical
helix as in figure 4.8 onto the plane through the origin, is a logarithmic spiral.
The analog of a logarithmic spiral on a sphere is called a loxodrome as depicted
in figure 4.2.

1.4.16 Example Meandering Curves: κ = sin s
A whole family of meandering curves are obtained by letting κ = A sin ks.

The meandering graph shown in picture 1.13 was obtained by numerical inte-
gration for A = 2 and “wave number” k = 1. The larger the value of A the
larger the curvature of the “throats.” If A is large enough, the “throats” will
overlap.
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Fig. 1.13: Meandering Curve

Fig. 1.14: Bimodal Meander

Using superpositions of sine functions gives rise to a beautiful family of “multi-
frequency” meanders with graphs that would challenge the most skillful cal-
ligraphists of the 1800’s. Figure 1.14 shows a rendition with two sine functions
with equal amplitude A = 1.8, and with k1 = 1, k2 = 1.2.
EXERCISES

1. Show that the space TpR
3 = {a1 ∂

∂x1 |p + a2 ∂
∂x2 |p + a3 ∂

∂x3 |p : a1, a2, a3 ∈
R}, has the structure of a vector space.

2. LetXp = −2 ∂
∂x1 |p+ ∂

∂x2 |p− ∂
∂x3 |p, and Yp = ∂

∂x2 |p+3 ∂
∂x3 |p. Express6 ∂

∂x1 |p+
5 ∂
∂x2 |p + 5 ∂

∂x3 |p as a linear combination of Xp and Yp.

3. Let Xp be the tangent vector for which X = 〈1,−2, 2〉 and p = 〈3, 4,−5〉.
Compute Xp(f), where f = x3 − y2z2 + 2.

4. Let Xp be the tangent vector for which X = 〈3,−4, 5〉 and p = 〈1,−2, 4〉.
Compute Xp(f), where f = x2y3 − yz3 + 5y.

5. Given the vector field X = xy ∂
∂x + y2 ∂

∂z and the function f = x2yz4,
compute X(f)

6. Let v be the Euclidean vector 〈v1, v2, v3〉. Starting from the alternative
definition Vp(f) = d

dt ((f(p+ tv))|t = 0, show that Vp = vi ∂
∂xi .

7. Given the vector fields V = y2 ∂
∂x − x2 ∂

∂z and W = x2 ∂
∂x − z ∂

∂y , find
functions f and g so that the vector field fV + gW can be expressed in
term of ∂

∂y and ∂
∂z only.

8. Given the vector field X = z ∂
∂x + y2z ∂

∂z and functions f = x2yz4, g =
x+ z, compute:

a) X(f) b) X(fg)
c) X(X(f)) d) gX(f)− fX(g)

9. Given vector fields X and Y and any function f , define £XY (f) =
[X,Y ](f), where [X,Y ](f) = X(Y (f))− Y (X(f)). Show that:

a)£XY (f) = [X,Y ](f) is a linear derivation.

b)([[X,Y ], Z] + [[Z,X], Y ] + [[Y, Z], X])(f) = 0
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10. Show that (Hint, first prove Schaum’s, Theorem 1.8, pg 10, )

(p× q) · (p× q) = det

(
p · p q · p
p · q q · q

)
= ‖p‖2‖q‖2 − (q · p)2

11. LetX and Y be vector fields in R3 and define LXY ≡ [X,Y ] = XY −Y X.

a) Show that LXY is a linear derivation on the space of functions and
thus it is also a vector field.

b) Show that LX [Y,Z] = [LXY,Z] + [Y,LXZ].

12. Let Pi = −i~ ∂
∂xi

i = 1..3, and consider the vector fields

L1 = x2P3 − x3P2, L2 = x3P1 − x1P3, L3 = x1P2 − x2P1.

Show that [Li, Lj ] = i~ε k
ij Lk.

13. Define σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Define [A,B] = AB −BA. Show that ~
2 [σi, σj ] = i~ε k

ij σk

14. Show that κ2 = τ2 along the curve (Struik, pg 21)

α(t) = 〈a(3t− t3), 3at2, a(3t+ t3)〉

15. Show that the natural equations for the epicycloid (Struik, pg. 26)

α(t) = 〈[(a+ b) cosφ− b cos(
a+ b

b
)φ], [(a+ b) sinφ− b sin(

a+ b

b
)φ]〉

is of the form
s2

A2
+
R2

B2
= 1,

where A and B are constant. Plot using a CAS

16. Find the cartesian equation of the curve C with natural equations Rs = a2

(a=const), (Struik, pg. 201) taking the inflection point at the origin and
the tangent at this point to be the x-axis. Plot the curve C. Plot the
curve C and the curve Γ representing the distance from the origin to a
point on the curve C (restricted to the first quadrant,) as a function of
arclength. (Note: The curve C is called a clothoid, It appears in the
theory of diffraction and in the design of roller-coaster loops)

17. Find the unit tangent vector of the curve of intersection of two surfaces
(Struik, pg. 22) F1(x, y, z) = 0 and F2(x, y, z) = 0.

18. Find the curvature and torsion of the curve (Struik, pg 21.)

x(t) = 〈a(3t− t3), 3at2, a(3t+ t3)〉.
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19. The Temple of Viviani curve is defined by the equation x(t) = 〈a(1 +
cos t), a sin t, 2a sin t/2)〉.
a) Show that the Temple of Viviani is the curve of intersection of the
sphere x2 + y2 + z2 = 2a2 and the cylinder (x− a)2 + y2 = a2.

b) Show that the curve is also the intersection of the cone (x−2a)2+y2 =
z2, and the parabolic cylinder z2 = 2a(2a − x). Use maple to graph the
curve of intersection for a = 1/2.

c) Compute the curvature κ(t) and evaluate at t = 0

20. Find the natural equation of the catenary x(t) = 〈t, a cosh(t/a)〉.

21. (Loxodromes) Let x(t) = 〈cos t cosσ, sin t cosσ,− sinσ〉, where σ = tan−1(at).

a) Show that this curve lies on a unit sphere.

b) Use maple to render this curve on the sphere, for a = π/3, π/6, π/12.

22. The tangent vectors T along a unit speed curve β(t) generate a curve
Σ : βσ(s) = T (s) (called the spherical indicatrix) on the unit sphere.
Show that the curvature κσ and torsion τσ of Σ satisfy

κ2σ =
κ2 + τ2

κ2

τσ =
τκ′ − κτ ′

κ(κ2 + τ2)
.

23. (Spherical Curve) Let β(s) be a unit speed curve with κ > 0, τ 6= 0
that lies on a sphere of radius a, and let R = 1/κ, T = 1/τ. Show that
R2 + (TR′)2 = a2

24. Use the Frenet frame formulas to show that a curve x(s) with prescribed
curvature and torsion κ and τ satisfies the differential equation:

x(iv)− (2κ
′

κ + τ ′

τ )x′′′+ (κ2 + τ2− κκ′′−2κ′2
κ2 + κ′τ ′

κτ )x′′+ κ2(κ
′

κ −
τ ′

τ )x′ = 0.

25. (Rigid Body Motion) Considered as a rigid body, the moving trihedron
moving along a curve x(s) rotates around an axis on the direction of the
vector R = τT + κB. Show that:

T′ = R×T, N′ = R×N, B′ = R×B,

26. Find the unit tangent vector of the curve of intersection of two surfaces
(Struik, pg. 22) F1(x, y, z) = 0 and F2(x, y, z) = 0.



Chapter 2

Differential Forms

2.1 One-Forms

The concept of the differential of a function is one of the most puzzling ideas
in elementary calculus. In the usual definition, the differential of a dependent
variable y = f(x) is given in terms of the differential of the independent variable
by dy = f ′(x)dx. The problem is with the quantity dx. What does “dx” mean?
What is the difference between ∆x and dx? How much “smaller” than ∆x does
dx have to be? There is no trivial resolution to this question. Most introductory
calculus texts evade the issue by treating dx as an arbitrarily small quantity
(lacking mathematical rigor) or by simply referring to dx as an infinitesimal
(a term introduced by Newton for an idea that could not otherwise be clearly
defined at the time.)

In this section we introduce linear algebraic tools that will allow us to in-
terpret the differential in terms of a linear operator.

2.1.1 Definition Let p ∈ Rn, and let Tp(R
n) be the tangent space at p.

A 1-form at p is a linear map φ from Tp(R
n) into R, in other words, a linear

functional. We recall that such a map must satisfy the following properties:

a) φ(Xp) ∈ R, ∀Xp ∈ Rn (2.1)

b) φ(aXp + bYp) = aφ(Xp) + bφ(Yp), ∀a, b ∈ R, Xp, Yp ∈ Tp(Rn)

A 1-form is a smooth assignment of a linear map φ as above for each point in
the space.

2.1.2 Definition Let f : Rn → R be a real-valued C∞ function. We define
the differential df of the function as the 1-form such that

df(X) = X(f), (2.2)

for every vector field in X in Rn. In other words, at any point p, the differential
df of a function is an operator that assigns to a tangent vector Xp the directional

36
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derivative of the function in the direction of that vector.

df(X)(p) = Xp(f) = ∇f(p) ·X(p). (2.3)

In particular, if we apply the differential of the coordinate functions xi to the
basis vector fields, we get

dxi(
∂

∂xj
) =

∂xi

∂xj
= δij . (2.4)

The set of all linear functionals on a vector space is called the dual of the
vector space. It is a standard theorem in linear algebra that the dual of a finite
dimensional vector space is also a vector space of the same dimension. Thus,
the space T ?p (Rn) of all 1-forms at p is a vector space which is the dual of
the tangent space Tp(R

n). The space T ?p (Rn) is called the cotangent space of
Rn at the point p. Equation (2.4) indicates that the set of differential forms
{(dx1)p, . . . , (dx

n)p} constitutes the basis of the cotangent space which is dual
to the standard basis {( ∂

∂x1 )p, . . . (
∂
∂xn )p} of the tangent space. The union of all

the cotangent spaces as p ranges over all points in Rn is called the cotangent
bundle T ∗(Rn).

2.1.3 Proposition Let f be a smooth function in Rn and let {x1, . . . xn} be
coordinate functions in a neighborhood U of a point p. Then, the differential
df is given locally by the expression

df =

n∑
i=1

∂f

∂xi
dxi (2.5)

=
∂f

∂xi
dxi

Proof The differential df is by definition a 1-form, so, at each point, it must be
expressible as a linear combination of the basis {(dx1)p, . . . , (dx

n)p}. Therefore,
to prove the proposition, it suffices to show that the expression 2.5 applied to
an arbitrary tangent vector coincides with definition 2.2. To see this, consider
a tangent vector Xp = vj( ∂

∂xj )p and apply the expression above as follows:

(
∂f

∂xi
dxi)p(Xp) = (

∂f

∂xi
dxi)(vj

∂

∂xj
)(p) (2.6)

= vj(
∂f

∂xi
dxi)(

∂

∂xj
)(p)

= vj(
∂f

∂xi
∂xi

∂xj
)(p)

= vj(
∂f

∂xi
δij)(p)

= (
∂f

∂xi
vi)(p)

= ∇f(p) · x(p)

= df(X)(p)
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The definition of differentials as linear functionals on the space of vector fields is
much more satisfactory than the notion of infinitesimals, since the new definition
is based on the rigorous machinery of linear algebra. If α is an arbitrary 1-form,
then locally

α = a1(x)dx1+, . . .+ an(x)dxn, (2.7)

where the coefficients ai are C∞ functions. Thus, a 1-form is a smooth section of
the cotangent bundle and we refer to it as a covariant tensor of rank 1, or simply
a covector. The collection of all 1-forms is denoted by Ω1(Rn) = T 0

1 (Rn). The
coefficients (a1, . . . , an) are called the covariant components of the covector. We
will adopt the convention to always write the covariant components of a covector
with the indices down. Physicists often refer to the covariant components of a
1-form as a covariant vector and this causes some confusion about the position
of the indices. We emphasize that not all one forms are obtained by taking the
differential of a function. If there exists a function f , such that α = df , then
the one form α is called exact. In vector calculus and elementary physics, exact
forms are important in understanding the path independence of line integrals
of conservative vector fields.

As we have already noted, the cotangent space T ∗p (Rn) of 1-forms at a point
p has a natural vector space structure. We can easily extend the operations of
addition and scalar multiplication to the space of all 1-forms by defining

(α+ β)(X) = α(X) + β(X) (2.8)

(fα)(X) = fα(X)

for all vector fields X and all smooth functions f .

2.2 Tensors

As we mentioned at the beginning of this chapter, the notion of the differen-
tial dx is not made precise in elementary treatments of calculus, so consequently,
the differential of area dxdy in R2, as well as the differential of surface area in
R3 also need to be revisited in a more rigorous setting. For this purpose, we
introduce a new type of multiplication between forms that not only captures
the essence of differentials of area and volume, but also provides a rich algebraic
and geometric structure generalizing cross products (which make sense only in
R3) to Euclidean space of any dimension.

2.2.1 Definition A map φ : X (Rn) ×X (Rn) −→ R is called a bilinear
map of vector fields, if it is linear on each slot. That is, ∀Xi, Yi ∈X (Rn), f i ∈
F (Rn), we have

φ(f1X1 + f2X2, Y1) = f1φ(X1, Y1) + f2φ(X2, Y1)

φ(X1, f
1Y1 + f2Y2) = f1φ(X1, Y1) + f2φ(X1, Y2).
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2.2.1 Tensor Products

2.2.2 Definition Let α and β be 1-forms. The tensor product of α and β is
defined as the bilinear map α⊗ β such that

(α⊗ β)(X,Y ) = α(X)β(Y ) (2.9)

for all vector fields X and Y .

Thus, for example, if α = aidx
i and β = bjdx

j , then,

(α⊗ β)(
∂

∂xk
,
∂

∂xl
) = α(

∂

∂xk
)β(

∂

∂xl
)

= (aidx
i)(

∂

∂xk
)(bjdx

j)(
∂

∂xl
)

= aiδ
i
kbjδ

j
l

= akbl.

A quantity of the form T = Tijdx
i ⊗ dxj is called a covariant tensor of rank

2, and we may think of the set {dxi ⊗ dxj} as a basis for all such tensors.
The space of covariant tensor fields of rank 2 is denoted T 0

2 (Rn). We must
caution the reader again that there is possible confusion about the location of
the indices, since physicists often refer to the components Tij as a covariant
tensor of rank two, as long is it satisfies some transformation laws.

In a similar fashion, one can define the tensor product of vectors X and Y
as the bilinear map X ⊗ Y such that

(X ⊗ Y )(f, g) = X(f)Y (g) (2.10)

for any pair of arbitrary functions f and g.

If X = ai ∂
∂xi and Y = bj ∂

∂xj , then the components of X ⊗ Y in the basis
∂
∂xi ⊗

∂
∂xj are simply given by aibj . Any bilinear map of the form

T = T ij
∂

∂xi
⊗ ∂

∂xj
(2.11)

is called a contravariant tensor of rank 2 in Rn . The notion of tensor products
can easily be generalized to higher rank, and in fact one can have tensors of
mixed ranks. For example, a tensor of contravariant rank 2 and covariant rank
1 in Rn is represented in local coordinates by an expression of the form

T = T ijk
∂

∂xi
⊗ ∂

∂xj
⊗ dxk.

This object is also called a tensor of type
(
2
1

)
. Thus, we may think of a tensor of

type
(
2
1

)
as a map with three input slots. The map expects two functions in the

first two slots and a vector in the third one. The action of the map is bilinear
on the two functions and linear on the vector. The output is a real number.
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A tensor of type
(
r
s

)
is written in local coordinates as

T = T i1,...,irj1,...,js

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ . . . dxjs (2.12)

The tensor components are given by

T i1,...,irj1,...,js
= T (dxi1 , . . . , dxir ,

∂

∂xj1
, . . . ,

∂

∂xjs
). (2.13)

The set T rs |p(Rn) of all tensors of type T rs at a point p has a vector space
structure. The union of all such vector spaces is called the tensor bundle, and
smooth sections of the bundle are called tensor fields T r

s (Rn); that is, a tensor
field is a smooth assignment of a tensor to each point in Rn.

2.2.2 Inner Product

Let X = ai ∂
∂xi and Y = bj ∂

∂xj be two vector fields and let

g(X,Y ) = δija
ibj . (2.14)

The quantity g(X,Y ) is an example of a bilinear map that the reader will
recognize as the usual dot product.

2.2.3 Definition A bilinear map g(X,Y ) ≡< X,Y > on vectors is called a
real inner product if

1. g(X,Y ) = g(Y,X),

2. g(X,X) ≥ 0, ∀X,

3. g(X,X) = 0 iff X = 0.

Since we assume g(X,Y ) to be bilinear, an inner product is completely specified
by its action on ordered pairs of basis vectors. The components gij of the inner
product are thus given by

g(
∂

∂xi
,
∂

∂xj
) = gij , (2.15)

where gij is a symmetric n×n matrix which we assume to be non-singular. By
linearity, it is easy to see that if X = ai ∂

∂xi and Y = bj ∂
∂xj are two arbitrary

vectors, then

< X,Y >= g(X,Y ) = gija
ibj .

In this sense, an inner product can be viewed as a generalization of the dot
product. The standard Euclidean inner product is obtained if we take gij = δij .
In this case, the quantity g(X,X) =‖ X ‖2 gives the square of the length of the
vector. For this reason, gij is called a metric and g is called a metric tensor.
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Another interpretation of the dot product can be seen if instead one consid-
ers a vector X = ai ∂

∂xi and a 1-form α = bjdx
j . The action of the 1-form on

the vector gives

α(X) = (bjdx
j)(ai ∂

∂xi )

= bja
i(dxj)( ∂

∂xi )

= bja
iδji

= aibi.

If we now define
bi = gijb

j , (2.16)

we see that the equation above can be rewritten as

aibi = gija
ibj ,

and we recover the expression for the inner product.
Equation (2.16) shows that the metric can be used as a mechanism to lower

indices, thus transforming the contravariant components of a vector to covariant
ones. If we let gij be the inverse of the matrix gij , that is

gikgkj = δij , (2.17)

we can also raise covariant indices by the equation

bi = gijbj . (2.18)

We have mentioned that the tangent and cotangent spaces of Euclidean space
at a particular point p are isomorphic. In view of the above discussion, we see
that the metric g can be interpreted on one hand as a bilinear pairing of two
vectors

g : Tp(R
n)× Tp(Rn) −→ R,

and on the other, as inducing a linear isomorphism

G[ : Tp(R
n) −→ T ?p (Rn)

defined by
G[X(Y ) = g(X,Y ), (2.19)

that maps vectors to covectors. To verify this definition is consistent with the
action of lowering indices, let X = ai ∂

∂xi and Y = bj ∂
∂xj . We show that that

G[X = ai dx
i. In fact,

G[X(Y ) = (ai dx
i)(bj ∂

∂xj ),

= aib
jdxi( ∂

∂xj ),

= aib
jδij ,

= aib
i = gija

jbi,

= g(X,Y ).
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The inverse map G] : T ?p (Rn) −→ Tp(R
n) is defined by

< G]α,X >= α(X), (2.20)

for any 1-form α and tangent vector X. In quantum mechanics, it is common
to use Dirac’s notation, in which a linear functional α on a vector space V is
called a bra-vector denoted by 〈α|, and a vector X ∈ V is called a ket-vector,
denoted by |X〉. The, action of a bra-vector on a ket-vector is defined by the
bracket,

〈α|X〉 = α(X). (2.21)

Thus, if the vector space has an inner product as above, we have

〈α|X〉 =< G]α,X >= α(X). (2.22)

The mapping C : T ∗p (Rn) → R given by (α,X) 7→ 〈α|X〉 = α(X) is called
a contraction. In passing, we introduce a related concept called the interior
product, or contraction of a vector and a form. If α is a (k + 1)-form and X a
vector, we define

iXα(X1, . . . , Xk) = α(X,X1, . . . , Xk). (2.23)

In particular, for a one form, we have

iXα = 〈α|X〉 = α(X).

If T is a type
(
1
1

)
tensor, that is,

T = T ijdx
j ⊗ ∂

∂xi
,

The contraction of the tensor is given by

C(T ) = T ij〈dxj | ∂∂xi 〉,
= T ij dx

j( ∂
∂xi ),

= T ij δ
j
i ,

= T ii.

In other words, the contraction of the tensor is the trace of the n×n array that
represents the tensor in the given basis. The notion of raising and lowering
indices as well as contractions can be extended to tensors of all types. Thus,
for example, we have

gijTiklm = T iklm.

A contraction between the indices i and l in the tensor above could be denoted
by the notation

C1
2 (T iklm) = T ikim = Tkm.

This is a very simple concept, but the notation for a general contraction is a
bit awkward because one needs to keep track of the positions of the indices
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contracted. Let T be a tensor of type
(
r
s

)
. A contraction Ckl yields a tensor of

type
(
r−1
s−1
)
. Let T be given in the form 2.12. Then,

Clk(T ) = T
i1...il−1,m,ii+1...ir
j1...jk−1,m,jk+1...js

∂
∂xi1
⊗. . .⊗ ∂̂

∂xil
⊗. . .⊗ ∂

∂xir ⊗dx
j1⊗. . .⊗d̂xjk⊗. . . dxjs ,

where the “hat” means that these are excluded. Here is a very neat and most
useful result. If S is a 2-tensor with symmetric components Tij = Tji and A is
a 2-tensor with antisymmetric components Aij = −Aji, then the contraction

SijA
ij = 0 (2.24)

The short proof uses the fact that summation indices are dummy indices and
they can be relabeled at will by any other index that is not already used in an
expression. We have

SijA
ij = SjiA

ij = −SjiAji = −SklAkl = −SjiAij = 0,

since the quantity is the negative of itself.

In terms of the vector space isomorphism between the tangent and cotangent
space induced by the metric, the gradient of a function f , viewed as a differential
geometry vector field, is given by

Grad f = G]df, (2.25)

or in components
(∇f)i ≡ ∇if = gijf,j , (2.26)

where f,j is the commonly used abbreviation for the partial derivative with
respect to xj .

In elementary treatments of calculus, authors often ignore the subtleties of
differential 1-forms and tensor products and define the differential of arc length
as

ds2 ≡ gijdxidxj ,

although what is really meant by such an expression is

ds2 ≡ gijdxi ⊗ dxj . (2.27)

2.2.4 Example In cylindrical coordinates, the differential of arc length is

ds2 = dr2 + r2dθ2 + dz2. (2.28)

In this case, the metric tensor has components

gij =

 1 0 0
0 r2 0
0 0 1

 . (2.29)
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2.2.5 Example In spherical coordinates,

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ, (2.30)

and the differential of arc length is given by

ds2 = dr2 + r2dθ2 + r2 sin2 θ dφ2. (2.31)

In this case the metric tensor has components

gij =

 1 0 0
0 r2 0
0 0 r2 sin θ2

 . (2.32)

2.2.3 Minkowski Space

An important object in mathematical physics is the so-called Minkowski
space which is defined as the pair (M(1,3), η), where

M(1,3) = {(t, x1, x2, x3)| t, xi ∈ R} (2.33)

and η is the bilinear map such that

η(X,X) = t2 − (x1)2 − (x2)2 − (x3)2. (2.34)

The matrix representing Minkowski’s metric η is given by

η = diag(1,−1,−1,−1),

in which case, the differential of arc length is given by

ds2 = ηµνdx
µ ⊗ dxν

= dt⊗ dt− dx1 ⊗ dx1 − dx2 ⊗ dx2 − dx3 ⊗ dx3

= dt2 − (dx1)2 − (dx2)2 − (dx3)2. (2.35)

Note: Technically speaking, Minkowski’s metric is not really a metric since
η(X,X) = 0 does not imply that X = 0. Non-zero vectors with zero length are
called light-like vectors and they are associated with particles that travel at the
speed of light (which we have set equal to 1 in our system of units.)

The Minkowski metric ηµν and its matrix inverse ηµν are also used to raise
and lower indices in the space in a manner completely analogous to Rn . Thus,
for example, if A is a covariant vector with components

Aµ = (ρ,A1, A2, A3),

then the contravariant components of A are

Aµ = ηµνAν

= (ρ,−A1,−A2,−A3).
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2.2.4 Wedge Products and 2-Forms

2.2.6 Definition A map φ : T (Rn)× T (Rn) −→ R is called alternating if

φ(X,Y ) = −φ(Y,X).

The alternating property is reminiscent of determinants of square matrices that
change sign if any two column vectors are switched. In fact, the determinant
function is a model of an alternating bilinear map on the space M2×2 of two
by two matrices. Of course, for the definition above to apply, one has to view
M2×2 as the space of column vectors.

2.2.7 Definition A 2-form φ is a map φ : T (Rn) × T (Rn) −→ R which is
alternating and bilinear.

2.2.8 Definition Let α and β be 1-forms in Rn and let X and Y be any
two vector fields. The wedge product of the two 1-forms is the map α ∧ β :
T (Rn)× T (Rn) −→ R, given by the equation

(α ∧ β)(X,Y ) = α(X)β(Y )− α(Y )β(X),

=

[
α(X) α(Y )
β(X) β(Y )

]
(2.36)

2.2.9 Theorem If α and β are 1-forms, then α ∧ β is a 2-form.
Proof Let α and β be 1-forms in Rn and let X and Y be any two vector fields.
Then

(α ∧ β)(X,Y ) = α(X)β(Y )− α(Y )β(X)

= −(α(Y )β(X)− α(X)β(Y ))

= −(α ∧ β)(Y,X).

Thus, the wedge product of two 1-forms is alternating.
To show that the wedge product of two 1-forms is bilinear, consider 1-forms,

α, β, vector fields X1, X2, Y and functions f1, f2. Then, since the 1-forms are
linear functionals, we get

(α ∧ β)(f1X1 + f2X2, Y ) = α(f1X1 + f2X2)β(Y )− α(Y )β(f1X1 + f2X2)

= [f1α(X1) + f2α(X2)]β(Y )− α(Y )[f1β(X1) + f2β(X2)]

= f1α(X1)β(Y ) + f2α(X2)β(Y )− f1α(Y )β(X1)− f2α(Y )β(X2)

= f1[α(X1)β(Y )− α(Y )β(X1)] + f2[α(X2)β(Y )− α(Y )β(X2)]

= f1(α ∧ β)(X1, Y ) + f2(α ∧ β)(X2, Y ).

The proof of linearity on the second slot is quite similar and is left to the reader.
The wedge product of two 1-forms has characteristics similar to cross prod-

ucts of vectors in the sense that both of these products anti-commute. This
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means that we need to be careful to introduce a minus sign every time we
interchange the order of the operation. Thus, for example, we have

dxi ∧ dxj = −dxj ∧ dxi

if i 6= j, whereas
dxi ∧ dxi = −dxi ∧ dxi = 0

since any quantity that equals the negative of itself must vanish.

2.2.10 Example Consider the case of R2. Let

α = a dx+ b dy,

β = c dx+ d dy.

since dx ∧ dx = dy ∧ dy = 0, and dx ∧ dy = −dy ∧ dx, we get,

α ∧ β = ad dx ∧ dy + bc dy ∧ dx,
= ad dx ∧ dy − bc dx ∧ dy,

=

∣∣∣∣a b
c d

∣∣∣∣ dx ∧ dy.
The similarity between wedge products is even more striking in the next exam-
ple, but we emphasize again that wedge products are much more powerful than
cross products, because wedge products can be computed in any dimension.

2.2.11 Example For combinatoric reasons, it is convenient to label the co-
ordinates as {x1, x2, x3}. Let

α = a1 dx
1 + a2 dx

2 + a3 dx
3,

β = b1 dx
1 + b2 dx

2 + b3 dx
3,

There are only three independent basis 2-forms, namely

dy ∧ dz = dx2 ∧ dx3,
dx ∧ dz = −dx1 ∧ dx3,
dx ∧ dy = dx1 ∧ dx2.

Computing the wedge products in pairs, we get

α ∧ β =

∣∣∣∣a2 a3
b2 b3

∣∣∣∣ dx2 ∧ dx3 +

∣∣∣∣a1 a3
b1 b3

∣∣∣∣ dx1 ∧ dx3 +

∣∣∣∣a1 a2
b1 b2

∣∣∣∣ dx1 ∧ dx2.
If we consider vectors a = (a1, a2, a3) and b = (b1, b2, b3), we see that the result
above can be written as

α ∧ β = (a× b)1 dx
2 ∧ dx3 − (a× b)2 dx

1 ∧ dx3 + (a× b)3 dx
1 ∧ dx2 (2.37)
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Fig. 2.1: Area Forms

It is worthwhile noticing that if one thinks
of the indices in the formula above as permu-
tations of the integers {1, 2, 3}, the signs of the
three terms correspond to the signature of the
permutation. In particular, the middle term in-
dices constitute an odd permutation, so the sig-
nature is minus one. One can get a good sense of
the geometrical significance and the motivation
for the creation of wedge products by consider-
ing a classical analogy in the language of vector
calculus. As shown in figure 2.1, let us consider
infinitesimal arc length vectors i dx, j dy and
k dz pointing along the coordinate axes. Recall
from the definition, that the cross product of two vectors is a new vector whose
magnitude is the area of the parallelogram subtended by the two vectors and
which points in the direction of a unit vector perpendicular to the plane con-
taining the two vectors, oriented according to the right hand rule. Since i, j and
k are mutually orthogonal vectors, the cross product of any pair is again a unit
vector pointed in the direction of the third or the negative thereof. Thus, for
example, in the xy-plane the differential of area is really an oriented quantity
that can computed by the cross product (i dx × j dy) = dx dy k. A similar
computation yields the differential of areas in the other two coordinate planes,
except that in the xz-plane, the cross product needs to be taken in the reverse
order. In terms of wedge products, the differential of area in the xy-plane is
(dx ∧ dy), so that the oriented nature of the surface element is built-in. Tech-
nically, when reversing the order of variables in a double integral one should
introduce a minus sign. This is typically ignored in basic calculus computations
of double and triple integrals, but it cannot be ignored in vector calculus in the
context of flux of a vector field through a surface.

2.2.12 Example One could of course compute wedge products by just using
the linearity properties. It would not be as efficient as grouping into pairs, but
it would yield the same result. For example, let

α = x2dx− y2dy and β = dx+ dy − 2xydz. Then,

α ∧ β = (x2dx− y2dy) ∧ (dx+ dy − 2xydz)

= x2 dx ∧ dx+ x2 dx ∧ dy − 2x3y dx ∧ dz − y2 dy ∧ dx
−y2 dy ∧ dy + 2xy3 dy ∧ dz

= x2 dx ∧ dy − 2x3y dx ∧ dz − y2 dy ∧ dx+ 2xy3 dy ∧ dz
= (x2 + y2) dx ∧ dy − 2x3y dx ∧ dz + 2xy3 dy ∧ dz.

In local coordinates, a 2-form can always be written in components as

φ = Fij dx
i ∧ dxj (2.38)

If we think of F as a matrix with components Fij , we know from linear algebra
that we can write F uniquely as a sum of a symmetric and an antisymmetric



48 CHAPTER 2. DIFFERENTIAL FORMS

matrix, namely,

F = S +A,

=
1

2
(F + FT ) +

1

2
(F − FT ),

Fij = F(ij) + F[ij],

where,

F(ij) =
1

2
(Fij + Fji),

F[ij] =
1

2
(Fij − Fji),

are the completely symmetric and antisymmetric components. Since dxi ∧ dxj
is antisymmetric, and the contraction of a symmetric tensor with an antisym-
metric tensor is zero, one may assume that the components of the 2-form in
equation 2.38 are antisymmetric as well. With this mind, we can easily find a
formula using wedges that generalizes the cross product to any dimension.

Let α = aidx
i and β = bidx

i be any two 1-forms in Rn , and Let X and Y
be arbitrary vector fields. Then

(α ∧ β)(X,Y ) = (aidx
i)(X)(bjdx

j)(Y )− (aidx
i)(Y )(bjdx

j)(X)

= (aibj)[dx
i(X)dxj(Y )− dxi(Y )dxj(X)]

= (aibj)(dx
i ∧ dxj)(X,Y ).

Because of the antisymmetry of the wedge product, the last of the above equa-
tions can be written as

α ∧ β =

n∑
i=1

n∑
j<i

(aibj − ajbi)(dxi ∧ dxj),

=
1

2
(aibj − ajbi)(dxi ∧ dxj).

In particular, if n = 3, the reader will recognize the coefficients of the wedge
product as the components of the cross product of a = a1i + a2j + a3k and
b = b1i + b2j + b3k, as shown earlier.

Remark Quantities such as dx dy and dy dz which often appear in calculus II,
are not really well defined. What is meant by them are actually wedge products
of 1-forms, but in reversing the order of integration, the antisymmetry of the
wedge product is ignored. In performing surface integrals, however, the surfaces
must be considered oriented surfaces and one has to insert a negative sign in
the differential of surface area component in the xz-plane as shown later in
equation 2.83.

2.2.5 Determinants

The properties of n-forms are closely related to determinants, so it might be
helpful to digress a bit and review the fundamentals of determinants, as found
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in any standard linear algebra textbook such as [16]. Let A ∈Mn be an n× n
matrix with column vectors

A = [v1,v2, . . .vn]

2.2.13 Definition A function f : Mn → R is called multilinear if it is linear
on each slot; that is,

f [v1, . . . , a1vi+a2vj , . . . ,vn] = a1f [v1, . . . ,vi, . . . ,vn]+a2f [v1, . . . ,vj , . . . ,vn].

2.2.14 Definition A function f : Mn → R is called alternating if it changes
sign whenever any two columns are switched; that is,

f [v1, . . . ,vi, . . . ,vj , . . . ,vn] = −f [v1, . . . ,vj , . . . ,vi, . . .vn]

2.2.15 Definition A determinant function is a map D : Mn → R that is
a) Multilinear,
b) Alternating,
c) D(I) = 1.

One can then prove that this defines the function uniquely. In particular, if
A = (aij), the determinant can be expressed as

det(A) =
∑
π

sgn(π) a1π(1)a
2
π(2) . . . a

n
π(n), (2.39)

where the sum is over all the permutations of {1, 2 . . . , n}. The determinant
can also be calculated by the cofactor expansion formula of Laplace. Thus, for
example, the cofactor expansion along the entries on the first row (a1j), is given
by

det(A) =
∑
k

a1k∆k
1, (2.40)

where ∆ is the cofactor matrix.
At this point it is convenient to introduce the totally antisymmetric Levi-Civita
permutation symbol defined as follows:

εi1i2...ik =

 +1 if (i1, i2, . . . ik) is an even permutation of (1, 2, . . . , k)
−1 if (i1, i2, . . . , ik) is an odd permutation of (1, 2, . . . , k)
0 otherwise

(2.41)
In dimension 3, there are only 6 (3! = 6) non-vanishing components of εijk,
namely,

ε123 = ε231 = ε312 = 1

ε132 = ε213 = ε321 = −1 (2.42)
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We set the Levi-Civita symbol with some or all the indices up, numerically
equal to the permutation symbol will all the indices down. The permutation
symbols are useful in the theory of determinants. In fact, if A = (aij) is an
n× n matrix, then, equation (2.39) can be written as,

detA = |A| = εi1i2...ina1i1a
2
i2 . . . a

n
in . (2.43)

Thus, for example, for a 2× 2 matrix,

A =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ,
det(A) = εija1ia

2
j ,

= ε12a11a
2
2 + ε21a12a

2
1,

= a11a
2
2 − a12a21.

We also introduce the generalized Kronecker delta symbol

δi1i2...ikj1j2...jk
=

 +1 if (i1, i2, . . . , ik) is an even permutation of (j1, j2, . . . , jk)
−1 if (i1, i2, . . . , ik) is an odd permutation of (j1, j2, . . . , jk)
0 otherwise

(2.44)
If one views the indices ik as labelling rows and jk as labelling columns of a
matrix, we can represent the completely antisymmetric symbol by the determi-
nant,

δi1i2...ikj1j2...jk
=

∣∣∣∣∣∣∣∣
δi1j1 δi1j2 . . . δi1jk
δi2j1 δi2j2 . . . δi2jk
. . . . . . . . . . . . . . . . . .

δikj1 δikj2 . . . δikjk

∣∣∣∣∣∣∣∣ (2.45)

Not surprisingly, the generalized Kronecker delta is related to a product of
Levi-Civita symbols by the equation

εi1i2...ikεj1j2...jk = δi1i2...ikj1j2...jk
, (2.46)

which is evident since both sides are completely antisymmetric. In dimension
3, the only non-zero components of δijkl are,

δ1212 = δ1313 = δ2323 = 1 δ1221 = δ1331 = δ2332 = −1

δ2121 = δ3131 = δ3232 = 1 δ2112 = δ3113 = δ3223 = −1.

2.2.16 Proposition In dimension 3 the following identities hold

a) εijkimn = δjkmn = δjmδ
k
n − δjnδkm,

b) εijkijn = 2δkn,

c) εijkijk = 3!
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Proof For part (a), we compute the determinant by cofactor expansion on the
first row

εijkimn =

∣∣∣∣∣∣
δii δim δin
δji δjm δjn
δki δkm δkn

∣∣∣∣∣∣
= δii

∣∣∣∣δjm δjn
δkm δkn

∣∣∣∣− δim ∣∣∣∣δji δjn
δki δkn

∣∣∣∣+ δin

∣∣∣∣δji δjm
δki δkm

∣∣∣∣
= 3

∣∣∣∣δjm δjn
δkm δkn

∣∣∣∣− ∣∣∣∣δjm δjn
δkm δkn

∣∣∣∣+

∣∣∣∣δjn δjm
δkn δkm

∣∣∣∣
= (3− 1− 1)

∣∣∣∣δjm δjn
δkm δkn

∣∣∣∣ =

∣∣∣∣δjm δjn
δkm δkn

∣∣∣∣
Here we used the fact that the contraction δii is just the trace of the identity
matrix and the observation that we had to transpose columns in the last deter-
minant in the next to last line. for part (b) follows easily for part(a), namely,

εijkinj = δjkjn,

= δjjδ
k
n − δjnδkj ,

= 3δkn − δkn,
= 2δkn.

From this, part (c) is obvious. With considerably more effort, but inductively
following the same scheme, one can establish the general formula,

εi1...ik,ik+1...inεi1...ik,jk+1...jn = k!δ
ik+1...in
jk+1...jn

. (2.47)

2.2.6 Vector Identities

The permutation symbols are very useful in establishing and manipulating
classical vector formulas. We present here a number of examples. For this
purpose, let,

a = a1i + a2j + a3k,

b = b1i + b2j + b3k,

c = c1i + c2j + c3k,

d = d1i + d2j + d3k,

and

α = a1 dx
1 + a2 dx

2 + a3 dx
3,

β = b1 dx
1 + b2 dx

2 + b3 dx
3,

γ = c1 dx
1 + c2 dx

2 + c3 dx
3,

δ = d1 dx
1 + d2 dx

2 + d3 dx
3,

1. Dot product and cross product

a · b = δijaibj = aib
i, (a× b)k = εk

ijaibj (2.48)

2. Wedge product

α ∧ β = εkij(a× b)k dx
i ∧ dxj . (2.49)
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3. Triple product

a · (b× c) = δija
i(b× c)l,

= δija
iεjklb

kcl,

= εikla
ibkcl,

a · (b× c) = det([abc]), (2.50)

= (a× b) · c (2.51)

4. Triple cross product: bac-cab identity

[a× (b× c)]l = εl
mnam(b× c)n

= εl
mnam(εn

jkbjck)

= εl
mnεn

jkambjck)

= εmnlε
jknambjck)

= (δkmδ
j
l − δ

j
l δ
k
m)ambjck

= bla
mcm − clambm.

Rewriting in vector form

a× (b× c) = b(a · c)− c(a · b). (2.52)

5. Dot product of cross products

(a× b) · (c× d) = a · (b× c× d),

= a · [c(b · d)− d(b · c)]

= (a · c)(b · d)− (a · d)(b · c),

(a× b) · (c× d) =

∣∣∣∣a · c a · d
b · c b · d

∣∣∣∣ (2.53)

6. Norm of cross-product

‖a× b‖2 = (a× b) · (a× b),

=

∣∣∣∣a · a a · b
b · a b · b,

∣∣∣∣ ,
= ‖a||2‖b‖ − (a · b)2 (2.54)

7. More wedge products. Let C = ck ∂
∂xk

, D = dm ∂
∂xm . Then,

(α ∧ β)(C,D) =

∣∣∣∣α(C) α(D)
β(C) β(D)

∣∣∣∣ ,
=

∣∣∣∣a · c a · d
b · c b · d

∣∣∣∣ (2.55)
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8. Grad, Curl, Div in R3

Let ∇i = ∂
∂xi , ∇

i = δij∇j , A = a and define

� (∇f)i = ∇if
� (∇×A)i = εi

jk∇jak
� ∇ ·A = δij∇iaj = ∇jaj
� ∇ · ∇(f) ≡ ∇2f = ∇i∇if

(a)

(∇×∇f)i = εi
jk∇j∇f = 0,

∇×∇f = 0 (2.56)

(b)

∇ · (∇×A) = δij∇i(∇× a)j ,

= δij∇iεjkl∇kal,
= εjkl∇i∇jak,

∇ · (∇×A) = 0 (2.57)

where in the last step in the two items above we use the fact that
a contraction of two symmetric with two antisymmetric indices is
always 0.

(c) The same steps as in the bac-cab identity give

[∇× (∇×A)]l = ∇l(∇mam)−∇m∇mal,
∇× (∇×A) = ∇(∇ ·A)−∇2A,

where ∇2A means the Laplacian of each component of A.

This last equation is crucial in the derivation of the wave equation for
light from Maxwell’s equations for the electromagnetic field.

2.2.7 n-Forms

2.2.17 Definition Let α1, α2, α2, be one forms, and X1, X2, X3 ∈ X . Let
π be the set of permutations of {1, 2, 3}. Then

(α1 ∧ α2 ∧ α3)(X1, X2, X3) =
∑
π

sign(π)α1(Xπ(1))α
2(Xπ(2))α

3(Xπ(3)),

= εijkα1(Xi)α
2(Xj)α

3(Xk).

This trilinear map is an example of a alternating covariant 3-tensor.
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2.2.18 Definition A 3-form φ in Rn is an alternating, covariant 3-tensor.
In local coordinates, a 3-from can be written as an object of the following type

φ = Aijkdx
i ∧ dxj ∧ dxk (2.58)

where we assume that the wedge product of three 1-forms is associative but
alternating in the sense that if one switches any two differentials, then the
entire expression changes by a minus sign. There is nothing really wrong with
using definition (2.58). This definition however, is coordinate-dependent and
differential geometers prefer coordinate-free definitions, theorems and proofs.
We can easily extend the concepts above to higher order forms.

2.2.19 Definition Let T 0
k (Rn) be the set multilinear maps

t : T (R)× ...× T (R)︸ ︷︷ ︸
k times

→ R

from k copies of T (R) to R. The map t is called skew-symmetric if

t(e1, . . . , ek) = sign(π)t(eπ(1), . . . , eπ(k)), (2.59)

where π is the set of permutations of {1, . . . , k}. A skew-symmetry covariant
tensor of rank k at p, is called a k-form at p. denote by Λk(p)(R

n) the space of
k-forms at p ∈ Rn. This vector space has dimension

dim Λkp(Rn) =

(
n

k

)
=

n!

k!(n− k)!

for k ≤ n and dimension 0 for k > n. We identify Λ0
(p)(R

n) with the space of

C∞ functions at p. The union of all Λk(p)(R
n) as p ranges through all points in

Rn is called the bundle of k-forms and will be denoted by

Λk(Rn) =
⋃
p

Λkp(Rn).

Sections of the bundle are called k-forms and the space of all sections is denoted
by

Ωk(Rn) = Γ(Λk(Rn)).

A section α ∈ Ωk of the bundle technically should be called k-form field, but
the consensus in the literature is to call such a section simply a k-form. In local
coordinates, a k-form can be written as

α = Ai1,...ik(x)dxi1 ∧ . . . dxik . (2.60)

2.2.20 Definition The alternation map A : T 0
k (Rn)→ T 0

k (Rn) is defined by

At(e1, . . . , ek) =
1

k!

∑
π

(signπ)t(eπ(1), . . . , eπ(k)).
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2.2.21 Definition If α ∈ Ωk(Rn) and β ∈ Ωl(Rn), then

α ∧ β =
(k + l)!

k!l!
A(α⊗ β) (2.61)

If α is a k-form and β an l-form, we have

α ∧ β = (−1)klβ ∧ α. (2.62)

Now, for a little combinatorics. Factorials are unavoidable due to the permu-
tation attributes of the wedge product. The convention here follows Marsden
[20] and Spivak [34], which reduces proliferation of factorials later. Let us count
the number of linearly independent differential forms in Euclidean space. More
specifically, we want to find a basis for the vector space of k-forms in R3. As
stated above, we will think of 0-forms as being ordinary functions. Since func-
tions are the “scalars”, the space of 0-forms as a vector space has dimension
1.

R2 Forms Dim
0-forms f 1
1-forms fdx1, gdx2 2
2-forms fdx1 ∧ dx2 1

R3 Forms Dim
0-forms f 1
1-forms f1dx

1, f2dx
2, f3dx

3 3
2-forms f1dx

2 ∧ dx3, f2dx
3 ∧ dx1, f3dx

1 ∧ dx2 3
3-forms f1dx

1 ∧ dx2 ∧ dx3 1

The binomial coefficient pattern should be evident to the reader.
It is possible define tensor-valued differential forms. Let E = T rs (Rn) be the
tensor bundle. A tensor-valued p-form is defined as a section

T ∈ Ωp(Rn, E) = Γ(E ⊗ Λp(Rn)).

In local coordinates, a tensor-valued k-form is a
(
r
s+p

)
tensor

T = T i1,...ir j1,...js,k1,...,kp
∂

∂xi1
⊗ . . .⊗ ∂

∂xir
⊗dxj1⊗· · ·⊗dxjs ∧dxk1 ∧ . . .∧dxkp .

(2.63)
Thus, for example, the quantity

Ωij = 1
2R

i
jkl dx

k ∧ dxl

would be called the components of a
(
1
1

)
-valued 2-form

Ω = Ωij
∂

∂xi
⊗ dxj .

The notion of the wedge product can be extended to tensor-valued forms using
tensor products on the tensorial indices and wedge products on the differential
form indices.
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2.3 Exterior Derivatives

In this section we introduce a differential operator that generalizes the clas-
sical gradient, curl and divergence operators.

2.3.1 Definition Let α be a one form in Rn. The differential dα is the
two-form defined by

dα(X,Y ) = X(α(Y ))− Y (α(X)), (2.64)

for any pair of vector fields X and Y .
To explore the meaning of this definition in local coordinates, let α = fidx

i

and let X = ∂
∂xj , Y = ∂

∂xk
, then

dα(X,Y ) =
∂

∂xj

[
fidx

i

(
∂

∂xk

)]
− ∂

∂xk

[
fidx

i

(
∂

∂xj

)]
,

=
∂

∂xj
(fiδ

i
k)− ∂

∂xk
(fiδ

i
j),

dα

(
∂

∂xj
,
∂

∂xj

)
=
∂fk
∂xj
− ∂fj
∂xk

Therefore, taking into account the antisymmetry of wedge products, we have.

dα =
1

2

(
∂fk
∂xj
− ∂fj
∂xk

)
dxj ∧ dxk,

=
∂fk
∂xj

dxj ∧ dxk,

= dfk ∧ dxk.

The definition 2.64 of a differential of a 1-form can be refined to provide
a coordinate-free definition in general manifolds (see 6.28,) and it can be ex-
tended to differentials of m-forms. For now, the computation immediately
above suffices to motivate the following coordinate dependent definition (for a
coordinate-free definition for general manifolds, see (??):

2.3.2 Definition Let α be an m-form, given in coordinates as in equa-
tion (2.60). The exterior derivative of α is the (m+ 1)-form dα given by

dα = dAi1,...im ∧ dxi1 . . . dxim

=
∂Ai1,...im
∂xi0

(x)dxi0 ∧ dxi1 . . . dxim . (2.65)

In the special case where α is a 0-form, that is, a function, we write

df =
∂f

∂xi
dxi.
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2.3.3 Theorem

a) d : Ωm −→ Ωm+1

b) d2 = d ◦ d = 0

c) d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ ∀α ∈ Ωp, β ∈ Ωq (2.66)

Proof

a) Obvious from equation (2.65).

b) First, we prove the proposition for α = f ∈ Ω0. We have

d(dα) = d(
∂f

∂xi
)

=
∂2f

∂xj∂xi
dxj ∧ dxi

=
1

2
[
∂2f

∂xj∂xi
− ∂2f

∂xi∂xj
]dxj ∧ dxi

= 0.

Now, suppose that α is represented locally as in equation (2.60). It follows from
equation 2.65, that

d(dα) = d(dAi1,...im) ∧ dxi0 ∧ dxi1 . . . dxim = 0.

c) Let α ∈ Ωp, β ∈ Ωq. Then, we can write

α = Ai1,...ip(x)dxi1 ∧ . . . dxip

β = Bj1,...jq (x)dxj1 ∧ . . . dxjq .
(2.67)

By definition,

α ∧ β = Ai1...ipBj1...jq (dx
i1 ∧ . . . ∧ dxip) ∧ (dxj1 ∧ . . . ∧ dxjq ).

Now, we take the exterior derivative of the last equation, taking into account
that d(fg) = fdg + gdf for any functions f and g. We get

d(α ∧ β) = [d(Ai1...ip)Bj1...jq + (Ai1...ip)d(Bj1...jq )]

(dxi1 ∧ . . . ∧ dxip) ∧ (dxj1 ∧ . . . ∧ dxjq )
= [dAi1...ip ∧ (dxi1 ∧ . . . ∧ dxip)] ∧ [Bj1...jq ∧ (dxj1 ∧ . . . ∧ dxjq )]+

[Ai1...ip ∧ (dxi1 ∧ . . . ∧ dxip)] ∧ (−1)p[dBj1...jq ∧ (dxj1 ∧ . . . ∧ dxjq )]
= dα ∧ β + (−1)pα ∧ dβ.

The (−1)p factor comes into play since in order to pass the term dBji...jp through
p number of 1-forms of type dxi, one must perform p transpositions.
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2.3.1 Pull-back

2.3.4 Definition Let F : Rn → Rm be a differentiable mapping and let α
be a k-form in Rm. Then, at each point y ∈ Rm with y = F (x), the mapping
F induces a map called the pull-back F ∗ : Ωk(F (x)) → Ωk(x) defined by

(F ∗α)x(X1, . . . Xk) = αF (x)(F∗X1, . . . F∗Xk), (2.68)

for any tangent vectors {X1, . . . Xk} in Rn .
If g is a 0-form, namely a function, F ∗(g) = g ◦ F . We have the following
theorem.

2.3.5 Theorem

a) F ∗(gα1) = (g ◦ F )F ∗α,
b) F ∗(α1 + α2) = F ∗ α1 + F ∗α2,
c) F ∗(α ∧ β) = F ∗α ∧ F ∗β,
d) F ∗(dα) = d(F ∗α.)

(2.69)

Part (d) is encapsulated in the commuting diagram in figure 2.2.

Fig. 2.2: d F ∗ = F ∗ d

Proof Part (a) is basically the definition for the case of 0-forms and part (b)
is clear from the linearity of the push-forward. We leave part (c) as an exercise
and prove part (d). In the case of a 0-form, let g, be a function and X a vector
field in Rm. By a simple computation that amounts to recycling definitions,
we have:

d(F ∗g) = d(g ◦ F ),

(F ∗dg)(X) = dg(F∗X) = (F∗X)(g),

= X(g ◦ F ) = d(g ◦ F )(X),

F ∗dg = d(g ◦ F ),

so, F ∗(dg) = d(F ∗g) is true by the composite mapping theorem. Let α be a
k-form

α = Ai1,...ik dy
i1 ∧ . . . dyik ,

so that

dα = (dAi1,...ik) ∧ dyi1 . . . dyik .
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Then, by part (c),

F ∗α = (F ∗Ai1,...ik)F ∗dyi1 ∧ . . . F ∗dyik ,
d(F ∗α) = dF ∗(Ai1,...ik) ∧ F ∗dyi1 ∧ . . . F ∗dyik ,

= F ∗(dAi1,...ik) ∧ F ∗dyi1 ∧ . . . F ∗dyik ,
= F ∗(dα).

So again, the result rests on the chain rule.

To connect with advanced calculus, suppose that locally the mapping F is
given by yk = fk(xi). Then the pullback of the form dg given the formula
above F ∗dg = d(g ◦ F ) is given in local coordinates by the chain rule

F ∗dg =
∂g

∂xj
dxj .

In particular, the pull-back of local coordinate functions is given by

F ∗(dyi) =
∂yi

∂xj
dxj . (2.70)

Thus, pullback for the basis 1-forms dyk is yet another manifestation of the
differential as a linear map represented by the Jacobian

dyk =
∂yk

∂xi
dxi. (2.71)

In particular, if m = n,

dΩ = dy1 ∧ dy2 ∧ . . . ∧ dyn,

=
∂y1

∂xi1
∂y2

∂xi2
. . .

∂yn

∂xin
dxi1 ∧ dxi2 ∧ . . . dxin ,

= εi1i2...in
∂y1

∂xi1
∂y2

∂xi2
. . .

∂yn

∂xin
dx1 ∧ dx2 ∧ . . . dxn,

= |J | ∧ dx1 ∧ . . . dxn. (2.72)

So, the pull-back of the volume form,

F ∗dΩ = |J | dx1 ∧ . . . ∧ dxn,

gives rise to the integrand that appears in the change of variables theorem for
integration. More explicitly, let R ∈ Rn be a simply connected region, F be a
mapping F : R ∈ Rn → Rm, with m ≥ n. If ω is a k- form in Rm, then∫

F (R)

ω =

∫
R

F ∗ω (2.73)

We refer to this formulation of the change of variables theorem as integration
by pull-back.
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If F : Rn → Rn is a diffeomorphism, one can push-forward forms with the
inverse of the pull-back F∗ = (F−1)∗.

2.3.6 Example Line Integrals

Let ω = fi dx
i be a one form in R3 and let C be the curve given by the mapping

φ : I = t ∈ [a, b]→ x(t) ∈ R3. We can write ω = F · dx, where F = (f1, f2, f3)
is a vector field. Then the integration by pull-back equation 2.73 reads,

∫
C

F · dx =

∫
C

ω,

=

∫
φ(I)

ω,

=

∫
I

φ∗ω,

=

∫
I

f i(x(t))
dxi

dt
dt,

=

∫
I

F(x(t))
dx

dt
dt

This coincides with the definition of line integrals as introduced in calculus.

2.3.7 Example Polar Coordinates

Let x = r cos θ and y = r sin θ and f = f(x, y). Then

dx ∧ dy = (−r sin θdθ + cos θdr) ∧ (r cos θdθ + sin θdr),

= −r sin2 θdθ ∧ dr + r cos2 θdr ∧ dθ,
= (r cos2 θ + r sin2 θ)(dr ∧ dθ),
= r(dr ∧ dθ).∫ ∫

f(x, y)dx ∧ dy =

∫ ∫
f(x(r, θ), y(r, θ)) r(dr ∧ dθ). (2.74)

In this case, the element of arc length is diagonal

ds2 = dr2 + r2dθ2,

as it should be for an orthogonal change of variables. The differential of area is

dA =
√

det g dr ∧ dθ,
= r(dr ∧ dθ)

If the polar coordinates map is denoted by F : R2 → R2, then equation 2.74 is
just the explicit expression for the pullback of F ∗( f dA).

2.3.8 Example Polar coordinates are just a special example of the general
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transformation in R2 given by,

x = x(u, v), dx =
∂x

∂u
du+

∂x

∂u
dv,

y = y(u, v), dy =
∂y

∂u
du+

∂y

∂u
dv,

for which

φ ∗ (dx ∧ dy) =

∣∣∣∣∣ ∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ du ∧ dv (2.75)

2.3.9 Example Surface Integrals
LetR ∈ R2 be a simply connected region with boundary δR and let the mapping

φ : (u, v) ∈ R −→ x(uα) ∈ R2

describe a surface S with boundary C = φ(δR). Here, α = 1, 2, with u =
u1, v = u2. Given a vector field F = (f1, f2, f3), we assign to it the 2-form

ω = F · dS,
= f1 dx

2 ∧ dx3 − f2 dx1 ∧ dx3 + f3 dx
1 ∧ dx2,

= εijkfi dx
j ∧ dxk.

Then, ∫ ∫
S

F · dS =

∫ ∫
S

ω,

=

∫ ∫
R

φ∗ω,

=

∫ ∫
R

εijkfi
∂xj

∂uα
duα ∧ ∂x

k

∂uβ
duβ ,

=

∫ ∫
R

F · (∂x

∂u
× ∂x

∂u
) du ∧ dv

We elaborate a bit on this slick computation, for the benefit of those readers
who may have gotten got lost in the index manipulation.∫ ∫

S

F · dS =

∫ ∫
S

ω,

=

∫ ∫
R

φ∗ω,

=

∫ ∫
R

[
f1 φ∗(dx2 ∧ dx3)− f2 φ∗(dx1 ∧ dx3) + f3 φ∗(dx1 ∧ dx2)

]
,

=

∫ ∫
R

[
f1

∣∣∣∣∣∂x
2

∂u
∂x2

∂v

∂x3

∂u
∂x3

∂v

∣∣∣∣∣− f2
∣∣∣∣∣∂x

1

∂u
∂x1

∂v

∂x3

∂u
∂x3

∂v

∣∣∣∣∣+ f3

∣∣∣∣∣∂x
1

∂u
∂x1

∂v

∂x2

∂u
∂x2

∂v

∣∣∣∣∣
]
du ∧ dv

=

∫ ∫
R

F ·
(
∂x

∂u
× ∂x

∂u

)
du ∧ dv



62 CHAPTER 2. DIFFERENTIAL FORMS

This pull-back formula for surface integrals is how most students are introduced
to this subject in the third semester of calculus.

2.3.10 Remark

1. The differential of area in polar coordinates is of course a special example
of the change of coordinate theorem for multiple integrals as indicated
above.

2. As shown in equation 2.32 the metric in spherical coordinates is given by

ds2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2,

so the differential of volume is

dV =
√

det g dr ∧ dθ ∧ dφ,
= r2 sin θ dr ∧ dθ ∧ dφ.

2.3.2 Stokes’ Theorem in Rn

Let α = P (x, y) dx+Q(x, y) dy. Then,

dα = (∂P∂x dx+ ∂P
∂y ) ∧ dx+ (∂Q∂x dx+ ∂Q

∂y ) ∧ dy

= ∂P
∂y dy ∧ dx+ ∂Q

∂x dx ∧ dy

= (∂Q∂x −
∂P
∂y ) dx ∧ dy. (2.76)

This example is related to Green’s theorem in R2. For convenience, we include
here a proof of Green’s Theorem in a special case. We say that a region D

Fig. 2.3: Simple closed curve.

in the plane is of type I if it is enclosed between the graphs of two continuous
functions of x. The region inside the simple closed curve in figure 2.3 bounded
by f1(x) and f2(x), between a and b, is a region of type I. A region in the plane
is of type II if it lies between two continuous functions of y. The region in 2.3
bounded between c ≤ y ≤ d, would be a region of type II.

2.3.11 Green’s theorem
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Let C be a simple closed curve in the xy-plane and let ∂P/∂x and ∂Q/∂y be
continuous functions of (x, y) inside and on C. Let R be the region inside the
closed curve so that the boundary δR = C. Then∮

δR

P dx+Q dy =

∫ ∫
R

[
∂Q

∂x
− ∂P

∂y

]
dA. (2.77)

We first prove that for a type I region such as the one bounded between a and
b shown in 2.3, we have ∮

C

P dx = −
∫ ∫

D

∂P

∂y
dA (2.78)

Where C comprises the curves C1, C2, C3 and C4. By the fundamental theorem
of calculus, we have on the right,∫ ∫

D

∂P

∂y
dA =

∫ b

a

∫ f2(x)

f1(x)

∂P

∂y
dydx,

=

∫ b

a

[P (x, f2(x))− P (x, f1(x))] dx.

On the left, the integrals along C2 and C4 vanish, since there is no variation on
x. The integral along C3 is traversed in opposite direction of C1, so we have,

∮
C

P (x, y) dx =

∫
C1

+

∫
C2

+

∫
C3

+

∫
C4

P (x, y) dx,

=

∫
C1

P (x, y) dx−
∫
C3

P (x, y) dx,

=

∫ b

a

P (x, f1(x)) dx−
∫ b

a

P (x, f2(x)) dx

This establishes the veracity of equation 2.78 for type I regions. By a completely
analogous process on type II regions, we find that∮

C

Q dy =

∫ ∫
D

∂Q

∂x
dA. (2.79)

The theorem follows by subdividing R into a grid of regions of both types, all
oriented in the same direction as shown on the right in figure 2.3. Then one
applies equations 2.78 or 2.79, as appropriate, for each of the subdomains. All
contributions from internal boundaries cancel since each is traversed twice, each
in opposite directions. All that remains of the line integrals is the contribution
along the boundary δR.
Let α = P dx + Q dy. Comparing with equation 2.76, we can write Green’s
theorem in the form ∫

C

α =

∫ ∫
D

dα. (2.80)
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It is possible to extend Green’s Theorem to more complicated regions that are
not simple connected. Green’s theorem is a special case in dimension of two of
Stoke’s theorem.

2.3.12 Stokes’ theorem

If ω is a C1 one form in Rn and S is C2 surface with boundary δS = C, then

∫
δS

ω =

∫ ∫
S

dω. (2.81)

Proof The proof can be done by pulling back to the uv-plane and using the
chain rule, thus allowing us to use Green’s theorem. Let ω = fi dx

i and S be
parametrized by xi = xi(uα), where (u1, u2) ∈ R ⊂ R2. We assume that the
boundary of R is a simple closed curve. Then

∫
C

ω =

∫
δS

fi dx
i,

=

∫
δR

fi
∂xi

∂uα
duα,

=

∫ ∫
R

∂

∂uβ
(fi

∂xi

∂uα
) duβ ∧ duα,

=

∫ ∫
R

[
∂fi
∂xk

∂xk

∂uβ
∂xi

∂uα
+ fi

∂2xi

∂uβ∂uα

]
duβ ∧ duα,

=

∫ ∫
R

[
∂fi
∂xk

∂xk

∂uβ
∂xi

∂uα

]
duβ ∧ duα,

=

∫ ∫
R

[
∂fi
∂xk

∂xk

∂uβ

]
duβ ∧

[
∂xi

∂uα

]
duα

=

∫ ∫
S

∂fi
∂xk

dxk ∧ dxi =

∫ ∫
S

dfi ∧ dxi

=

∫ ∫
S

dω.

We present a less intuitive but far more elegant proof. The idea is formally
the same, namely, we pull-back to the plane by formula 2.73, apply Green’s
theorem in the form given in equation 2.80, and then use the fact that the
pull-back commutes with the differential as in theorem 2.69.

Let φ : R ⊂ R2 → S denote the surface parametrization map. Assume that
φ−1(δS) = δ(φ−1S), that is, the inverse of the boundary of S is the boundary
of the domain R. Then,
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∫
δS

ω =

∫
φ−1(δS)

φ∗ω =

∫
δ(φ−1S)

φ∗ω,

=

∫ ∫
φ−1S

d(φ∗ω),

=

∫ ∫
φ−1S

φ∗(dω),

=

∫
S

dω.

The proof of Stokes’ theorem presented here is one of those cases mentioned in
the preface, where we have simplified the mathematics for the sake of clarity.
Among other things, a rigorous proof requires one to quantify what is meant by
the boundary (δS) of a region. The process involves either introducing simplices
(generalized segments, triangles, tetrahedra...) or singular cubes (generalized
segments, rectangles, cubes...). The former are preferred in the treatment of
homology in algebraic topology, but the latter are more natural to use in the
context of integration on manifolds with boundary. A singular n-cube in Rn is
the image under a continuous map,

In : [0, 1]n → Rn,

of the Cartesian product of n copies of the unit interval [0, 1]. The idea is
to divide the region S into formal finite sums of singular cubes, called chains.
One then introduces a boundary operator δ, that maps a singular n-cube and
hence n-chain, into an (n− 1)-singular cube or (n− 1)-chain. Thus, in R3 for
example, the boundary of a cube, is the sum

∑
ciFi of the six faces with a

judicious choice of coefficients ci ∈ {−1, 1}. With an appropriate scheme to
label faces of singular cube and a corresponding definition of the boundary
map, one proves that δ ◦ δ = 0. For a thorough treatment, see the beautiful
book Calculus on Manifolds by M. Spivak [33].

Closed and Exact forms

2.3.13 Example Let α = M(x, y)dx+N(x, y)dy, and suppose that dα = 0.
Then, by the previous example,

dα = (∂N∂x −
∂M
∂y ) dx ∧ dy.

Thus, dα = 0 iff Nx = My, which implies that N = fy and Mx for some
function f(x, y). Hence,

α = fx dx+ fy dy = df.

The reader should also be familiar with this example in the context of exact
differential equations of first order and conservative force fields.

2.3.14 Definition A differential form α is called closed if dα = 0.
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2.3.15 Definition A differential form α is called exact if there exists a form
β such that α = dβ.

Since d ◦ d = 0, it is clear that an exact form is also closed. The converse need
not be true. The standard counterexample is the form,

ω =
−y dx+ x dy

x2 + y2
(2.82)

A short computation shows that dω = 0, so ω is closed. Let θ = tan−1(y/x) be
the angle in polar coordinates. One can recognize that ω = dθ, but this is only
true in R2 − L, where L is the non-negative x-axis, L = {(x, 0) ∈ R2|x ≥ 0}.
If one computes the line integral from (−1, 0) to (1, 0) along the top half of the
unit circle, the result is π. But the line integral along the bottom half of the
unit circle gives −π. The integral is therefore not path independent, so ω 6= dθ
on any region that contains the origin. If one tries to find another C1 function f
such that ω = df , one can easily show that f = θ+ const, which is not possible
along L.

On the other hand, if one imposes the topological condition that the space
is contractible, then the statement is true. A contractible space is one that can
be deformed continuously to an interior point. We have the following,

2.3.16 Poincaré Lemma. In a contractible space (such as Rn ), if a differential
form is closed, then it is exact.

To prove this lemma we need much more machinery than we have available
at this point. We present the proof in ??.

2.4 The Hodge ? Operator

2.4.1 Dual Forms

An important lesson students learn in linear algebra, is that all vector spaces
of finite dimension n are isomorphic to each other. Thus, for instance, the space
P3 of all real polynomials in x of degree 3, and the space M2×2 of real 2 by
2 matrices are, in terms of their vector space properties, basically no different
from the Euclidean vector space R4. As a good example of this, consider the
tangent space TpR

3. The process of replacing ∂
∂x by i, ∂

∂y by j and ∂
∂z by k

is a linear, 1-1 and onto map that sends the “vector” part of a tangent vector
a1 ∂

∂x + a2 ∂
∂y + a3 ∂

∂z to a regular Euclidean vector (a1, a2, a3).
We have also observed that the tangent space TpR

n is isomorphic to the
cotangent space T ?pRn . In this case, the vector space isomorphism maps the

standard basis vectors { ∂
∂xi } to their duals {dxi}. This isomorphism then trans-

forms a contravariant vector to a covariant vector. In terms of components, the
isomorphism is provided by the Euclidean metric that maps the components of
a contravariant vector with indices up to a covariant vector with indices down.

Another interesting example is provided by the spaces Λ1
p(R

3) and Λ2
p(R

3),
both of which have dimension 3. It follows that these two spaces must be
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isomorphic. In this case the isomorphism is given as follows:

dx 7−→ dy ∧ dz
dy 7−→ −dx ∧ dz
dz 7−→ dx ∧ dy

(2.83)

More generally, we have seen that the dimension of the space of k-forms in
Rn is given by the binomial coefficient

(
n
k

)
. Since(

n

k

)
=

(
n

n− k

)
=

n!

k!(n− k)!
,

it must be true that
Λkp(Rn) ∼= Λn−kp (Rn). (2.84)

To describe the isomorphism between these two spaces, we introduce the fol-
lowing generalization of determinants,

2.4.1 Definition . Let φ : Rn → Rn be a linear map. The unique constant
detφ such that,

φ∗ : Λn(Rn)→ Λn(Rn)

satisfies,
φ∗ω = (detφ) ω, (2.85)

for all n-forms, is called the determinant of φ. This is congruent with the
standard linear algebra formula 2.43, since in a particular basis, the Jacobian
of a linear map is the same as the matrix the represents the linear map in that
basis. Let, g(X,Y ) be an inner product and {e1, . . . , en} be an orthonormal
basis with dual forms {θ1, . . . θn}. The element of arc length is, the bilinear
symmetric tensor

ds2 = gij θ
i ⊗ θj .

The metric then induces an n-form

dΩ = θ1 ∧ θ2 . . . ∧ θn,

called the volume element. With this choice of form, the reader will recognize
equation 2.85 as the integrand in the change of variables theorem for multiple
integration, as in example 2.74. More generally, if {f1, . . . fn} is a positively
oriented basis with dual basis {φ1, . . . φn}, then,

dΩ =
√

det g φ1 ∧ . . . ∧ φn. (2.86)

2.4.2 Definition Let g be the matrix representing the components of the
metric in Rn. The Hodge ? operator is the linear isomorphism ? : Λnp (Rn) −→
Λn−kp (Rn) defined in standard local coordinates by the equation,

? (dxi1 ∧ . . . ∧ dxik) =

√
det g

(n− k)!
εi1...ik ik+1...in

dxik+1 ∧ . . . ∧ dxin , (2.87)
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For flat Euclidean space
√

det g = 1, so the factor in the definition may appear
superfluous. However, when we consider more general Riemannian manifolds,
we will have to be more careful with raising and lowering indices with the metric,
and take into account that the Levi-Civita symbol is not a tensor but something
slightly more complicated called a tensor density. Including the

√
det g is done

in anticipation of this more general setting later. Since the forms dxi1∧. . .∧dxik
constitute a basis of the vector space Λkp(Rn) and the ? operator is assumed to
be a linear map, equation (2.87) completely specifies the map for all k-forms.
In particular, if the components of a dual of a form are equal to the components
of the form, the tensor is called self-dual. Of course, this can only happen if
the tensor and its dual are of the same rank.

A metric g on Rn induces an inner product on Λk(Rn) as follows. Let
{e1, , . . . en} by an orthonormal basis with dual basis θ1, . . . , θn. If α, β ∈
Λk(Rn), we can write

α = ai1...ik θ
i1∧, . . . θik ,

β = bj1...jk θ
j1∧, . . . θjk

The induced inner product is defined by

< α, β >(k)=
1

k!
ai1...ikb

i1...ik . (2.88)

If α, β ∈ Λk(Rn), then ?β ∈ Λn−k(Rn), so α ∧ ?β must be a multiple of the
volume form. The Hodge ? operator is the unique isomorphism such that

α ∧ ?β =< α, β >(k) dΩ. (2.89)

Clearly,
α ∧ ?β = ?α ∧ β

When it is evident that the inner product is the induced inner product on
Λk(Rn) the indicator (k) is often suppressed. An equivalent definition of the
induced inner product of two k-forms is given by

< α, β >=

∫
(α ∧ ?β) dΩ. (2.90)

If α is a k-form and β is a (k − 1)-form, one can define the adjoint or co-
differential by

< δα, β >=< α, dβ > . (2.91)

The adjoint is given by
δ = (−1)nk+n+1 ? d ? . (2.92)

In particular,

δ =

{
− ? d ? if n is even

(−1)k ? d ? if n is odd
(2.93)

The differential maps (k − 1)-forms to k-forms, and the co-differential maps
k-forms to (k − 1)-forms. It is also the case that δ ◦ δ = 0 The combination,

∆ = (d+ δ)2 = dδ + δd (2.94)
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extends the Laplacian operator to forms. It maps k-forms to k-forms. A central
result in harmonic analysis is the Hodge decomposition theorem, that states that
given any k-form ω, can be split uniquely as

ω = dα+ δβ + γ, (2.95)

where α ∈ Ωk−1, β ∈ Ωk+1, and ∆γ = 0

2.4.3 Example Hodge operator in R2

In R2,

?dx = dy ? dy = −dx,

or, if one thinks of a matrix representation of ? : Ω(R2) → Ω(R2) in standard
basis, we can write the above as

?

[
dx
dy

]
=

[
0 1
−1 0

] [
dx
dy

]
.

The reader might wish to peek at the symplectic matrix ?? in the discussion in
chapter 5 on conformal mappings. Given functions u = u(x, y) and v = v(x, y),
let ω = u dx− v dy. Then,

dω = −(uy + vx) dx ∧ dy,
d ? ω = (ux − uy) dx ∧ dy,

hence
dω = 0⇒ uy = −vx,
?dω = 0⇒ ux = vy.

(2.96)

Thus, the equations dω = 0 and d?ω = 0 are equivalent to the Cauchy-Riemann
equations for a holomorphic function f(z) = u(x, y) + iv(x, y). On the other
hand,

du = ux dx+ uy dy,

dv = vx dx+ uy dy,

so the determinant of the Jacobian of the transformation T : (x, y) → (u, v)),
with the condition above on ω, is given by,

|J | =
∣∣∣∣ux uy
vx vy

∣∣∣∣ = u2x + u2y = v2x + v2y.

If |J | 6= 0, we can set ux = R cosφ, uy = R sinφ, for some R and some angle
φ. Then,

|J | =
∣∣∣∣R 0
0 R

∣∣∣∣ ∣∣∣∣ cosφ sinφ
− sinφ cosφ

∣∣∣∣ .
Thus, the transformation is given by the composition of a dilation and a ro-
tation. A more thorough discussion of this topic is found in the section of
conformal maps in chapter 5.
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2.4.4 Example Hodge operator in R3

?dx1 = ε1 jkdx
j ∧ dxk,

=
1

2!
[ε1 23dx

2 ∧ dx3 + ε1 32dx
3 ∧ dx2],

=
1

2!
[dx2 ∧ dx3 − dx3 ∧ dx2],

=
1

2!
[dx2 ∧ dx3 + dx2 ∧ dx3],

= dx2 ∧ dx3.

We leave it to the reader to complete the computation of the action of the ?
operator on the other basis forms. The results are

?dx1 = +dx2 ∧ dx3,
?dx2 = −dx1 ∧ dx3,
?dx3 = +dx1 ∧ dx2, (2.97)

?(dx2 ∧ dx3) = dx1,

?(−dx3 ∧ dx1) = dx2,

?(dx1 ∧ dx2) = dx3, (2.98)

and
? (dx1 ∧ dx2 ∧ dx3) = 1. (2.99)

In particular, if f : R3 −→ R is any 0-form (a function), then,

?f = f(dx1 ∧ dx2 ∧ dx3),

= fdV, (2.100)

where dV is the volume form.

2.4.5 Example Let α = a1dx
1a2dx

2 + a3dx
3, and β = b1dx

1b2dx
2 + b3dx

3.
Then,

?(α ∧ β) = (a2b3 − a3b2) ? (dx2 ∧ dx3) + (a1b3 − a3b1) ? (dx1 ∧ dx3) +

(a1b2 − a2b1) ? (dx1 ∧ dx2),

= (a2b3 − a3b2)dx1 + (a1b3 − a3b1)dx2 + (a1b2 − a2b1)dx3,

= (a× b)i dx
i. (2.101)

The previous examples provide some insight on the action of the ∧ and ? opera-
tors. If one thinks of the quantities dx1, dx2 and dx3 as analogous to~i, ~j and ~k,
then it should be apparent that equations (2.97) are the differential geometry
versions of the well-known relations

i = j× k,

j = −i× k,

k = i× j.
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2.4.6 Example In Minkowski space the collection of all 2-forms has dimen-
sion

(
4
2

)
= 6. The Hodge ? operator in this case splits Ω2(M1,3) into two 3-dim

subspaces Ω2
±, such that ? : Ω2

± −→ Ω2
∓.

More specifically, Ω2
+ is spanned by the forms {dx0∧dx1, dx0∧dx2, dx0∧dx3},

and Ω2
− is spanned by the forms {dx2∧dx3,−dx1∧dx3, dx1∧dx2}. The action

of ? on Ω2
+ is

?(dx0 ∧ dx1) = 1
2ε

01
kldx

k ∧ dxl = −dx2 ∧ dx3,
?(dx0 ∧ dx2) = 1

2ε
02
kldx

k ∧ dxl = +dx1 ∧ dx3,
?(dx0 ∧ dx3) = 1

2ε
03
kldx

k ∧ dxl = −dx1 ∧ dx2,

and on Ω2
−,

?(+dx2 ∧ dx3) = 1
2ε

23
kldx

k ∧ dxl = dx0 ∧ dx1,
?(−dx1 ∧ dx3) = 1

2ε
13
kldx

k ∧ dxl = dx0 ∧ dx2,
?(+dx1 ∧ dx2) = 1

2ε
12
kldx

k ∧ dxl = dx0 ∧ dx3.

In verifying the equations above, we recall that the Levi-Civita symbols that
contain an index with value 0 in the up position have an extra minus sign as
a result of raising the index with η00. If F ∈ Ω2(M), we will formally write
F = F+ + F−, where F± ∈ Ω2

±. We would like to note that the action of the
dual operator on Ω2(M) is such that ? : Ω2(M) −→ Ω2(M), and ?2 = −1. In a
vector space a map like ?, with the property ?2 = −1 is called a linear involution
of the space. In the case in question, Ω2

± are the eigenspaces corresponding to
the +1 and -1 eigenvalues of this involution. It is also worthwhile to calculate
the duals of 1-forms in M1,3. The results are,

?dt = −dx1 ∧ dx2 ∧ dx3,
?dx1 = +dx2 ∧ dt ∧ dx3,
?dx2 = +dt ∧ dx1 ∧ dx3,
?dx3 = +dx1 ∧ dt ∧ dx2. (2.102)

2.4.2 Laplacian

Classical differential operators that enter in Green’s and Stokes’ theorems
are better understood as special manifestations of the exterior differential and
the Hodge ? operators in R3. Here is precisely how this works:

1. Let f : R3 −→ R be a C∞ function. Then

df =
∂f

∂xj
dxj = ∇f · dx. (2.103)

2. Let α = Aidx
i be a 1-form in R3. Then

(?d)α =
1

2
(
∂Ai
∂xj
− ∂Ai
∂xj

) ? (dxi ∧ dxj)

= (∇×A) · dS. (2.104)



72 CHAPTER 2. DIFFERENTIAL FORMS

3. Let α = B1dx
2 ∧ dx3 + B2dx

3 ∧ dx1 + B3dx
1 ∧ dx2 be a 2-form in R3.

Then

dα = (
∂B1

∂x1
+
∂B2

∂x2
+
∂B3

∂x3
) dx1 ∧ dx2 ∧ dx3

= (∇ ·B) dV. (2.105)

4. Let α = Bidx
i, then

(?d?) α = ∇ ·B. (2.106)

5. Let f be a real valued function. Then the Laplacian is given by:

(? d ?) df = ∇ · ∇f = ∇2f. (2.107)

The Laplacian definition here is consistent with 2.94 because in the case of a
function f , that is, a 0-form, δf = 0 so ∆f = δdf . The results above can be
summarized in terms of short exact sequence called the de Rham complex as
shown in figure 2.4. The sequence is called exact because successive application
of the differential operator gives zero. That is, d ◦ d = 0. Since there are no
4-forms in R3, the sequence terminates as shown. If one starts with a function

Fig. 2.4: de Rham Complex in R3

in Ω0(R3), then (d ◦ d)f = 0 just says that ∇ × ∇f = 0, as in the case of
conservative vector fields. If instead, one starts with a one form α in Ω1(R3),
corresponding to a vector field A, then (d ◦ d)α = 0 says that ∇ · (∇×A) = 0,
as in the case of incompressible vector fields. If one starts with a function, but
instead of applying the differential twice consecutively, one “hops” in between
with the Hodge operator, the result is the Laplacian of the function.

If we denote by R a simply connected closed region in Euclidean space
whose boundary is δR , then in terms of forms, the fundamental theorem of
calculus, Stokes’ theorem (See ref 2.81), and the divergence theorem in R3 can
be expressed by a single generalized Stokes’ theorem.∫

δR

ω =

∫ ∫
R

dω. (2.108)

We find it irresistible to point out that if one defines a complex one-form,

ω = f(z) dz, (2.109)

where f(z) = u(x, y) + iv(x, y), and where one assumes that u, v are differen-
tiable with continuous derivatives, then the conditions introduced in equation
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2.96 are equivalent to requiring that dω = 0. In other words, if the form is
closed, then u and v satisfy the Cauchy-Riemann equations. Stokes’ theorem
then tells us that in a contractible region with boundary C, the line integral∫

C

ω =

∫
C

f(z) dz = 0.

This is Cauchy’s integral theorem. We should also point out the tantalizing
resemblance of equations 2.96 to Maxwell’s equations in the section that follows.

2.4.3 Maxwell Equations

The classical equations of Maxwell describing electromagnetic phenomena
are

∇ ·E = 4πρ ∇×B = 4πJ +
∂E

∂t

∇ ·B = 0 ∇×E = −∂B
∂t
, (2.110)

where we are using Gaussian units with c = 1. We would like to formulate
these equations in the language of differential forms. Let xµ = (t, x1, x2, x3) be
local coordinates in Minkowski’s space M1,3. Define the Maxwell 2-form F by
the equation

F =
1

2
Fµνdx

µ ∧ dxν , (µ, ν = 0, 1, 2, 3), (2.111)

where

Fµν =


0 −Ex −Ey −Ey

Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0

 . (2.112)

Written in complete detail, Maxwell’s 2-form is given by

F = −Exdt ∧ dx1 − Eydt ∧ dx2 − Ezdt ∧ dx3 +

Bzdx
1 ∧ dx2 −Bydx1 ∧ dx3 +Bxdx

2 ∧ dx3. (2.113)

We also define the source current 1-form

J = Jµdx
µ = ρdt+ J1dx

1 + J2dx
2 + J3dx

3. (2.114)

2.4.7 Proposition Maxwell’s Equations (2.110) are equivalent to the equa-
tions

dF = 0,

d ? F = 4π ? J. (2.115)

Proof The proof is by direct computation using the definitions of the exterior
derivative and the Hodge ? operator.
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dF = −∂Ex
∂x2

∧ dx2 ∧ dt ∧ dx1 − ∂Ex
∂x3

∧ dx3 ∧ dt ∧ dx1 +

−∂Ey
∂x1

∧ dx1 ∧ dt ∧ dx2 − ∂Ey
∂x3

∧ dx3 ∧ dt ∧ dx2 +

−∂Ez
∂x1

∧ dx1 ∧ dt ∧ dx3 − ∂Ez
∂x2

∧ dx2 ∧ dt ∧ dx3 +

∂Bz
∂t
∧ dt ∧ dx1 ∧ dx2 − ∂Bz

∂x3
∧ dx3 ∧ dx1 ∧ dx2 −

∂By
∂t
∧ dt ∧ dx1 ∧ dx3 − ∂By

∂x2
∧ dx2 ∧ dx1 ∧ dx3 +

∂Bx
∂t
∧ dt ∧ dx2 ∧ dx3 +

∂Bx
∂x1

∧ dx1 ∧ dx2 ∧ dx3.

Collecting terms and using the antisymmetry of the wedge operator, we get

dF = (
∂Bx
∂x1

+
∂By
∂x2

+
∂Bz
∂x3

) dx1 ∧ dx2 ∧ dx3 +

(
∂Ey
∂x3

− ∂Ez
∂x2

− ∂Bx
∂t

) dx2 ∧ dt ∧ dx3 +

(
∂Ez
∂x1

− ∂Ex
∂dx3

− ∂By
∂t

) dt ∧ dx1 ∧ x3 +

(
∂Ex
∂x2

− ∂Ey
∂x1

− ∂Bz
∂t

) dx1 ∧ dt ∧ dx2.

Therefore, dF = 0 iff
∂Bx
∂x1

+
∂By
∂x2

+
∂By
∂x3

= 0,

which is the same as
∇ ·B = 0,

and

∂Ey
∂x3

− ∂Ez
∂x2

− ∂Bx
∂t

= 0,

∂Ez
∂x1

− ∂Ex
∂x3

− ∂By
∂t

= 0,

∂Ex
∂x2

− ∂Ey
∂x1

− ∂Bz
∂t

= 0,

which means that

−∇×E− ∂B

∂t
= 0. (2.116)

To verify the second set of Maxwell equations, we first compute the dual of the
current density 1-form (2.114) using the results from example 2.4.1. We get

?J = [−ρdx1∧dx2∧dx3+J1dx
2∧dt∧dx3+J2dt∧dx1∧dx3+J3dx

1∧dt∧dx2].
(2.117)
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We could now proceed to compute d ? F , but perhaps it is more elegant to
notice that F ∈ Ω2(M), and so, according to example (2.4.1), F splits into
F = F+ +F−. In fact, we see from (2.112) that the components of F+ are those
of −E and the components of F− constitute the magnetic field vector B. Using
the results of example (2.4.1), we can immediately write the components of ?F :

?F =
1

2!
Bxdt ∧ dx1 +Bydt ∧ dx2 +Bzdt ∧ dx3 +

Ezdx
1 ∧ dx2 − Eydx1 ∧ dx3 + Exdx

2 ∧ dx3], (2.118)

or equivalently,

F ?µν =


0 Bx By By

−Bx 0 Ez −Ey
−By −Ez 0 Ex
−Bz Ey −Ex 0

 . (2.119)

Effectively, the dual operator amounts to exchanging

E 7−→ −B

B 7−→ +E,

in the left hand side of the first set of Maxwell equations. We infer from
equations (2.116) and (2.117) that

∇ ·E = 4πρ

and

∇×B− ∂E

∂t
= 4πJ.

Most standard electrodynamic textbooks carry out the computation entirely
tensor components, To connect with this approach, we should mention that it
Fµν represents the electromagnetic tensor, then the dual tensor is

F ?µν =

√
det g

2
εµνστF

στ . (2.120)

Since dF = 0, in a contractible region there exists a one form A such that
F = dA. The form A is called the 4-vector potential. The components of A are,

A = Aµ dx
µ,

Aµ = (φ,A) (2.121)

where φ is the electric potential and A the magnetic vector potential. The
components of the electromagnetic tensor F are given by

Fµν =
∂Aν
∂xµ

− ∂Aµ
∂xν

. (2.122)

The classical electromagnetic Lagrangian is

L
EM

= −1

4
FµνF

µν + JµAµ, (2.123)
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with corresponding Euler-Lagrange equations

∂

∂xµ

[
∂L
∂Aµ
∂Aν

]
− ∂L

∂Aµ
= 0. (2.124)

To carry out the computation we first use the Minkowski to write the Lagrangian
with the indices down. The key is to keep in mind that Aµ,ν are treated as
independent variables, so the derivatives of Aα,β vanish unless µ = α and
ν = β. We get,

∂L

∂(Aµ,ν)
= −1

4

∂L

∂(Aµ,ν)
(FαβF

αβ),

= −1

4

∂L

∂(Aµ,ν)
(FαβFλση

αληβσ),

= −1

4
ηαληβσ[Fαβ(δµλδ

µ
σ − δµσδ

µ
λ) + Fλσ(δµαδ

µ
β − δ

µ
βδ
µ
α),

= −1

4
[ηαµηβνFαβ + ηµληνσFλσ − ηανηβµFαβ − ηνληµσ(Fλσ],

= −1

4
[Fµν + Fµν − F νµ − F νµ],

= −Fµν .

On the other hand,
∂L

∂Aµ
= Jν .

Therefore, the field equations are

∂

∂xµ
Fµν = Jµ. (2.125)

The dual equations equivalent to the other pair of Maxwell equations is

∂

∂xµ
? Fµν = 0.

In the gauge theory formulation of classical electrodynamics, the invariant ex-
pression for the Lagrangian is the square of the norm of the field F under the
induced inner product

< F,F >= −
∫

(F ∧ ?F ) dΩ. (2.126)

This the starting point to generalize to non-Abelian gauge theories.



Chapter 3

Connections

3.1 Frames

This chapter is dedicated to professor Arthur Fischer. In my second year as
an undergraduate at Berkeley, I took the undergraduate course in differential
geometry which to this day is still called Math 140. The driving force in my
career was trying to understand the general theory of relativity, which was only
available at the graduate level. However, the graduate course (Math 280 at the
time) read that the only prerequisite was Math 140. So I got emboldened and
enrolled in the graduate course taught that year by Dr. Fischer. The required
book for the course was the classic by Adler, Bazin, Schiffer. I loved the book;
it was definitely within my reach and I began to devour the pages with the great
satisfaction that I was getting a grasp of the mathematics and the physics. On
the other hand, I was completely lost in the course. It seemed as if it had
nothing to do with the material I was learning on my own. Around the third
week of classes, Dr. Fischer went through a computation with these mysterious
operators, and upon finishing the computation he said if we were following, he
had just derived the formula for the Christoffel symbols. Clearly, I was not
following, they looked nothing like the Christoffel symbols I had learned from
the book. So, with great embarrassment I went to his office and explained my
predicament. He smiled, apologized when he did not need to, and invited me to
1-1 sessions for the rest of the two-semester course. That is how I got through
the book he was really using, namely Abraham-Marsden. I am forever grateful.

As noted in Chapter 1, the theory of curves in R3 can be elegantly for-
mulated by introducing orthonormal triplets of vectors which we called Frenet
frames. The Frenet vectors are adapted to the curves in such a manner that the
rate of change of the frame gives information about the curvature of the curve.
In this chapter we will study the properties of arbitrary frames and their cor-
responding rates of change in the direction of the various vectors in the frame.
These concepts will then be applied later to special frames adapted to surfaces.

3.1.1 Definition A coordinate frame in Rn is an n-tuple of vector fields
{e1, . . . , en} which are linearly independent at each point p in the space.

77
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In local coordinates {x1, . . . , xn}, we can always express the frame vectors
as linear combinations of the standard basis vectors

ei =

n∑
j=1

Aji
∂

∂xj
= ∂jA

j
i, (3.1)

where ∂j = ∂
∂xj . Placing the basis vectors ∂j on the left is done to be consistent

with the summation convention, keeping in mind that the differential operators
do not act on the matrix elements. We assume the matrix A = (Aji) to be
nonsingular at each point. In linear algebra, this concept is called a change
of basis, the difference being that in our case, the transformation matrix A
depends on the position. A frame field is called orthonormal if at each point,

< ei, ej >= δij . (3.2)

Throughout this chapter, we will assume that all frame fields are orthonormal.
Whereas this restriction is not necessary, it is convenient because it results in
considerable simplification in computions.

3.1.2 Proposition If {e1, . . . , en} is an orthonormal frame, then the trans-
formation matrix is orthogonal (ie, AAT = I)

Proof The proof is by direct computation. Let ei = ∂jA
j
i. Then

δij = < ei, ej >,

= < ∂kA
k
i, ∂lA

l
j >,

= AkiA
l
j < ∂k, ∂l >,

= AkiA
l
jδkl,

= AkiAkj ,

= Aki(A
T )jk.

Hence

(AT )jkA
k
i = δij ,

(AT )jkA
k
i = δji,

ATA = I.

Given a frame {ei}, we can also introduce the corresponding dual coframe
forms θi by requiring that

θi(ej) = δij . (3.3)

Since the dual coframe is a set of 1-forms, they can also be expressed in local
coordinates as linear combinations

θi = Bikdx
k.
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It follows from equation( 3.3), that

θi(ej) = Bikdx
k(∂lA

l
j),

= BikA
l
jdx

k(∂l),

= BikA
l
jδ
k
l,

δij = BikA
k
j .

Therefore, we conclude that BA = I, so B = A−1 = AT . In other words, when
the frames are orthonormal, we have

ei = ∂kA
k
i,

θi = Aikdx
k. (3.4)

3.1.3 Example Consider the transformation from Cartesian to cylindrical
coordinates:

x = r cos θ, y = r sin θ, z = z. (3.5)

Using the chain rule for partial derivatives, we have

∂

∂r
= cos θ

∂

∂x
+ sin θ

∂

∂y
,

∂

∂θ
= −r sin θ

∂

∂x
+ r cos θ

∂

∂y
,

∂

∂z
=

∂

∂z
.

The vectors ∂
∂r , and ∂

∂z are clearly unit vectors.

To make the vector ∂
∂θ a unit vector, it suffices to divide it by its length r.

We can then compute the dot products of each pair of vectors and easily verify
that the quantities

e1 =
∂

∂r
, e2 =

1

r

∂

∂θ
, e3 =

∂

∂z
, (3.6)

are a triplet of mutually orthogonal unit vectors and thus constitute an or-
thonormal frame. The surfaces with constant value for the coordinates r, θ and
z respectively, represent a set of mutually orthogonal surfaces at each point.
The frame vectors at a point are normal to these surfaces as shown in figure
3.1. Physicists often refer to these frame vectors as {r̂, θ̂, ẑ}, or as {er, eθ, ez.}.

3.1.4 Example For spherical coordinates (2.30)

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ,
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Fig. 3.1: Cylindrical and Spherical Frames.

the chain rule leads to

∂

∂r
= sin θ cosφ

∂

∂x
+ sin θ sinφ

∂

∂y
+ cos θ

∂

∂z
,

∂

∂θ
= r cos θ cosφ

∂

∂x
+ r cos θ sinφ

∂

∂y
− r sin θ

∂

∂z
,

∂

∂φ
= −r sin θ sinφ

∂

∂x
+ r sin θ cosφ

∂

∂y
.

The vector ∂
∂r is of unit length but the other two need to be normalized. As

before, all we need to do is divide the vectors by their magnitude. For ∂
∂θ , we

divide by r and for ∂
∂φ , we divide by r sin θ. Taking the dot products of all pairs

and using basic trigonometric identities, one can verify that we again obtain an
orthonormal frame.

e1 = er =
∂

∂r
, e2 = eθ =

1

r

∂

∂θ
, e3 = eϕ =

1

r sin θ

∂

∂φ
. (3.7)

Furthermore, the frame vectors are normal to triply orthogonal surfaces, which
in this case are spheres, cones and planes, as shown in figure 3.1. The fact that
the chain rule in the two situations above leads to orthonormal frames is not
coincidental. The results are related to the orthogonality of the level surfaces
xi = constant. Since the level surfaces are orthogonal whenever they intersect,
one expects the gradients of the surfaces to also be orthogonal. Transformations
of this type are called triply orthogonal systems.

3.2 Curvilinear Coordinates

Orthogonal transformations, such as spherical and cylindrical coordinates,
appear ubiquitously in mathematical physics, because the geometry of many
problems in this discipline exhibit symmetry with respect to an axis or to the
origin. In such situations, transformations to the appropriate coordinate sys-
tem often result in considerable simplification of the field equations involved
in the problem. It has been shown that the Laplace operator that appears
in the potential, heat, wave, and Schrödinger field equations, is separable in
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exactly twelve orthogonal coordinate systems. A simple and efficient method
to calculate the Laplacian in orthogonal coordinates can be implemented using
differential forms.

3.2.1 Example In spherical coordinates the differential of arc length is given
by (see equation 2.31) the metric:

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2.

Let

θ1 = dr,

θ2 = rdθ,

θ3 = r sin θdφ. (3.8)

Note that these three 1-forms constitute the dual coframe to the orthonormal
frame derived in equation( 3.7). Consider a scalar field f = f(r, θ, φ). We
now calculate the Laplacian of f in spherical coordinates using the methods of
section 2.4.2. To do this, we first compute the differential df and express the
result in terms of the coframe.

df =
∂f

∂r
dr +

∂f

∂θ
dθ +

∂f

∂φ
dφ,

=
∂f

∂r
θ1 +

1

r

∂f

∂θ
θ2 +

1

r sin θ

∂f

∂φ
θ3.

The components df in the coframe represent the gradient in spherical coordi-
nates. Continuing with the scheme of section 2.4.2, we next apply the Hodge
? operator. Then, we rewrite the resulting 2-form in terms of wedge products
of coordinate differentials so that we can apply the definition of the exterior
derivative.

?df =
∂f

∂r
θ2 ∧ θ3 − 1

r

∂f

∂θ
θ1 ∧ θ3 +

1

r sin θ

∂f

∂φ
θ1 ∧ θ2,

= r2 sin θ
∂f

∂r
dθ ∧ dφ− r sin θ

1

r

∂f

∂θ
dr ∧ dφ+ r

1

r sin θ

∂f

∂φ
dr ∧ dθ,

= r2 sin θ
∂f

∂r
dθ ∧ dφ− sin θ

∂f

∂θ
dr ∧ dφ+

1

sin θ

∂f

∂φ
dr ∧ dθ,

d ? df =
∂

∂r
(r2 sin θ

∂f

∂r
)dr ∧ dθ ∧ dφ− ∂

∂θ
(sin θ

∂f

∂θ
)dθ ∧ dr ∧ dφ+

1

sin θ

∂

∂φ
(
∂f

∂φ
)dφ ∧ dr ∧ dθ,

=

[
sin θ

∂

∂r
(r2

∂f

∂r
) +

∂

∂θ
(sin θ

∂f

∂θ
) +

1

sin θ

∂2f

∂φ2

]
dr ∧ dθ ∧ dφ.

Finally, rewriting the differentials back in terms of the coframe, we get

d ? df =
1

r2 sin θ

[
sin θ

∂

∂r
(r2

∂f

∂r
) +

∂

∂θ
(sin θ

∂f

∂θ
) +

1

sin θ

∂2f

∂φ2

]
θ1 ∧ θ2 ∧ θ3.
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Therefore, the Laplacian of f is given by

∇2f =
1

r2
∂

∂r

[
r2
∂f

∂r

]
+

1

r2

[
1

sin θ

∂

∂θ
(sin θ

∂f

∂θ
) +

1

sin2 θ

∂2f

∂φ2

]
. (3.9)

The derivation of the expression for the spherical Laplacian by differential forms
is elegant and leads naturally to the operator in Sturm-Liouville form.

The process above can be carried out for general orthogonal transformations.
A change of coordinates xi = xi(uk) leads to an orthogonal transformation if
in the new coordinate system uk, the line metric

ds2 = g11(du1)2 + g22(du2)2 + g33(du3)2 (3.10)

only has diagonal entries. In this case, we choose the coframe

θ1 =
√
g11du

1 = h1du
1,

θ2 =
√
g22du

2 = h2du
2,

θ3 =
√
g33du

3 = h3du
3.

Classically, the quantities {h1, h2, h3} are called the weights. Please note that,
in the interest of connecting to classical terminology, we have exchanged two
indices for one and this will cause small discrepancies with the index summation
convention. We will revert to using a summation symbol when these discrep-
ancies occur. To satisfy the duality condition θi(ej) = δij , we must choose the
corresponding frame vectors ei as follows:

e1 =
1
√
g11

∂

∂u1
=

1

h1

∂

∂u1
,

e2 =
1
√
g22

∂

∂u2
=

1

h2

∂

∂u2
,

e3 =
1
√
g33

∂

∂u3
=

1

h3

∂

∂u3
.

Gradient. Let f = f(xi) and xi = xi(uk). Then

df =
∂f

∂xk
dxk,

=
∂f

∂ui
∂ui

∂xk
dxk,

=
∂f

∂ui
dui,

=
∑
i

1

hi
∂f

∂ui
θi.

= ei(f)θi.

As expected, the components of the gradient in the coframe θi are the just the
frame vectors.

∇ =

(
1

h1

∂

∂u1
,

1

h2

∂

∂u2
,

1

h3

∂

∂u3

)
. (3.11)
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Curl. Let F = (F1, F2, F3) be a classical vector field. Construct the corre-
sponding 1-form F = Fiθ

i in the coframe. We calculate the curl using the dual
of the exterior derivative.

F = F1θ
1 + F2θ

2 + F3θ
3,

= (h1F1)du1 + (h2F2)du2 + (h3F3)du3,

= (hF )idu
i, where (hF )i = hiFi.

dF =
1

2

[
∂(hF )i
∂uj

− ∂(hF )j
∂ui

]
dui ∧ duj ,

=
1

hihj

[
∂(hF )i
∂uj

− ∂(hF )j
∂ui

]
dθi ∧ dθj .

?dF = εijk

[
1

hihj
[
∂(hF )i
∂uj

− ∂(hF )j
∂ui

]

]
θk = (∇× F )kθ

k.

Thus, the components of the curl are(
1

h2h3
[
∂(h3F3)

∂u2
− ∂(h2F2)

∂u3
],

1

h1h3
[
∂(h3F3)

∂u1
− ∂(h1F1)

∂u3
],

1

h1h2
[
∂(h1F1)

∂u2
− ∂(h2F2)

∂u1
]

)
.

Divergence. As before, let F = Fiθ
i and recall that ∇ · F = ?d ? F . The

computation yields

F = F1θ
1 + F2θ

2 + F3θ
3

?F = F1θ
2 ∧ θ3 + F2θ

3 ∧ θ1 + F3θ
1 ∧ θ2

= (h2h3F1)du2 ∧ du3 + (h1h3F2)du3 ∧ du1 + (h1h2F3)du1 ∧ du2

d ? dF =

[
∂(h2h3F1)

∂u1
+
∂(h1h3F2)

∂u2
+
∂(h1h2F3)

∂u3

]
du1 ∧ du2 ∧ du3.

Therefore,

∇ · F = ?d ? F =
1

h1h2h3

[
∂(h2h3F1)

∂u1
+
∂(h1h3F2)

∂u2
+
∂(h1h2F3)

∂u3

]
. (3.12)

3.3 Covariant Derivative

In this section we introduce a generalization of directional derivatives. The
directional derivative measures the rate of change of a function in the direction
of a vector. We seek a quantity which measures the rate of change of a vector
field in the direction of another.

3.3.1 Definition Given a pair (X,Y ) of arbitrary vector field in Rn, we
associate a new vector field ∇XY , so that ∇X : X (Rn) −→ X (Rn). The
quantity ∇ called a Koszul connection if it satisfies the following properties:

1. ∇fX(Y ) = f∇XY,

2. ∇(X1+X2)Y = ∇X1
Y +∇X2

Y,
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3. ∇X(Y1 + Y2) = ∇XY1 +∇XY2,

4. ∇XfY = X(f)Y + f∇XY,

for all vector fields X,X1, X2, Y, Y1, Y2 ∈ X (Rn) and all smooth functions f .
Implicit in the properties, we set ∇Xf = X(f). The definition states that the
map ∇X is linear on X but behaves as a linear derivation on Y. For this reason,
the quantity ∇XY is called the covariant derivative of Y in the direction of X.

3.3.2 Proposition Let Y = f i ∂
∂xi be a vector field in Rn , and let X another

C∞ vector field. Then the operator given by

∇XY = X(f i)
∂

∂xi
(3.13)

defines a Koszul connection.
Proof The proof just requires verification that the four properties above are
satisfied, and it is left as an exercise.

The operator defined in this proposition is the standard connection compat-
ible with the Euclidean metric. The action of this connection on a vector field
Y yields a new vector field whose components are the directional derivatives of
the components of Y .

3.3.3 Example Let

X = x
∂

∂x
+ xz

∂

∂y
, Y = x2

∂

∂x
+ xy2

∂

∂y
.

Then,

∇XY = X(x2)
∂

∂x
+X(xy2)

∂

∂y
,

= [x
∂

∂x
(x2) + xz

∂

∂y
(x2)]

∂

∂x
+ [x

∂

∂x
(xy2) + xz

∂

∂y
(xy2)]

∂

∂y
,

= 2x2
∂

∂x
+ (xy2 + 2x2yz)

∂

∂y
.

3.3.4 Definition A Koszul connection ∇X is compatible with the metric
g(Y,Z) if

∇X < Y,Z >=< ∇XY,Z > + < Y,∇XZ > . (3.14)

if F : Rn → Rn is an isometry so that < F∗X,F∗Y >=< X,Y >, then it is
connection preserving in the sense

F∗(∇XY ) = ∇F∗XF∗y. (3.15)

In Euclidean space, the components of the standard frame vectors are constant,
and thus their rates of change in any direction vanish. Let ei be arbitrary frame
field with dual forms θi. The covariant derivatives of the frame vectors in the
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directions of a vector X will in general yield new vectors. The new vectors must
be linear combinations of the basis vectors as follows:

∇Xe1 = ω1
1(X)e1 + ω2

1(X)e2 + ω3
1(X)e3,

∇Xe2 = ω1
2(X)e1 + ω2

2(X)e2 + ω3
2(X)e3,

∇Xe3 = ω1
3(X)e1 + ω2

3(X)e2 + ω3
3(X)e3. (3.16)

The coefficients can be more succinctly expressed using the compact index no-
tation,

∇Xei = ejω
j
i(X). (3.17)

It follows immediately that

ωji(X) = θj(∇Xei). (3.18)

Equivalently, one can take the inner product of both sides of equation (3.17)
with ek to get

< ∇Xei, ek > = < ejω
j
i(X), ek >

= ωji(X) < ej , ek >

= ωji(X)gjk

Hence,
< ∇Xei, ek >= ωki(X) (3.19)

The left-hand side of the last equation is the inner product of two vectors,
so the expression represents an array of functions. Consequently, the right-
hand side also represents an array of functions. In addition, both expressions
are linear on X, since by definition, ∇X is linear on X. We conclude that the
right-hand side can be interpreted as a matrix in which each entry is a 1-forms
acting on the vector X to yield a function. The matrix valued quantity ωij is
called the connection form. Sacrificing some inconsistency with the formalism of
differential forms for the sake of connecting to classical notation, we sometimes
write the above equation as

< dei, ek >= ωki, (3.20)

where {ei} are vector calculus vectors forming an orthonormal basis.

3.3.5 Definition Let ∇X be a Koszul connection and let {ei} be a frame.
The Christoffel symbols associated with the connection in the given frame are
the functions Γkij given by

∇eiej = Γkijek (3.21)

The Christoffel symbols are the coefficients that give the representation of the
rate of change of the frame vectors in the direction of the frame vectors them-
selves. Many physicists therefore refer to the Christoffel symbols as the connec-
tion, resulting in possible confusion. The precise relation between the Christoffel
symbols and the connection 1-forms is captured by the equations,

ωki(ej) = Γkij , (3.22)
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or equivalently

ωki = Γkijθ
j . (3.23)

In a general frame in Rn there are n2 entries in the connection 1-form and n3

Christoffel symbols. The number of independent components is reduced if one
assumes that the frame is orthonormal.
If T = T iei is a general vector field, then

∇ejT = ∇ej (T iei)
= T i,j ei + T iΓkjiek

= (T i,j + T kΓijk)ei, (3.24)

which is denoted classically as the covariant derivative

T i‖j = T i,j + ΓijkT
k. (3.25)

Here, the comma in the subscript means regular derivative. The equation above
is also commonly written as

∇ejT i = ∇jT i = T i,j + ΓijkT
k,

We should point out the accepted but inconsistent use of terminology. What is
meant by the notation ∇jT i above is not the covariant derivative of the vector
but the tensor components of the covariant derivative of the vector; one more
reminder that most physicists conflate a tensor with its components.

3.3.6 Proposition Let {ei} be an orthonormal frame and ∇X be a Koszul
connection compatible with the metric . Then

ωji = −ωij (3.26)

Proof Since it is given that < ei, ej >= δij , we have

0 = ∇X < ei, ej >,

= < ∇Xei, ej > + < ei,∇Xej >,
= < ωkiek, ej > + < ei, ω

k
jek >,

= ωki < ek, ej > +ωkj < ei, ek >,

= ωkigkj + ωkjgik,

= ωji + ωij .

thus proving that ω is indeed antisymmetric.
The covariant derivative can be extended to the full tensor field T r

s (Rn) by
requiring that

a) ∇X : T r
s (Rn)→ T r

s (Rn),
b) ∇X(T1 ⊗ T2) = ∇XT1 ⊗ T2 + T1 ⊗∇XT2,
c) ∇X commutes with all contractions, ∇X(CT ) = C(∇X).
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Let us compute the covariant derivative of a one-form ω with respect to vector
field X. The contraction of ω ⊗ Y is the function iY ω = ω(Y ). Taking the
covariant derivative, we have,

∇X(ω(Y )) = (∇Xω)(Y )− ω(∇XY ),

X(ω(Y )) = (∇Xω)(Y )− ω(∇XY ).

Hence, the coordinate-free formula for the covariant derivative of one-form is,

(∇Xω)(Y ) = X(ω(Y ))− ω(∇XY ). (3.27)

Let θi be the dual forms to ei. We have

∇X(θi ⊗ ej) = ∇Xθi ⊗ ej + θi ⊗∇Xej .

The contraction of iejθ
i = θi(ej) = δij , Hence, taking the contraction of the

equation above, we see that the left-hand side becomes 0, and we conclude
that,

(∇Xθi)(ej) = −θi(∇Xej). (3.28)

Let ω = Tiθ
i. Then,

(∇Xω)(ej) = (∇X(Tiθ
i))(ej),

= X(Ti)θ
i(ej) + Ti(∇Xθi)(ej),

= X(Tj)− Tiθi(∇Xej). (3.29)

If we now set X = ek, we get,

(∇ekω)(ei) = Tj,k − Tiθi(Γlkjel),
= Tj,k − TiδilΓlkj ,
= Tj,k − ΓijkTi.

Classically, we write

∇kTj = Tj‖k = Tj,k − ΓijkTi. (3.30)

In general, let T be a tensor of type
(
r
s

)
,

T = T i1,...,irj1,...,js
ei1 ⊗ · · · ⊗ eir ⊗ θj1 ⊗ . . . θjs . (3.31)

Since we know how to take the covariant derivative of a function, a vector,
and a one form, we can use Leibnitz rule for tensor products and property of
the covariant derivative commuting with contractions, to get by induction, a
formula for the covariant derivative of an

(
r
s

)
-tensor,

(∇XT )(θi1 , ..., θir , ej1 , ...ejs) = X(T (θi1 , ..., θir , ej1 , ..., ejs))

− T (∇Xθi1 , ..., θir , ej1 , ..., ejs)− · · · − T (θi1 , ...,∇Xθir , ej1 , ..., ejs)...

− T (θi1 , ..., θir ,∇Xej1 , ..., ejs)− · · · − T (θi1 , ..., θir , ej1 , ...,∇Xejs).
(3.32)
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The covariant derivative picks up a term with a positive Christoffel symbol
factor for each contravariant index and a term with a negative Christoffel sym-
bol factor for each covariant index. Thus, for example, for a

(
1
2

)
tensor, be

components of the covariant derivative in classical notation are

∇lT ijk = T ijk‖l = T ijk,l + ΓilhT
h
jk − ΓhjlT

i
hk − ΓhklT

i
hj . (3.33)

In particular, if g is the metric tensor and X,Y, Z vector fields, we have

(∇Xg)(Y,Z) = X(g(X,Y ))− g(∇XY, Z)− g(X,∇XZ).

Thus, if we impose the condition ∇Xg = 0, the equation above reads

∇X < Y,Z >=< ∇XY,Z > + < Y,∇XZ > . (3.34)

In other words, a connection is compatible with the metric just means that the
metric is covariantly constant along any vector field.

In an orthonormal frame in Rn the number of independent coefficients of the
connection 1-form is (1/2)n(n− 1) since by antisymmetry, the diagonal entries
are zero, and one only needs to count the number of entries in the upper tri-
angular part of the n × n matrix ωij . Similarly, the number of independent
Christoffel symbols gets reduced to (1/2)n2(n − 1). Raising one index with
gij , we find that ωij is also antisymmetric, so in R3 the connection equations
become

∇X [e1, e2, e3] = [e1, e2, e3]

 0 ω1
2(X) ω1

3(X)
−ω1

2(X) 0 ω2
3(X)

−ω1
3(X) −ω2

3(X) 0

 (3.35)

Comparing the Frenet frame equation (1.39), we notice the obvious similarity
to the general frame equations above. Clearly, the Frenet frame is a special case
in which the basis vectors have been adapted to a curve, resulting in a simpler
connection in which some of the coefficients vanish. A further simplification
occurs in the Frenet frame, since in this case the equations represent the rate
of change of the frame only along the direction of the curve rather than an
arbitrary direction vector X. To elaborate on this transition from classical to
modern notation, consider a unit speed curve β(s). Then, as we discussed in
section 1.15, we associate with the classical tangent vector T = dx

ds the vector

field T = β′(s) = dxi

ds
∂
∂xi . Let W = W (β(s)) = wj(s) ∂

∂xj be an arbitrary vector
field constrained to the curve. The rate of change of W along the curve is given
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by

∇TW = ∇
(
dxi

ds
∂
∂xi )

(wj
∂

∂xj
),

=
dxi

ds
∇ ∂
∂xi

(wj
∂

∂xj
)

=
dxi

ds

∂wj

∂xi
∂

∂xj

=
dwj

ds

∂

∂xj

= W ′(s).

3.4 Cartan Equations

Perhaps, the most important contribution to the development of modern
differential geometry, is the work of Cartan, culminating into the famous equa-
tions of structure discussed in this chapter.

First Structure Equation

3.4.1 Theorem Let {ei} be a frame with connection ωij and dual coframe
θi. Then

Θi ≡ dθi + ωij ∧ θj = 0. (3.36)

Proof Let

ei = ∂jA
j
i

be a frame, and let θi be the corresponding coframe. Since θi(ej), we have

θi = (A−1)ijdx
j .

Let X be an arbitrary vector field. Then

∇Xei = ∇X(∂jA
j
i).

ejω
j
i(X) = ∂jX(Aji),

= ∂jd(Aji)(X),

= ek(A−1)kjd(Aji)(X).

ωki(X) = (A−1)kjd(Aji)(X).

Hence,

ωki = (A−1)kjd(Aji),

or, in matrix notation,

ω = A−1dA. (3.37)
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On the other hand, taking the exterior derivative of θi, we find that

dθi = d(A−1)ij ∧ dxj ,

= d(A−1)ij ∧A
j
kθ
k,

dθ = d(A−1)A ∧ θ.

However, since A−1A = I, we have d(A−1)A = −A−1dA = −ω, hence

dθ = −ω ∧ θ. (3.38)

In other words

dθi + ωij ∧ θj = 0.

3.4.2 Example SO(2,R)
Consider the polar coordinates part of the transformation in equation 3.5.

Then the frame equations 3.6 in matrix form are given by:

[
e1, e2

]
=
[
∂
∂x ,

∂
∂y

]cos θ − sin θ

sin θ cos θ

 . (3.39)

Thus, the attitude matrix

A =

cos θ − sin θ

sin θ cos θ

 (3.40)

is a rotation matrix in R2. The set of all such matrices forms a continuous
group ( Lie group) called SO(2,R). In such cases, the matrix

ω = A−1dA (3.41)

in equation 3.37 is called the Maurer-Cartan form of the group. An easy com-
putation shows that for the rotation group SO(2), the connection form is

ω =

 0 −dθ

dθ 0

 . (3.42)

Second Structure Equation

Let θi be a coframe in Rn with connection ωij . Taking the exterior derivative
of the first equation of structure and recalling the properties (2.66), we get

d(dθi) + d(ωij ∧ θj) = 0,

dωij ∧ θj − ωij ∧ dθj = 0.
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Substituting recursively from the first equation of structure, we get

dωij ∧ θj − ωij ∧ (−ωjk ∧ θ
k) = 0,

dωij ∧ θj + ωik ∧ ωkj ∧ θj = 0,

(dωij + ωik ∧ ωkj) ∧ θj = 0,

dωij + ωik ∧ ωkj = 0.

3.4.3 Definition The curvature Ω of a connection ω is the matrix valued
2-form,

Ωij ≡ dωij + ωik ∧ ωkj . (3.43)

3.4.4 Theorem Let θ be a coframe with connection ω in Rn . Then the
curvature form vanishes:

Ω = dω + ω ∧ ω = 0. (3.44)

Proof Given that there is a non-singular matrix A such that θ = A−1dx and
ω = A−1dA, we have

dω = d(A−1) ∧ dA.

On the other hand,

ω ∧ ω = (A−1dA) ∧ (A−1dA),

= −d(A−1)A ∧A−1dA,
= −d(A−1)(AA−1) ∧ dA,
= −d(A−1) ∧ dA.

Therefore, dω = −ω ∧ ω.

There is a slight abuse of the wedge notation here. The connection ω is ma-
trix valued, so the symbol ω ∧ ω is really a composite of matrix and wedge
multiplication.

3.4.5 Example Sphere frame

The frame for spherical coordinates 3.7 in matrix form is

[er, eθ, eφ] =
[
∂
∂x ,

∂
∂y ,

∂
∂z

]sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0

 .
Hence,

A−1 =

sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

 ,
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and

dA =

cos θ cosφdθ − sin θ sinφdφ − sin θ cosφdθ − cos θ sinφdφ − cosφdφ
cos θ sinφdθ + sin θ cosφdφ − sin θ sinφdθ + cos θ cosφdφ − sinφdφ

− sin θ dθ − cos θ dθ 0

 .
Since the ω = A−1dA is antisymmetric, it suffices to compute:

ω1
2 = [− sin2 θ cos2 φ− sin2 θ sin2 φ − cos2 θ] dθ

+ [sin θ cos θ cosφ sinφ− sin θ cos θ cosφ sinφ] dφ,

= −dθ,
ω1

3 = [− sin θ cos2 φ− sin θ sin2 φ] dφ = − sin θ dφ,

ω2
3 = [− cos θ cos2 φ− cos θ sin2 φ] dφ = − cos θ dφ.

We conclude that the matrix-valued connection one form is

ω =

 0 −dθ − sin θ dφ
dθ 0 − cos θ dφ

sin θ dφ cos θ dφ 0

 .
A slicker computation of the connection form can be obtained by a method of
educated guessing working directly from the structure equations. We have that
the dual one forms are:

θ1 = dr,

θ2 = r dθ,

θ3 = r sin θ dφ.

Then

dθ2 = −dθ ∧ dr,
= −ω2

1 ∧ θ1 − ω2
3 ∧ θ3.

So, on a first iteration we guess that ω2
1 = dθ. The component ω2

3 is not nec-
essarily 0 because it might contain terms with dφ. Proceeding in this manner,
we compute:

dθ3 = sin θ dr ∧ dφ+ r cos θ dθ ∧ dφ,
= − sin θ dφ ∧ dr − cos θ dφ ∧ r dθ,
= −ω3

1 ∧ dr ∧ θ1 − ω3
2 ∧ θ2.

Now we guess that ω3
1 = sin θ dφ, and ω3

2 = cos θ dφ. Finally, we insert these
into the full structure equations and check to see if any modifications need to be
made. In this case, the forms we have found are completely compatible with the
first equation of structure, so these must be the forms. The second equations
of structure are much more straight-forward to verify. For example
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dω2
3 = d(− cos θ dφ),

= sin θ dθ ∧ dφ,
= −dθ ∧ (− sin θ dφ),

= −ω2
1 ∧ ω1

3.

Change of Basis

We briefly explore the behavior of the quantities Θi and Ωij under a change

of basis. Let ei be frame in M = Rn with dual forms θi, and let ei be another
frame related to the first frame by an invertible transformation.

ei = ejB
j
i, (3.45)

which we will write in matrix notation as e = eB. Referring back to the
definition of connections (3.17), we introduce the covariant differential ∇ which
maps vectors into vector-valued forms,

∇ : Ω0(M,TM)→ Ω1(M,TM)

given by the formula

∇ei = ej ⊗ ωji
= ejω

j
i

∇e = e ω (3.46)

where, once again, we have simplified the equation by using matrix notation.
This definition is elegant because it does not explicitly show the dependence on
X in the connection (3.17). The idea of switching from derivatives to differen-
tials is familiar from basic calculus. Consistent with equation 3.20, the vector
calculus notation for equation 3.46 would be

dei = ej ω
j
i. (3.47)

However, we point out that in the present context, the situation is much more
subtle. The operator ∇ here maps a vector field to a matrix-valued tensor of
rank

(
1
1

)
. Another way to view the covariant differential is to think of ∇ as an

operator such that if e is a frame, and X a vector field, then ∇e(X) = ∇Xe. If f
is a function, then∇f(X) = ∇Xf = df(X), so that∇f = df . In other words, ∇
behaves like a covariant derivative on vectors, but like a differential on functions.
The action of the covariant differential also extends to the entire tensor algebra,
but we do not need that formalism for now, and we delay discussion to section
6.4 on connections on vector bundles. Taking the exterior differential of (3.45)
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and using (3.46) recursively, we get

∇e = (∇e)B + e(dB)

= e ωB + e(dB)

= eB−1ωB + eB−1dB

= e[B−1ωB +B−1dB]

= e ω

provided that the connection ω in the new frame e is related to the connection
ω by the transformation law, (See 6.62)

ω = B−1ωB +B−1dB. (3.48)

It should be noted than if e is the standard frame ei = ∂i in Rn , then∇e = 0, so
that ω = 0. In this case, the formula above reduces to ω = B−1dB, showing that
the transformation rule is consistent with equation (3.37). The transformation
law for the curvature forms is,

Ω = B−1ΩB. (3.49)

A quantity transforming as in 3.49 is said to be a tensorial form of adjoint type.

3.4.6 Example Suppose that B is a change of basis consisting of a rotation
by an angle θ about e3. The transformation is a an isometry that can be
represented by the orthogonal rotation matrix

B =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (3.50)

Carrying out the computation for the change of basis 3.48, we find:

ω1
2 = ω1

2 − dθ,
ω1

3 = cos θ ω1
3 + sin θ ω2

3,

ω2
3 = − sin θ ω1

3 + cos θ ω2
3. (3.51)

The B−1dB part of the transformation only affects the ω1
2 term, and the effect

is just adding dθ much like the case of the Maurer-Cartan form for SO(2) above.



Chapter 4

Theory of Surfaces

4.1 Manifolds

4.1.1 Definition A coordinate chart or coordinate patch in M ⊂ R3 is a
differentiable map x from an open subset V of R2 onto a set U ⊂M.

x : V ⊂ R2 −→ R3

(u, v)
x7−→ (x(u, v), y(u, v), z(u, v)) (4.1)

Each set U = x(V ) is called a coordinate neighborhood of M . We require that

Fig. 4.1: Surface

the Jacobian of the map has maximal rank. In local coordinates, a coordinate
chart is represented by three equations in two variables:

xi = f i(uα), where i = 1, 2, 3, α = 1, 2. (4.2)

It will be convenient to use the tensor index formalism when appropriate, so
that we can continue to take advantage of the Einstein summation convention.
The assumption that the Jacobian J = (∂xi/∂uα) be of maximal rank allows
one to invoke the implicit function theorem. Thus, in principle, one can locally

95
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solve for one of the coordinates, say x3, in terms of the other two, to get an
explicit function

x3 = f(x1, x2). (4.3)

The loci of points in R3 satisfying the equations xi = f i(uα) can also be locally
represented implicitly by an expression of the form

F (x1, x2, x3) = 0. (4.4)

4.1.2 Definition Let Ui and Uj be two coordinate neighborhoods of a point
p ∈ M with corresponding charts x(u1, u2) : Vi −→ Ui ⊂ R3 and y(v1, v2) :
Vj −→ Uj ⊂ R3 with a non-empty intersection Ui∩Uj 6= ∅. On the overlaps, the
maps φij = x−1y are called transition functions or coordinate transformations.
(See figure 4.2 )

Fig. 4.2: Coordinate Charts

4.1.3 Definition A differentiable manifold of dimension 2, is a space M
together with an indexed collection {Uα}α∈I of coordinate neighborhoods sat-
isfying the following properties:

1. The neighborhoods {Uα} constitute an open cover M . That is, if p ∈M ,
then p belongs to some chart.

2. For any pair of coordinate neighborhoods Ui and Uj with Ui ∩ Uj 6= ∅,
the transition maps φij and their inverses are differentiable.

3. An indexed collection satisfying the conditions above is called an atlas.
We require the atlas to be maximal in the sense that it contains all possible
coordinate neighborhoods.

The overlapping coordinate patches represent different parametrizations for the
same set of points in R3. Part (2) of the definition insures that on the overlap,
the coordinate transformations are invertible. Part (3) is included for technical
reasons, although in practice the condition is superfluous. A family of coordi-
nate neighborhoods satisfying conditions (1) and (2) can always be extended to
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a maximal atlas. This can be shown from the fact that M inherits a subspace
topology consisting of open sets which are defined by the intersection of open
sets in R3 with M .

If the coordinate patches in the definition map from Rn to Rm n < m we
say that M is a n-dimensional submanifold embedded in Rm. In fact, one could
define an abstract manifold without the reference to the embedding space by
starting with a topological space M that is locally Euclidean via homeomorphic
coordinate patches and has a differentiable structure as in the definition above.
However, it turns out that any differentiable manifold of dimension n can be
embedded in R2n, as proved by Whitney in a theorem that is beyond the scope
of these notes.

A 2-dimensional manifold embedded in R3 in which the transition func-
tions are C∞, is called a smooth surface. The first condition in the definition
states that each coordinate neighborhood looks locally like a subset of R2. The
second differentiability condition indicates that the patches are joined together
smoothly as some sort of quilt. We summarize this notion by saying that a
manifold is a space that is locally Euclidean and has a differentiable structure,
so that the notion of differentiation makes sense. Of course, Rn is itself an n
dimensional manifold.

The smoothness condition on the coordinate component functions xi(uα)
implies that at any point xi(uα0 + hα) near a point xi(uα0 ) = xi(u0, v0), the
functions admit a Taylor expansion

xi(uα0 + hα) = xi(uα0 ) + hα
(
∂xi

∂uα

)
0

+
1

2!
hαhβ

(
∂2xi

∂uα∂uβ

)
0

+ . . . (4.5)

Since the parameters uα must enter independently, the Jacobian matrix

J ≡
[
∂xi

∂uα

]
=

[
∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

]
must have maximal rank. At points where J has rank 0 or 1, there is a singu-
larity in the coordinate patch.

4.1.4 Example Consider the local coordinate chart for the unit sphere ob-
tained by setting r = 1 in the equations for spherical coordinates 2.30

x(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ).

The vector equation is equivalent to three scalar functions in two variables:

x = sin θ cosφ,

y = sin θ sinφ,

z = cosφ. (4.6)

Clearly, the surface represented by this chart is part of the sphere x2+y2+z2 =
1. The chart cannot possibly represent the whole sphere because, although
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a sphere is locally Euclidean, (the earth is locally flat) there is certainly a
topological difference between a sphere and a plane. Indeed, if one analyzes the
coordinate chart carefully, one will note that at the North pole (θ = 0, z = 1,
the coordinates become singular. This happens because θ = 0 implies that
x = y = 0 regardless of the value of φ, so that the North pole has an infinite
number of labels. In this coordinate patch, the Jacobian at the North Pole does
not have maximal rank. To cover the entire sphere, one would need at least
two coordinate patches. In fact, introducing an exactly analogous patch y(u.v)
based on South pole would suffice, as long as in overlap around the equator
functions x−1y, and y−1x are smooth. One could conceive more elaborate
coordinate patches such as those used in baseball and soccer balls.

The fact that it is required to have two parameters to describe a patch on
a surface in R3 is a manifestation of the 2-dimensional nature of the surfaces.
If one holds one of the parameters constant while varying the other, then the
resulting 1-parameter equation describes a curve on the surface. Thus, for ex-
ample, letting φ = constant in equation (4.6), we get the equation of a meridian
great circle.

Fig. 4.3: Bell

4.1.5 Example Surface of revolution
Given a function f(r), the coordinate chart

x(r, φ) = (r cosφ, r sinφ, f(r)) (4.7)

represents a surface of revolution around the z-
axis in which the cross section profile has the
shape of the function. Horizontal cross-sections
are circles of radius r. In figure 4.3, we have cho-
sen the function f(r) = e−r

2

to be a Gaussian, so
the surface of revolution is bell-shaped. A lateral curve profile for φ = π/4 is
shown in black. We should point out that this parametrization of surfaces of
revolution is fairly constraining because of the requirement of z = f(r) to be a
function. Thus, for instance, the parametrization will not work for surfaces of
revolution generated by closed curves. In the next example, we illustrate how
one easily get around this constraint.

4.1.6 Example Torus
Consider the surface of revolution generated by rotating a circle C of radius r
around a parallel axis located a distance R from its center as shown in figure
4.4.
The resulting surface called a torus can be parametrized by the coordinate patch

x(u, v) = ((R+ r cosu) cos v, (R+ r cosu) sin v, r sinu). (4.8)

Here the angle u traces points around the z-axis, whereas the angle v traces
points around the circle C. (At the risk of some confusion in notation, (the
parameters in the figure are bold-faced; this is done solely for the purpose
of visibility.) The projection of a point in the surface of the torus onto the
xy-plane is located at a distance (R + r cosu) from the origin. Thus, the x
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Fig. 4.4: Torus

and y coordinates of the point in the torus are just the polar coordinates of
the projection of the point in the plane. The z-coordinate corresponds to the
height of a right triangle with radius r and opposite angle u.

4.1.7 Example Monge patch

Surfaces in R3 are first introduced in vector calculus by a function of two
variables z = f(x, y). We will find it useful for consistency to use the obvious
parametrization called an Monge patch

x(u, v) = (u, v, f(u, v)). (4.9)

4.1.8 Notation Given a parametrization of a surface in a local chart x(u, v) =
x(u1, u2) = x(uα), we will denote the partial derivatives by any of the following
notations:

xu = x1 =
∂x

∂u
, xuu = x11 =

∂2x

∂u2

xv = x2 =
∂x

∂v
, xvv = x22 =

∂2x

∂v2
,

or more succinctly,

xα =
∂x

∂uα
, xαβ =

∂2x

∂uα∂uβ
(4.10)

4.2 The First Fundamental Form

Let xi(uα) be a local parametrization of a surface. Then, the Euclidean
inner product in R3 induces an inner product in the space of tangent vectors
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at each point in the surface. This metric on the surface is obtained as follows:

dxi =
∂xi

∂uα
duα,

ds2 = δijdx
idxj ,

= δij
∂xi

∂uα
∂xj

∂uβ
duαduβ .

Thus,
ds2 = gαβdu

αduβ , (4.11)

where

gαβ = δij
∂xi

∂uα
∂xj

∂uβ
. (4.12)

We conclude that the surface, by virtue of being embedded in R3, inherits
a natural metric (4.11) which we will call the induced metric. A pair {M, g},
where M is a manifold and g = gαβdu

α⊗duβ is a metric is called a Riemannian
manifold if considered as an entity in itself, and a Riemannian submanifold
of Rn if viewed as an object embedded in Euclidean space. An equivalent
version of the metric (4.11) can be obtained by using a more traditional calculus
notation:

dx = xudu+ xvdv

ds2 = dx · dx
= (xudu+ xvdv) · (xudu+ xvdv)

= (xu · xu)du2 + 2(xu · xv)dudv + (xv · xv)dv2.

We can rewrite the last result as

ds2 = Edu2 + 2Fdudv +Gdv2, (4.13)

where

E = g11 = xu · xu
F = g12 = xu · xv

= g21 = xv · xu
G = g22 = xv · xv.

That is
gαβ = xα · xβ =< xα,xβ > .

4.2.1 Definition First fundamental form
The element of arc length,

ds2 = gαβdu
α ⊗ duβ , (4.14)

is also called the first fundamental form.
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We must caution the reader that this quantity is not a form in the sense
of differential geometry since ds2 involves the symmetric tensor product rather
than the wedge product. The first fundamental form plays such a crucial role in
the theory of surfaces that we will find it convenient to introduce a more modern
version. Following the same development as in the theory of curves, consider
a surface M defined locally by a function q = (u1, u2) 7−→ p = α(u1, u2). We
say that a quantity Xp is a tangent vector at a point p ∈ M if Xp is a linear
derivation on the space of C∞ real-valued functions F = {f |f : M −→ R} on
the surface. The set of all tangent vectors at a point p ∈M is called the tangent
space TpM . As before, a vector field X on the surface is a smooth choice of a
tangent vector at each point on the surface and the union of all tangent spaces
is called the tangent bundle TM . Sections of the tangent bundle of M are
consistently denoted by X (M). The coordinate chart map α : R2 −→ M ⊂
R3 induces a push-forward map α∗ : TR2 −→ TM which maps a vector V at
each point in Tq(R

2) into a vector Vα(q) = α∗(Vq) in Tα(q)M , as illustrated in
the diagram 4.5

Fig. 4.5: Push-Forward

The action of the push-forward is defined by

α∗(V )(f) |α(q)= V (f ◦ α) |q . (4.15)

Just as in the case of curves, when we revert back to classical notation to
describe a surface as xi(uα), what we really mean is (xi ◦ α)(uα), where xi are
the coordinate functions in R3 . Particular examples of tangent vectors on M
are given by the push-forward of the standard basis of TR2. These tangent
vectors which earlier we called xα are defined by

α∗(
∂

∂uα
)(f) |α(uα)=

∂

∂uα
(f ◦ α) |uα .

In this formalism, the first fundamental form I is just the symmetric bilinear
tensor defined by the induced metric,

I(X,Y ) = g(X,Y ) =< X,Y >, (4.16)

where X and Y are any pair of vector fields in X (M).

Orthogonal Parametric Curves

Let V and W be vectors tangent to a surface M defined locally by a chart
x(uα). Since the vectors xα span the tangent space of M at each point, the
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vectors V and W can be written as linear combinations,

V = V αxα,

W = Wαxα.

The functions V α and Wα are the curvilinear components of the vectors. We
can calculate the length and the inner product of the vectors using the induced
Riemannian metric as follows:

‖V ‖2 = < V, V >=< V αxα, V
βxβ >= V αV β < xα,xβ >,

‖V ‖2 = gαβV
αV β ,

‖W‖2 = gαβW
αW β ,

and

< V,W > = < V αxα,W
βxβ >= V αW β < xα,xβ >,

= gαβV
αW β .

The angle θ subtended by the vectors V and W is the given by the equation

cos θ =
< V,W >

‖V ‖ · ‖W‖
,

=
I(V,W )√

I(V, V )
√
I(W,W )

,

=
gα1β1

V α1W β1√
gα2β2

V α2V β2

√
gα3β3

Wα3W β3

, (4.17)

where the numerical subscripts are needed for the α and β indices to comply
with Einstein’s summation convention.

Let uα = φα(t) and uα = ψα(t) be two curves on the surface. Then the
total differentials

duα =
dφα

dt
dt, and δuα =

dψα

dt
δt

represent infinitesimal tangent vectors (1.23) to the curves. Thus, the angle
between two infinitesimal vectors tangent to two intersecting curves on the
surface satisfies the equation:

cos θ =
gα1β1du

α1δuβ1√
gα2β2

duα2duβ2

√
gα3β3

δuα3δuβ3

. (4.18)

In particular, if the two curves happen to be the parametric curves, u1 = const.
and u2 =const., then along one curve we have du1 = 0, with du2 arbitrary, and
along the second δu1 is arbitrary and δu2 = 0. In this case, the cosine of the
angle subtended by the infinitesimal tangent vectors reduces to:

cos θ =
g12δu

1du2√
g11(δu1)2

√
g22(du2)2

=
g12

g11g22
=

F√
EG

. (4.19)
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A simpler way to obtain this result is to recall that parametric directions are
given by xu and xv, so

cos θ =
< xu,xv >

‖xu‖ · ‖xv‖
=

F√
EG

. (4.20)

It follows immediately from the equation above that:

4.2.2 Proposition The parametric curves are orthogonal if F = 0.
Orthogonal parametric curves are an important class of curves, because

locally the coordinate grid on the surface is similar to coordinate grids in basic
calculus, such as in polar coordinates for which ds2 = dr2 + r2dθ2.

4.2.3 Examples a) Sphere

x = (a sin θ cosφ, a sin θ sinφ, a cos θ),

xθ = (a cos θ cosφ, a cos θ sinφ,−a sin θ),

xφ = (−a sin θ sinφ, a sin θ cosφ, 0),

E = xθ · xθ = a2,

F = xθ · xφ = 0,

G = xφ · xφ = a2 sin2 θ,

ds2 = a2dθ2 + a2 sin2 θ dφ2. (4.21)

There are many interesting curves on a sphere, but amongst these the lox-
odromes have a special role in history. A loxodrome is a curve that winds
around a sphere making a constant angle with the meridians. In this sense,
it is the spherical analog of a cylindrical helix and as such it is often called a
spherical helix. The curves were significant in early navigation where they are
referred as rhumb lines. As people in the late 1400’s began to rediscover that
earth was not flat, cartographers figured out methods to render maps on flat
paper surfaces. One such technique is called the Mercator projection which is
obtained by projecting the sphere onto a plane that wraps around the sphere
as a cylinder tangential to the sphere along the equator.

As we will discuss in more detail later, a navigator travelling a constant
bearing would be moving on a straight path on the Mercator projection map,
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but on the sphere it would be spiraling ever faster as one approached the poles.
Thus, it became important to understand the nature of such paths. It appears
as if the first quantitative treatise of loxodromes was carried in the mid 1500’s
by the portuguese applied mathematician Pedro Nuñes, who was chair of the
department at the University of Coimbra.

As an application, we will derive the equations of loxodromes and compute
the arc length. A general spherical curve can be parametrized in the form
γ(t) = x(θ(t), φ(t)). Let σ be the angle the curve makes with the meridians
φ = constant. Then, recalling that < xθ,xφ >= F = 0, we have:

γ′ = xθ
dθ

dt
+ xφ

dφ

dt
.

cosσ =
< xθ, γ

′ >

‖xθ‖ · ‖γ′‖
=

E dθ
dt√
E ds
dt

= a
dθ

ds
.

a2dθ2 = cos2 σ ds2,

a2 sin2 σ dθ2 = a2 cos2 σ sin2 θ dφ2,

sinσ dθ = ± cosσ sin θ dφ,

csc θ dθ = ± cotσ dφ.

The convention used by cartographers, is to measure the angle θ from the equa-
tor. To better adhere to the history, but at the same time avoiding confusion, we
replace θ with ϑ = π

2 −θ, so that ϑ = 0 corresponds to the equator. Integrating
the last equation with this change, we get

secϑ dϑ = ± cotσ dφ

ln tan(ϑ2 + π
4 ) = ± cotσ(φ− φ0).

Thus, we conclude that the equations of loxodromes and their arc lengths are
given by

φ = ±(tanσ) ln tan(ϑ2 + π
4 ) + φ0 (4.22)

s = a(θ − θ0) secσ, (4.23)

where θ0 and φ0 are the coordinates of the initial position. Figure 4.2 shows
four loxodromes equally distributed around the sphere.

Loxodromes were the bases for a number of beautiful drawings and woodcuts
by M. C. Escher. figure 4.2 also shows one more beautiful manifestation of
geometry in nature in a plant called Aloe Polyphylla. Not surprisingly, the
plant has 5 loxodromoes which is a Fibonacci number. We will show later un-
der the discussion of conformal (angle preserving) maps in section 5.2.2, that
loxodromes map into straight lines making a constant angle with meridians in
the Mercator projection (See Figure ??).

b) Surface of Revolution



4.2. THE FIRST FUNDAMENTAL FORM 105

x = (r cos θ, r sin θ, f(r)),

xr = (cos θ, sin θ, f ′(r)),

xθ = (−r sin θ, r cos θ, 0),

E = xr · xr = 1 + f ′2(r),

F = xr · xθ = 0,

G = xθ · xθ = r2,

ds2 = [1 + f ′2(r)]dr2 + r2dθ2.

As in figure 4.6, we have chosen a Gaussian profile to illustrate a surface of
revolution. Since F = 0 the parametric lines are orthogonal. The picture shows
that this is indeed the case. At any point of the surface, the analogs of meridi-
ans and parallels intersect at right angles.

Fig. 4.6: Surface of Revolution and Pseudosphere

c) Pseudosphere

x = (a sinu cos v, a sinu sin v, a(cosu+ ln(tan
u

2
)),

E = a2 cot2 u,

F = = 0

G = a2 sin2 u,

ds2 = a2 cot2 u du2 + a2 sin2 u dv2.

The pseudosphere is a surface of revolution in which the profile curve is a trac-
trix. The tractrix curve was originated by a problem posed by Leibnitz to the
effect of finding the path traced by a point initially placed on the horizontal
axis at a distance a from the origin, as it was pulled along the vertical axis by a
taught string of constant length a, as shown in figure 4.6. The tractrix was later
studied by Huygens in 1692. Colloquially this is the path of a reluctant dog
at (a, 0) dragged by a man walking up the z-axis. The tangent segment is the
hypothenuse of a right triangle with base x and height

√
a2 − x2, so the slope
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is dz/dx = −
√
a2 − x2/x. Using the trigonometric substitution x = a sinu, we

get z = a
∫

(cos2 u/ sinu) du, which leads to the appropriate form for the profile
of the surface of revolution. The pseudosphere was studied by Beltrami in 1868.
He discovered that in spite of the surface extending asymptotically to infinity,
the surface area is finite with S = 4πa2 as in a sphere of the same radius, and
the volume enclosed is half that sphere. We will have much more to say about
this surface.

Fig. 4.7: Examples of Surfaces

d) Torus

x = ((b+ a cosu) cos v, (b+ a cosu) sin v, a sinu) (See 4.8),

E = a2,

F = 0,

G = (b+ a cosu)2,

ds2 = a2du2 + (b+ a cosu)2dv2. (4.24)

e) Helicoid

x = (u cos v, u sin v, av) Coordinate curves u = c. are helices.

E = 1,

F = 0,

G = u2 + a2,

ds2 = du2 + (u2 + a2)dv2. (4.25)

f) Catenoid

x = (u cos v, u sin v, c cosh−1
u

c
), This is a catenary of revolution.

E =
u2

u2 − c2
,

F = 0,

G = u2,

ds2 =
u2

u2 − c2
du2 + u2dv2, (4.26)
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g) Cone and Conical Helix
The equation z2 = cot2 α(x2 + y2), represents a circular cone whose generator
makes an angle α with the z-axis. In parametric form,

x = (r cosφ, r sinφ, r cotα),

E = csc2 α,

F = 0,

G = r2,

ds2 = csc2 α dr2 + r2dφ2. (4.27)

A conical helix is a curve γ(t) = x(r(t), φ(t)), that makes a constant angle σ
with the generators of the cone. Similar to the case of loxodromes, we have

γ′ = xr
dr

dt
+ xφ

dφ

dt
.

cosσ =
< xr, γ

′ >

‖xr‖ · ‖γ′‖
=

E dr
dt√
E ds
dt

=
√
E
dr

ds
.

E dr2 = cos2 σ ds2,

csc2 α dr2 = cos2 σ(csc2 α dr2 + r2dφ2),

csc2 α sin2 σ dr2 = r2 cos2 σ dφ2,

1

r
dr = cotσ sinα dφ.

Therefore, the equations of a conical helix are given by

r = c ecotσ sinαφ. (4.28)

As shown in figure 4.8, a conical helix projects into the plane as a logarithmic
spiral. Many sea shells and other natural objects in nature exhibit neatly such
conical spirals. The picture shown here is that of lobatus gigas or caracol pala,
previously known as strombus gigas. The particular one is included here with
certain degree of nostalgia, for it has been a decorative item for decades in our
family. The shell was probably found in Santa Cruz del Islote, Archipelago de
San Bernardo, located in the Gulf of Morrosquillo in the Caribbean coast of
Colombia. In this densely populated island paradise, which then enjoyed the
pulchritude of enchanting coral reefs, the shells are now virtually extinct as the
coral has succumbed to bleaching with rising temperatures of the waters. The
shell shows a cut in the spire which the island natives use to sever the columellar
muscle and thus release the edible snail.
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Fig. 4.8: Conical Helix.

4.3 The Second Fundamental Form

Let x = x(uα) be a coordinate patch on a surface M . Since xu and xv are
tangential to the surface, we can construct a unit normal n to the surface by
taking

n =
xu × xv
‖xu × xv‖

. (4.29)

Fig. 4.9: Surface Normal

Now, consider a curve on the surface given by uβ = uβ(s). Without loss
of generality, we assume that the curve is parametrized by arc length s so
that the curve has unit speed. Let e = {T,N,B} be the Frenet frame of the
curve. Recall that the rate of change ∇TW of a vector field W along the curve
correspond to the classical vector w′ = dw

ds , so ∇W is associated with the vector

dw. Thus the connection equation ∇e = eω is given by

d[T,N,B] = [T,N,B]

 0 −κ ds 0
κ ds 0 −τ ds

0 τ ds 0.

 (4.30)

Following ideas first introduced by Darboux and subsequently perfected by
Cartan, we introduce a new orthonormal frame f = {T,g,n, } adapted to the
surface, where at each point, T is the common tangent to the surface and to
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the curve on the surface, n is the unit normal to the surface and g = n × T.
Since the two orthonormal frames must be related by a rotation that leaves the
T vector fixed, we have f = eB, where B is a matrix of the form

B =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 . (4.31)

We wish to find ∇f = f ω. A short computation using the change of basis
equations ω = B−1ωB +B−1dB (see equations 3.48 and 3.51) gives:

d[T,g,n] = [T,g,n]

 0 −κ cos θ ds −κ sin θ ds
κ cos θ ds 0 −τ ds+ dθ
κ sin θ ds τ ds− dθ 0

 , (4.32)

= [T,g,n]

 0 −κg ds −κn ds
κg ds 0 −τg ds
κn ds τg ds 0

 , (4.33)

where:

κn = κ sin θ is called the normal curvature,

κg = κ cos θ is called the geodesic curvature; Kg = κgg the geodesic curvature
vector, and

τg = τ − dθ/ds is called the geodesic torsion.

We conclude that we can decompose T′ and the curvature κ into their
normal and surface tangent space components (see figure 4.10)

T′ = κnn + κgg, (4.34)

κ2 = κ2n + κ2g. (4.35)

The normal curvature κn measures the curvature of x(uα(s)) resulting from the
constraint of the curve to lie on a surface. The geodesic curvature κg measures
the “sideward” component of the curvature in the tangent plane to the surface.
Thus, if one draws a straight line on a flat piece of paper and then smoothly
bends the paper into a surface, the line acquires some curvature. Since the line
was originally straight, there is no sideward component of curvature so κg = 0
in this case. This means that the entire contribution to the curvature comes
from the normal component, reflecting the fact that the only reason there is
curvature here is due to the bend in the surface itself. In this sense, a curve on a
surface for which the geodesic curvature vanishes at all points reflects locally the
shortest path between two points. These curves are therefore called geodesics
of the surface. The property of minimizing the path between two points is a
local property. For example, on a sphere one would expect the geodesics to be
great circles. However, travelling from Los Angeles to San Francisco along one
such great circle, there is a short path and a very long one that goes around
the earth.
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Fig. 4.10: Curvature

If one specifies a point p ∈M and a direc-
tion vector Xp ∈ TpM , one can geometrically
envision the normal curvature by considering
the equivalence class of all unit speed curves
in M that contain the point p and whose
tangent vectors line up with the direction of
X. Of course, there are infinitely many such
curves, but at an infinitesimal level, all these
curves can be obtained by intersecting the
surface with a “vertical” plane containing the
vector X and the normal to M . All curves in
this equivalence class have the same normal
curvature and their geodesic curvatures vanish. In this sense, the normal cur-
vature is more of a property pertaining to a direction on the surface at a point,
whereas the geodesic curvature really depends on the curve itself. It might be
impossible for a hiker walking on the undulating hills of the Ozarks to find a
straight line trail, since the rolling hills of the terrain extend in all directions. It
might be possible, however, for the hiker to walk on a path with zero geodesic
curvature as long the same compass direction is maintained. We will come back
to the Cartan structure equations associated with the Darboux frame, but for
computational purposes, the classical approach is very practical.
Using the chain rule, we se that the unit tangent vector T to the curve is given
by

T =
dx

ds
=

dx

duα
duα

ds
= xα

duα

ds
. (4.36)

To find an explicit formula for the normal curvature we first differentiate equa-
tion (4.36)

T′ =
dT

ds
,

=
d

ds
(xα

duα

ds
),

=
d

ds
(xα)

duα

ds
+ xα

d2uα

ds2
,

= (
dxα
duβ

duβ

ds
)
duα

ds
+ xα

d2uα

ds2
,

= xαβ
duα

ds

duβ

ds
+ xα

d2uα

ds2
.

Taking the inner product of the last equation with the normal and noticing that
< xα,n >= 0, we get

κn = < T′,n >=< xαβ ,n >
duα

ds

duβ

ds
,

=
bαβdu

αduβ

gαβduαduβ
, (4.37)

where
bαβ =< xαβ ,n > (4.38)
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4.3.1 Definition The expression

II = bαβ du
α ⊗ duβ (4.39)

is called the second fundamental form .

4.3.2 Proposition The second fundamental form is symmetric.
Proof In the classical formulation of the second fundamental form, the proof
is trivial. We have bαβ = bβα, since for a C∞ patch x(uα), we have xαβ = xβα,
because the partial derivatives commute. We will denote the coefficients of the
second fundamental form as follows:

e = b11 =< xuu,n >,

f = b12 =< xuv,n >,

= b21 =< xvu,n >,

g = b22 =< xvv,n >,

so that equation (4.39) can be written as

II = edu2 + 2fdudv + gdv2. (4.40)

It follows that the equation for the normal curvature (4.37) can be written
explicitly as

κn =
II

I
=

edu2 + 2fdudv + gdv2

Edu2 + 2Fdudv +Gdv2
. (4.41)

We should pointed out that just as the first fundamental form can be represented
as

I =< dx, dx >,

we can represent the second fundamental form as

II = − < dx, dn > .

To see this, it suffices to note that differentiation of the identity, < xα,n >= 0,
implies that

< xαβ ,n >= − < xα,nβ > .

Therefore,

< dx, dn > = < xαdu
α,nβdu

β >,

= < xαdu
α,nβdu

β >,

= < xα,nβ > duαduβ ,

= − < xαβ ,n > duαduβ ,

= −II.
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4.3.3 Definition Directions on a surface along which the second fundamental
form

e du2 + 2f du dv + g dv2 = 0 (4.42)

vanishes, are called asymptotic directions, and curves having these directions
are called asymptotic curves. This happens for example when there are straight
lines on the surface, as in the case of the intersection of the saddle z = xy with
the plane z = 0.

For now, we state without elaboration, that one can also define the third fun-
damental form by

III =< dn, dn >=< nα,nβ > duαduβ . (4.43)

From a computational point a view, a more useful formula for the coefficients
of the second fundamental formula can be derived by first applying the classical
vector identity

(A×B) · (C ×D) =

∣∣∣∣ A · C A ·D
B · C B ·D

∣∣∣∣ , (4.44)

to compute

‖xu × xv‖2 = (xu × xv) · (xu × xv),

= det

[
xu · xu xu · xv
xv · xu xv · xv

]
,

= EG− F 2. (4.45)

Consequently, the normal vector can be written as

n =
xu × xv
‖xu × xv‖

=
xu × xv√
EG− F 2

.

It follows that we can write the coefficients bαβ directly as triple products
involving derivatives of (x). The expressions for these coefficients are

e =
(xuxvxuu)√
EG− F 2

,

f =
(xuxvxuv)√
EG− F 2

,

g =
(xuxvxvv)√
EG− F 2

. (4.46)

4.3.4 Example Sphere

Going back to example 4.21, we have:
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xθθ = (a sin θ cosφ,−a sin θ sinφ,−a cos θ),

xθφ = (−a cos θ sinφ, a cos θ cosφ, 0),

xφφ = (−a sin θ cosφ,−a sin θ sinφ, 0),

n = (sin θ cosφ, sin θ sinφ, cos θ),

e = xθθ · n = −a,
f = xθφ · n = 0,

g = xφφ · n = −a sin2 θ,

II =
1

a2
I.

The first fundamental form on a surface measures the square of the distance
between two infinitesimally separated points. There is a similar interpretation
of the second fundamental form as we show below. The second fundamental
form measures the distance from a point on the surface to the tangent plane
at a second infinitesimally separated point. To see this simple geometrical
interpretation, consider a point x0 = x(uα0 ) ∈ M and a nearby point x(uα0 +
duα). Expanding on a Taylor series, we get

x(uα0 + duα) = x0 + (x0)αdu
α +

1

2
(x0)αβdu

αduβ + . . . .

We recall that the distance formula from a point x to a plane which contains
x0 is just the scalar projection of (x−x0) onto the normal. Since the normal to
the plane at x0 is the same as the unit normal to the surface and < xα,n >= 0,
we find that the distance D is

D = < x− x0,n >,

=
1

2
< (x0)αβ ,n > duαduβ ,

=
1

2
II0.

The first fundamental form (or, rather, its determinant) also appears in calculus
in the context of calculating the area of a parametrized surface. If one considers
an infinitesimal parallelogram subtended by the vectors xudu and xvdv, then
the differential of surface area is given by the length of the cross product of
these two infinitesimal tangent vectors. That is,

dS = ‖xu × xv‖ dudv,

S =

∫ ∫ √
EG− F 2 dudv.

The second fundamental form contains information about the shape of the
surface at a point. For example, the discussion above indicates that if b =
|bαβ | = eg − f2 > 0 then all the neighboring points lie on the same side of the
tangent plane, and hence, the surface is concave in one direction. If at a point
on a surface b > 0, the point is called an elliptic point, if b < 0, the point is
called hyperbolic or a saddle point, and if b = 0, the point is called parabolic.
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4.4 Curvature

The concept of curvature and its relation to the fundamental forms, con-
stitute the central object of study in differential geometry. One would like to
be able to answer questions such as “what quantities remain invariant as one
surface is smoothly changed into another?” There is certainly something in-
trinsically different between a cone, which we can construct from a flat piece
of paper, and a sphere, which we cannot. What is it that makes these two
surfaces so different? How does one calculate the shortest path between two
objects when the path is constrained to lie on a surface?

These and questions of similar type can be quantitatively answered through
the study of curvature. We cannot overstate the importance of this subject;
perhaps it suffices to say that, without a clear understanding of curvature,
there would be no general theory of relativity, no concept of black holes, and
even more disastrous, no Star Trek.

The notion of curvature of a hypersurface in Rn (a surface of dimension n−
1) begins by studying the covariant derivative of the normal to the surface. If the
normal to a surface is constant, then the surface is a flat hyperplane. Variations
in the normal are indicative of the presence of curvature. For simplicity, we
constrain our discussion to surfaces in R3, but the formalism we use is applicable
to any dimension. We will also introduce in the modern version of the second
fundamental form.

4.4.1 Classical Formulation of Curvature

The normal curvature κn at any point on a surface measures the deviation
from flatness as one moves along a direction tangential to the surface at that
point. The direction can be taken as the unit tangent vector to a curve on
the surface. We seek the directions in which the normal curvature attains the
extrema. For this purpose, let the curve on the surface be given by v = v(u)
and let λ = dv

du. Then we can write the normal curvature 4.41 in the form

κn =
II∗

I∗
=

e+ 2fλ+ gλ2

E + 2Fλ+Gλ2
, (4.47)

where II∗ and I∗ are the numerator and denominator respectively. To find the
extrema, we take the derivative with respect to λ and set it equal to zero. The
resulting fraction is zero only when the numerator is zero, so from the quotient
rule we get

I∗(2f + 2gλ)− II∗(2F + 2Gλ) = 0.

It follows that,

κn =
II∗

I∗
=

f + gλ

F +Gλ
. (4.48)

On the other hand, combining with equation 4.47 we have,

κn =
(e+ fλ) + λ(f + gλ)

(E + Fλ) + λ(F +Gλ)
=

f + gλ

F +Gλ
.



4.4. CURVATURE 115

This can only happen if

κn =
f + gλ

F +Gλ
=

e+ fλ

E + Fλ
. (4.49)

Equation 4.49 contains a wealth of information. On one hand, we can eliminate
κn which leads to the quadratic equation for λ

(Fg − gF )λ2 + (Eg −Ge)λ+ (Ef − Fe) = 0.

Recalling that λ = dv/du, and noticing that the coefficients resemble minors of
a 3× 3 matrix, we can elegantly rewrite the equation as∥∥∥∥∥∥

du2 −du dv dv2

E F G
e f g

∥∥∥∥∥∥ = 0. (4.50)

Equation 4.50 determines two directions du
dv along which the normal curvature

attains the extrema, except for special cases when either bαβ = 0, or bαβ and
gαβ are proportional, which would cause the determinant to be identically zero.
These two directions are called principal directions of curvature, each associated
with an extremum of the normal curvature. We will have much more to say
about these shortly.

On the other hand, we can write equations 4.49 in the form{
(e− Eκn) + λ(f − Fκn) = 0,

(f − Fκn) + λ(g −Gκn) = 0.

Solving each equation for λ we can eliminate λ instead, and we are lead to a
quadratic equation for κn which we can write as∥∥∥∥e− Eκn f − Fκn

f − Fκn g −Gκn

∥∥∥∥ = 0. (4.51)

It is interesting to note that equation 4.51 can be written as∥∥∥∥[e f
f g

]
− κn

[
E F
F G

]∥∥∥∥ = 0.

In other words, the extrema for the values of the normal are the solutions of
the equation

‖bαβ − κngαβ‖ = 0. (4.52)

Had it been the case that gαβ = δαβ , the reader would recognize this as a
eigenvalue equation for a symmetric matrix giving rise to two invariants, that
is, the trace and the determinant of the matrix. We will treat this formally in
the next section. The explicit quadratic expression for the extrema of κn is

(EG− F 2)κ2n − (Eg − 2Ff +Ge)κn + (eg − f2) = 0.
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We conclude there are two solutions κ1 and κ2 such that

K = κ1κ2 =
eg − f2

EG− F 2
, (4.53)

and

M = 1
2 (κ1 + κ2) =

1

2

Eg − 2Ff +Ge

EF −G2
.. (4.54)

The quantity K is called the Gaussian curvature and M is called the mean
curvature. To understand better the deep significance of the last two equations,
we introduce the modern formulation which will allow is to draw conclusions
from the inextricable connection of these results with the linear algebra spectral
theorem for symmetric operators.

4.4.2 Covariant Derivative Formulation of Curvature

4.4.1 Definition Let X be a vector field on a surface M in R3 and let N
be the normal vector. The map L, given by

LX = −∇XN, (4.55)

is called the Weingarten map. Some authors call this the shape operator. The
same definition applies if M is an n-dimensional hypersurface in Rn+1.

Here, we have adopted the convention to overline the operator ∇ when it
refers to the ambient space. The Weingarten map is natural to consider, since it
represents the rate of change of the normal in an arbitrary direction tangential
to the surface, which is what we wish to quantify.

4.4.2 Definition The Lie bracket [X,Y ] of two vector fields X and Y on a
surface M is defined as the commutator,

[X,Y ] = XY − Y X, (4.56)

meaning that if f is a function on M , then [X,Y ](f) = X(Y (f))− Y (X(f)).

4.4.3 Proposition The Lie bracket of two vectors X,Y ∈X (M) is another
vector in X (M).
Proof If suffices to prove that the bracket is a linear derivation on the space
of C∞ functions. Consider vectors X,Y ∈X (M) and smooth functions f, g in
M . Then,

[X,Y ](f + g) = X(Y (f + g))− Y (X(f + g)),

= X(Y (f) + Y (g))− Y (X(f) +X(g)),

= X(Y (f))− Y (X(f)) +X(Y (g))− Y (X(g)),

= [X,Y ](f) + [X,Y ](g),
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and

[X,Y ](fg) = X(Y (fg))− Y (X(fg)),

= X[fY (g) + gY (f)]− Y [fX(g) + gX(f)],

= X(f)Y (g) + fX(Y (g)) +X(g)Y (f) + gX(Y (f)),

−Y (f)X(g)− f(Y (X(g))− Y (g)X(f)− gY (X(f)),

= f [X(Y (g))− (Y (X(g))] + g[X(Y (f))− Y (X(f))],

= f [X,Y ](g) + g[X,Y ](f).

4.4.4 Proposition The Weingarten map is a linear transformation on X (M).
Proof Linearity follows from the linearity of ∇, so it suffices to show that
L : X −→ LX maps X ∈ X (M) to a vector LX ∈ X (M). Since N is the
unit normal to the surface, < N,N >= 1, so any derivative of < N,N > is 0.
Assuming that the connection is compatible with the metric,

∇X < N,N > = < ∇XN,> + < N,∇XN >,

= 2 < ∇XN,N >,

= 2 < −LX,N >= 0.

Therefore, LX is orthogonal to N ; hence, it lies in X (M).
In the preceding section, we gave two equivalent definitions < dx, dx >,

and < X,Y > of the first fundamental form. We will now do the same for the
second fundamental form.

4.4.5 Definition The second fundamental form is the bilinear map

II(X,Y ) =< LX,Y > . (4.57)

4.4.6 Remark The two definitions of the second fundamental form are con-
sistent. This is easy to see if one chooses X to have components xα and Y
to have components xβ . With these choices, LX has components −na and
II(X,Y ) becomes bαβ = − < xα,nβ >.

We also note that there is a third fundamental form defined by

III(X,Y ) =< LX,LY >=< L2X,Y > . (4.58)

In classical notation, the third fundamental form would be denoted by <
dn, dn >. As one would expect, the third fundamental form contains third
order Taylor series information about the surface.

4.4.7 Definition The torsion of a connection ∇ is the operator T such that
∀X,Y,

T (X,Y ) = ∇XY −∇YX − [X,Y ]. (4.59)
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A connection is called torsion-free if T (X,Y ) = 0. In this case,

∇XY −∇YX = [X,Y ].

We will elaborate later on the importance of torsion-free connections. For the
time being, it suffices to assume that for the rest of this section, all connections
are torsion-free. Using this assumption, it is possible to prove the following
important theorem.

4.4.8 Theorem The Weingarten map is a self-adjoint endomorphism on
X (M).
Proof We have already shown that L : X M −→ X M is a linear map.
Recall that an operator L on a linear space is self-adjoint if < LX, Y >=<
X,LY >, so the theorem is equivalent to proving that the second fundamental
form is symmetric (II[X,Y ] = II[Y,X]). Computing the difference of these
two quantities, we get

II(X,Y )− II(Y,X) = < LX,Y > − < LY,X >,

= < −∇XN,Y > − < −∇YN,X > .

Since < X,N >=< Y,N >= 0 and the connection is compatible with the
metric, we know that

< −∇XN,Y > = < N,∇XY >,

< −∇YN,X > = < N,∇YX >,

hence,

II(X,Y )− II(Y,X) = < N,∇YX > − < N,∇XY >,

= < N,∇YX −∇XY >,

= < N, [X,Y ] >,

= 0 (iff [X,Y ] ∈ T (M)).

The central theorem of linear algebra is the spectral theorem. In the case of
real, self-adjoint operators, the spectral theorem states that given the eigenvalue
equation for a symmetric operator

LX = κX, (4.60)

on a vector space with a real inner product, the eigenvalues are always real and
eigenvectors corresponding to different eigenvalues are orthogonal. Here, the
vector spaces in question are the tangent spaces at each point of a surface in R3,
so the dimension is 2. Hence, we expect two eigenvalues and two eigenvectors:

LX1 = κ1X1 (4.61)

LX2 = κ2X2. (4.62)

4.4.9 Definition The eigenvalues κ1 and κ2 of the Weingarten map L are
called the principal curvatures and the eigenvectors X1 and X2 are called the
principal directions.
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Several possible situations may occur, depending on the classification of the
eigenvalues at each point p on a given surface:

1. If κ1 6= κ2 and both eigenvalues are positive, then p is called an elliptic
point.

2. If κ1κ2 < 0, then p is called a hyperbolic point.

3. If κ1 = κ2 6= 0, then p is called an umbilic point.

4. If κ1 κ2 = 0, then p is called a parabolic point.

It is also known from linear algebra, that in a vector space of dimension two,
the determinant and the trace of a self-adjoint operator are the only invari-
ants under an adjoint (similarity) transformation. Clearly, these invariants are
important in the case of the operator L, and they deserve special names. In
the case of a hypersurface of n-dimensions, there would n eigenvalues, counting
multiplicities, so the classification of the points would be more elaborate

4.4.10 Definition The determinant K = det(L) is called the Gaussian cur-
vature of M and H = 1

2Tr(L) is called the mean curvature .
Since any self-adjoint operator is diagonalizable and in a diagonal basis the

matrix representing L is diag(κ1, κ2), if follows immediately that

K = κ1κ2,

H =
1

2
(κ1 + κ2). (4.63)

An alternative definition of curvature is obtained by considering the unit
normal as a map N : M → S2, which maps each point p on the surface M , to
the point on the sphere corresponding to the position vector Np. The map is
called the Gauss map.

4.4.11 Examples

1. The Gauss map of a plane is constant. The image is a single point on S2.

2. The image of the Gauss map of a circular cylinder is a great circle on S2.

3. The Gauss map of the top half of a circular cone sends all points on the
cone into a circle. We may envision this circle as the intersection of the
cone and a unit sphere centered at the vertex.

4. The Gauss map of a circular hyperboloid of one sheet misses two an-
tipodal spherical caps with boundaries corresponding to the circles of the
asymptotic cone.

5. The Gauss map of a catenoid misses two antipodal points.

The Weingarten map is minus the derivative N∗ = dN of the Gauss map. That
is, LX = −N∗(X).
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4.4.12 Proposition Let X and Y be any linearly independent vectors in
X (M). Then

LX × LY = K(X × Y ),

(LX × Y ) + (X × LY ) = 2H(X × Y ). (4.64)

Proof Since LX,LY ∈ X (M), they can be expressed as linear combinations
of the basis vectors X and Y .

LX = a1X + b1Y,

LY = a2X + b2Y.

computing the cross product, we get

LX × LY =

∣∣∣∣ a1 b1
a2 b2

∣∣∣∣X × Y,
= det(L)(X × Y ).

Similarly

(LX × Y ) + (X × LY ) = (a1 + b2)(X × Y ),

= Tr(L)(X × Y ),

= (2H)(X × Y ).

4.4.13 Proposition

K =
eg − f2

EG− F 2
,

H =
1

2

Eg − 2Ff + eG

EG− F 2
. (4.65)

Proof Starting with equations (4.64), take the inner product of both sides
with X × Y and use the vector identity (4.44). We immediately get

K =

∣∣∣∣ < LX,X > < LX, Y >
< LY,X > < LX,X >

∣∣∣∣∣∣∣∣ < X,X > < X,Y >
< Y,X > < Y, Y >

∣∣∣∣ , (4.66)

2H =

∣∣∣∣ < LX,X > < LX, Y >
< Y,X > < Y, Y >

∣∣∣∣+

∣∣∣∣ < X,X > < X,Y >
< LY,X > < LY, Y >

∣∣∣∣∣∣∣∣ < X,X > < X,Y >
< Y,X > < Y, Y >

∣∣∣∣ . (4.67)

The result follows by taking X = xu and Y = xv. Not surprisingly, this is
in complete agreement with the classical formulas for the Gausssian curvature
(equation 4.53) and for the mean curvature (equation 4.54.
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If we denote by g and b the matrices of the fundamental forms whose compo-
nents are gαβ and bαβ respectively, we can write the equations for the curvatures
as:

K = det

(
b

g

)
= det(g−1b), (4.68)

2H = Tr

(
b

g

)
= Tr(g−1b) (4.69)

4.4.14 Example Sphere

From equations 4.21 and 4.3 we see that K = 1/a2 and H = 1/a. This is totally
intuitive since one would expect κ1 = κ2 = 1/a because the normal curvature
in any direction should equal the curvature of great circle. This means that
a sphere is a surface of constant curvature and every point of a sphere is an
umbilic point. This is another way to think of the symmetry of the sphere in
the sense that an observer at any point sees the same normal curvature in all
directions.

The next theorem due to Euler gives a characterization of the normal curvature
in the direction of an arbitrary unit vector X tangent to the surface M at a
given point.

4.4.15 Theorem (Euler) Let X1 and X2 be unit eigenvectors of L and let
X = (cos θ)X1 + (sin θ)X2. Then

II(X,X) = κ1 cos2 θ + κ2 sin2 θ. (4.70)

Proof Simply compute II(X,X) =< LX,X >, using the fact the LX1 =
κ1X1 , LX2 = κ2X2, and noting that the eigenvectors are orthogonal. We get

< LX,X > = < (cos θ)κ1X1 + (sin θ)κ2X2, (cos θ)X1 + (sin θ)X2 >

= κ1 cos2 θ < X1, X1 > +κ2 sin2 θ < X2, X2 >

= κ1 cos2 θ + κ2 sin2 θ.

4.4.16 Theorem The first, second and third fundamental forms satisfy the
equation

III − 2H II +KI = 0 (4.71)

Proof The proof follows immediately from the fact that for a symmetric 2
by 2 matrix A, the characteristic polynomial is κ2 − tr(A)κ+ det(A) = 0, and
from the Cayley-Hamilton theorem stating that the matrix is annihilated by its
characteristic polynomial.
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Fig. 4.11: Surface Frame.

4.5 Fundamental Equations

4.5.1 Gauss-Weingarten Equations

As we have just seen for example, the Gaussian curvature of sphere of radius
a is 1/a2. To compute this curvature we had to first compute the coefficients
of the second fundamental form, and therefore, we first needed to compute
the normal to the surface in R3. The computation therefore depended on the
particular coordinate chart parametrizing the surface.

However, it would reasonable to conclude that the curvature of the sphere
is an intrinsic quantity, independent of the embedding in R3. After all, a
“two-dimensional” creature such as ant moving on the surface of the sphere
would be constrained by the curvature of the sphere independent of the higher
dimension on which the surface lives. This mode of thinking lead the brilliant
mathematicians Gauss and Riemann to question if the coefficients of the second
fundamental form were functionally computable from the coefficients of the first
fundamental form. To explore this idea, consider again the basis vectors at each
point of a surface consisting of two tangent vectors and the normal, as shown in
figure 4.11. Given a coordinate chart x(uα), the vectors xα live on the tangent
space, but this is not necessarily true for the second derivative vectors xαβ .
Here, x(uα) could refer to a coordinate patch in any number of dimensions, so
all the tensor index formulas that follow, apply to surfaces of codimension 1
in Rn. The set of vectors {xα,n} constitutes a basis for Rn at each point on
the surface, we can express the vectors xαβ as linear combinations of the basis
vectors. Therefore, there exist coefficients Γγαβ and cαβ such that,

xαβ = Γγαβxγ + cαβn. (4.72)

Taking the inner product of equation 4.72 with n, noticing that the latter is a
unit vector orthogonal to xγ , we find that cαβ =< xαβ ,n >, and hence these are
just the coefficients of the second fundamental form. In other words, equation
4.72 can be written as

xαβ = Γγαβxγ + bαβn. (4.73)

Equation 4.73 together with equation 4.76 below, are called the formulæ of
Gauss. The covariant derivative formulation of the equation of Gauss follows
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in a similar fashion. Let X and Y be vector fields tangent to the surface. We
decompose the covariant derivative of Y in the direction of X into its tangential
and normal components

∇XY = ∇XY + h(X,Y )N.

But then,

h(X,Y ) =< ∇XY,N >,

= − < Y,∇XN >,

= − < Y,LX,>,

= − < LX,Y >,

= II(X,Y ).

Thus, the coordinate independent formulation of the equation of Gauss reads

∇XY = ∇XY + II(X,Y )N. (4.74)

The quantity ∇XY represents a covariant derivative on the surface, so in that
sense, it is intrinsic to the surface. If α(s) is a curve on the surface with tangent
T = α′(s), we say that a vector field Y is parallel-transported along the curve
if ∇TY = 0. This notion of parallelism refers to parallelism on the surface, not
the ambient space. To illustrate by example, Figure 4.12 shows a vector field
Y tangent to a sphere along the circle with azimuthal angle θ = π/3. The
circle has unit tangent T = α′(s), and at each point on the circle, the vector Y
points North. To the inhabitants of the sphere, the vector Y appears parallel-
transported on the surface along the curve, that is ∇TY = 0. However, Y is
clearly not parallel-transported in the ambient R3 space with respect to the
connection ∇.

Fig. 4.12:

The torsion T of the connection ∇ is defined exactly
as before (See equation 4.59).

T (X,Y ) = ∇XY −∇YX − [X,Y ].

Also, as in definition 3.14, the connection is compat-
ible with the metric on the surface if

∇X < Y,Z >=< ∇XY,Z > + < Y,∇XZ > .

A torsion-free connection that is compatible with the
metric is called a Levi-Civita connection.

4.5.1 Proposition A Levi-Civita connection preserves length and angles
under parallel transport.

Proof Let T = α′(t) be tangent to curve α(T ), and X and Y be parallel-
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transported along α. By definition, ∇TX = ∇TY = 0. Then

∇T < X,X > =< ∇TX,X > + < X,∇TX >,

= 2 < ∇TX,X >= 0,

⇒ ‖X‖ = constant.

∇T < X,Y > =< ∇TX,Y > + < X,∇TY >= 0,

⇒< X,Y >= constant. So,

cos θ =
< X,Y >

‖X‖ · ‖Y ‖
= constant.

If one takes {eα} to be a basis of the tangent space, the components of the
connection in that basis are given by the familiar equation

∇eαeβ = Γγαβeγ .

The Γ’s here are of course the same Christoffel symbols in the equation of Gauss
4.73. We have the following important result:

4.5.2 Theorem In a manifold {M, g} with metric g, there exists a unique
Levi-Civita connection.

The proof is implicit in the computations that follow leading to equation
4.76, which express the components uniquely in terms of the metric. The entire
equation (4.73) must be symmetric on the indices αβ, since xαβ = xβα, so
Γγαβ = Γγαβ is also symmetric on the lower indices. These quantities are called
the Christoffel symbols of the first kind. Now we take the inner product with
xσ to deduce that

< xαβ ,xσ > = Γγαβ < xγ ,xσ >,

= Γγαβgγσ,

= Γαβσ;

where we have lowered the third index with the metric on the right hand side
of the last equation. The quantities Γαβσ are called Christoffel symbols of the
second kind. Here we must note that not all indices are created equal. The
Christoffel symbols of the second kind are only symmetric on the first two
indices. The notation Γαβσ = [αβ, σ] is also used in the literature.

The Christoffel symbols can be expressed in terms of the metric by first
noticing that the derivative of the first fundamental form is given by (see equa-
tion 3.34)

gαγ,β =
∂

∂uβ
< xα,xγ >,

=< xαβ ,xγ > + < xα,xγβ , >,

= Γαβγ + Γγβα.
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Taking other cyclic permutations of this equation, we get

gαγ,β = Γαβγ + Γγβα,

gβγ,α = Γαβγ + Γγαβ ,

gαβ,γ = Γαγβ + Γγβα.

Adding the first two and subtracting the third of the equations above, and
recalling that the Γ’s are symmetric on the first two indices, we obtain the
formula

Γαβγ =
1

2
(gαγ,β + gβγ,α − gαβ,γ). (4.75)

Raising the third index with the inverse of the metric, we also have the follow-
ing formula for the Christoffel symbols of the first kind (hereafter, Christoffel
symbols refer to the symbols of the first kind, unless otherwise specified.)

Γσαβ =
1

2
gσγ(gαγ,β + gβγ,α − gαβ,γ). (4.76)

The Christoffel symbols are clearly symmetric in the lower indices

Γσαβ = Γσβα. (4.77)

Unless otherwise specified, a connection on {M, g} refers to the unique Levi-
Civita connection.

We derive a well-known formula for the Christoffel symbols for the case
Γααβ . From 4.76 we have:

Γααβ =
1

2
gαγ(gαγ,β + gβγ,α − gαβ,γ).

On the other hand,
gαγgβγ,α = gαγgαβ,γ

as can be seen by switching the repeated indices of summation α and σ, and
using the symmetry of the metric. The equation reduces to

Γααβ =
1

2
gαγgαγ,β

Let A be the cofactor transposed matrix of g. From the linear algebra formula
for the expansion of a determinant in terms of cofactors we can get an expression
an expression for the inverse of the metric as follows:

det(g) = gαγA
αγ ,

∂ det(g)

∂gαγ
= Aαγ ,

gαγ =
Aαγ

det(g)
,

=
1

det(g)

∂ det(g)

∂gαγ
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so that

Γααβ =
1

2 det(g)

∂ det(g)

∂gαγ

∂

∂uβ
gαγ ,

=
1

2 det(g)

∂

∂uβ
(det(g)). (4.78)

Using this result we can also get a tensorial version of the divergence of the
vector field X = vαeα on the manifold. Using the classical covariant derivative
formula 3.25 for the components vα, we define:

DivX = ∇ ·X = vα‖α (4.79)

We get

DivX = vα,α +Γααγ v
γ ,

=
∂

∂uα
vα +

1

2 det(g)

∂

∂uγ
(det(g))vγ ,

=
1√

det(g)

∂

∂uα
(
√

det(g)vα). (4.80)

If f is a function on the manifold, df = f,β du
β so the contravariant components

of the gradient are

(∇f)α = gαβf,β . (4.81)

Combining with equation above, we get a second order operator

∆f = Div(Gradf),

=
1√

det(g)

∂

∂uα
(
√

det(g)gαβf,β) (4.82)

The quantity ∆ is called the Laplace-Beltrami operator on a function and it
generalizes the Laplacian of functions in Rn to functions on manifolds.

4.5.3 Example Laplacian in Spherical Coordinates
The metric in spherical coordinates is ds2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2, so

gαβ =

1 0 0
0 r2 0
0 0 r2 sin2 θ

 , gαβ =

1 0 0
0 1

r2 0
0 0 i

r2 sin2 θ

 , √
det(g) = r2 sin θ.

The Laplace-Beltrami formula gives,

∆f =
1√

det g

[
∂

∂u1
(
√

det g g11
∂f

∂u1
) +

∂

∂u2
(
√

det g g22
∂f

∂u2
) +

∂

∂u3
(
√

det g g33
∂f

∂u3
)

]
,

=
1

r2 sin θ

[
∂

∂r
(r2 sin θ

∂f

∂r
) +

∂

∂θ
(r2 sin θ

1

r2
∂f

∂θ
) +

∂

∂φ
(r2 sin θ

1

r2 sin2 θ

∂f

∂φ
)

]
,

=
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
.
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The result is the same as the formula for the Laplacian 3.9 found by differential
form methods.

4.5.4 Example
As an example we unpack the formula for Γ1

11. First, note that det(g) =
‖gαβ‖ = EG− F 2. From equation 4.76 we have

Γ1
11 =

1

2
g1γ(g1γ,1 + g1γ,1 − g11,γ),

=
1

2
g1γ(2g1γ,1 − g11,γ),

=
1

2
[g11(2g11,1 − g11,1) + g12(2g12,1 − g11,2)],

=
1

2 det(g)
[GEu − F (2Fu − FEv)],

=
GEu − 2FFu + FEv

2(EG− F 2)
.

Due to symmetry, there are five other similar equations for the other Γ’s. Pro-
ceeding as above, we can derive the entire set.

Γ1
11 =

GEu − 2FFu + FEv
2(EG− F 2)

Γ2
11 =

2EFu − EEv − FEu
2(EG− F 2)

Γ1
12 =

GEv − FGu
2(EG− F 2)

Γ2
12 =

EGu − FEv
2(EG− F 2)

Γ1
22 =

2GFv −GGu − FGv
2(EG− F 2)

Γ2
22 =

EGv − 2FFv + FGu
2(EG− F 2)

. (4.83)

They are a bit messy, but they all simplify considerably for orthogonal systems,
in which case F = 0. Another reason why we like those coordinate systems.

4.5.5 Example Harmonic functions.
A function h on a surface in R3 is called harmonic if it satisfies:

∆ h = 0. (4.84)

Noticing that the matrix components of the inverse of the metric are given by

gαβ =
1

det(g)

[
G −F
−F E

]
(4.85)

we get immediately from 4.82, the classical Laplace-Beltrami equation for sur-
faces,

∆h =
1√

EG− F 2

{
∂

∂u

[
Gh,u−Fh,v√
EG− F 2

]
+

∂

∂v

[
Eh,v −Fh,u√
EG− F 2

]}
= 0. (4.86)
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If the coordinate patch is orthogonal so that F = 0, the equation reduces to:

∂

∂u

[√
G√
E

∂h

∂u

]
+

∂

∂v

[√
E√
G

∂h

∂v

]
= 0 (4.87)

If in addition E = G = λ2 so that the metric has the form,

ds2 = λ2 (du2 + dv2), (4.88)

then,

∆h =
1

λ2

[
∂2h

∂u2
+
∂2h

∂v2

]
. (4.89)

Hence, ∆2h = 0 is equivalent to ∇2h = 0, where ∇2 is the Euclidean Lapla-
cian. (Please compare to the discussion on the isothermal coordinates example
4.5.14.) Two metrics that differ by a multiplicative factor are called conformally
related. The result here means that the Laplacian is conformally invariant un-
der this conformal transformation. This property is essential in applying the
elegant methods of complex variables and conformal mappings to solve physical
problems involving the Laplacian in the plane.

For a surface z = f(x, y), which we can write as a Monge patch x =<
x, y, f(x, y) >, we have E = 1 + f2x , F = 2fxfy and G = 1 + f2y=0. A short
computation shows that in this case, the Laplace-Beltrami equation can be
written as, (compare to equation ??)

∆h =
1√

1 + f2x + f2y

 ∂

∂x

 fx√
1 + f2x + f2y

+
∂

∂y

 fy√
1 + f2x + f2y

 = 0,

or in terms of the Euclidean R2 del operator ∇ =< ∂
∂x ,

∂
∂y >,

∂

∂x

 fx√
1 + f2x + f2y

+
∂

∂y

 fy√
1 + f2x + f2y

 = 0,

∇ ·

[
∇f√

1 + ‖∇f‖2

]
= 0. (4.90)

4.5.2 Curvature Tensor, Gauss’s Theorema Egregium

A fascinating set of relations can be obtained simply by equating xβγδ =
xβδγ . First notice that we can also write nα in terms of the frame vectors. This
is by far easier since < n,n >= 1 implies that < nα,n >= 0, so nα lies on the
tangent plane and it is therefore a linear combination the tangent vectors. As
before, we easily verify that the coefficients are the second fundamental form
with a raised index

nα = −bγαxγ . (4.91)
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These are called the formulæ of Weingarten.
Differentiating the equation of Gauss and recursively using the formulas of

Gauss 4.73 and Weingarten 4.91 to write all the components in terms of the
frame, we get

xβδ = Γαβδxα + bβδn,

xβδγ = Γαβδ,γxα + Γαβδxαγ + bβδ,γn + bβδnγ

= Γαβδ,γxα + Γαβδ[Γ
µ
αγxµ + bαγn] + bβδ,γn− bβδbαγxα

xβδγ = [Γαβδ,γ + ΓµβδΓ
α
µγ − bβδbαγ ]xα + [Γαβδbαγ + bβδ,γ ]n, (4.92)

xβγδ = [Γαβγ,δ + ΓµβγΓαµδ − bβγbαδ ]xα + [Γαβγbαδ + bβγ,δ]n. (4.93)

The last equation above was obtained from the preceding one just by permut-
ing δ and γ. Subtracting that last two equations and setting the tangential
component to zero we get

Rαβγδ = bβδb
α
γ − bβγbαδ , (4.94)

where the components of the Riemann tensor R are defined by

Rαβγδ = Γαβδ,γ − Γαβγ,δ + ΓµβδΓ
α
γµ − ΓµβγΓαδµ. (4.95)

Technically we are not justified at this point in calling R a tensor since we have
not established yet the appropriate multi-linear features that a tensor must
exhibit. We address this point in a later chapter. Lowering the index above we
get

Rαβγδ = bβδbαγ − bβγbαδ. (4.96)

4.5.6 Theorema egregium Let M be a smooth surface in R3. Then,

K =
R1212

det(g)
. (4.97)

Proof Let α = γ = 1 and β = δ = 2 above. The equation then reads

R1212 = b22b11 − b21b12,
= (eg − f2),

= K(EF −G2),

= K det(g)

The remarkable result is that the Riemann tensor and hence the Gaussian
curvature does not depend on the second fundamental form but only on the
coefficients of the metric. Thus, the Gaussian curvature is an intrinsic quan-
tity independent of the embedding, so that two surfaces that have the same
first fundamental form have the same curvature. In this sense, the Gaussian
curvature is a bending invariant!
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Setting the normal components equal to zero gives

Γαβδbαγ − Γαβγbαδ + bβδ,γ − bβγ,δ = 0 (4.98)

These are called the Codazzi (or Codazzi-Mainardi) equations.

Computing the Riemann tensor is labor intensive since one must first obtain
all the non-zero Christoffel symbols as shown in the example above. Consid-
erable gain in efficiency results from a form computation. For this purpose,
let {e1, e2, e3} be a Darboux frame adapted to the surface M , with e3 = n.
Let {θ1, θ2, θ3} be the corresponding orthonormal dual basis. Since at every
point, a tangent vector X ∈ TM is a linear combination of {e1, e2}, we see
that θ3(X) = 0 for all such vectors. That is, θ3 = 0 on the surface. As a
consequence, the entire set of the structure equations is

dθ1 = −ω1
2 ∧ θ2, (4.99)

dθ2 = −ω2
1 ∧ θ1, (4.100)

dθ3 = −ω3
1 ∧ θ1 − ω3

2 ∧ θ2 = 0, (4.101)

dω1
2 = −ω1

3 ∧ ω3
2, Gauss Equation (4.102)

dω1
3 = −ω1

2 ∧ ω2
3, Codazzi Equations (4.103)

dω2
3 = −ω2

1 ∧ ω1
3. (4.104)

The key result is the following theorem

4.5.7 Curvature form equations

dω1
2 = K θ1 ∧ θ2, (4.105)

ω1
3 ∧ θ2 + ω2

3 ∧ θ1 = −2H θ1 ∧ θ2. (4.106)

Proof By applying the Weingarten map to the basis vector {e1, e2} of TM ,
we find a matrix representation of the linear transformation:

Le1 = −∇e1e3 = −ω1
3(e1)e1 − ω2

3(e1)e2,

Le2 = −∇e2e3 = −ω1
3(e2)e1 − ω2

3(e2)32.

Recalling that ω is antisymmetric, we find:

K = det(L) = −[ω1
3(e1)ω3

2(e2)− ω1
3(e2)ω3

2(e1)],

= −(ω1
3 ∧ ω3

2)(e1, e2),

= dω1
2(e1, e2).

Hence

dω1
2 = K θ1 ∧ θ2.
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Similarly, recalling that θ1(ej) = δij , we have

(ω1
3 ∧ θ2 + ω3

2 ∧ θ1)(e1, e2) = ω1
3(e1)− ω3

2(e2),

= ω1
3(e1) + ω2

3(e2),

= Tr(L) = −2H.

4.5.8 Definition A point of a surface at which K = 0 is called a planar
point. A surface with K = 0 at all points is called a flat or Gaussian flat
surface. A surface on which H = 0 at all points is called a minimal surface.

4.5.9 Example Sphere Since the first fundamental form is I = a2 dθ2 +
a2 sin2 θ dφ2, we have

θ1 = a dθ,

θ2 = a sin θ dφ,

dθ2 = a cos θ dθ ∧ dφ,
= − cos θ dφ ∧ θ1 = −ω2

1 ∧ θ1,
ω2

1 = cos θ dφ = −ω1
2,

dω1
2 = sin θ dθ ∧ dφ =

1

a2
(a dθ) ∧ (a sin θ dφ),

=
1

a2
θ1 ∧ θ2,

K =
1

a2
.

4.5.10 Example Torus

Using the the parametrization (See 4.24),

x = ((b+ a cos θ) cosφ, (b+ a cos θ) sinφ, a sin θ),

the first fundamental form is

ds2 = a2dθ2 + (b+ a cos θ)2dφ2.
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Thus, we have:

θ1 = a dθ,

θ2 = (b+ a cos θ) dφ,

dθ2 = −a sin θ dθ ∧ dφ,
= sin θ dφ ∧ θ1 = −ω2

1 ∧ θ1,
ω2

1 = − sin θ dφ = −ω1
2,

dω1
2 = cos θ dθ ∧ dφ =

cos θ

a(b+ a cos θ)
(a dθ) ∧ [(a+ b cos θ) dφ],

=
cos θ

a(b+ a cos θ)
θ1 ∧ θ2,

K =
cos θ

a(b+ a cos θ)
.

This result makes intuitive sense.

When θ = 0, the points lie on the outer equator, so K =
1

a(b+ a)
> 0 is the

product of the curvatures of the generating circle and the outer equator circle.
The points are elliptic.

When θ = π/2, the points lie on the top of the torus, so K = 0 . The points
are parabolic.

When θ = π, the points lie on the inner equator, so K =
−1

a(b− a)
< 0 is the

product of the curvatures of the generating circle and the inner equator circle.
The points are hyperbolic.

4.5.11 Example Orthogonal parametric curves

The examples above have the common feature that the parametric curves are
orthogonal and hence F = 0. Using the same method, we can find a general
formula for such cases. Since the first fundamental form is given by

I = Edu2 +Gdv2.
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We have:

θ1 =
√
E du,

θ2 =
√
Gdv,

dθ1 = (
√
E)v dv ∧ du = −(

√
E)v du ∧ dv,

= − (
√
E)v√
G

du ∧ θ2 = −ω1
2 ∧ θ2,

dθ2 = (
√
G)u du ∧ dv = −(

√
G)u dv ∧ du

= − (
√
G)u√
E

dv ∧ θ2 = −ω2
1 ∧ θ1,

ω1
2 =

(
√
E)v√
G

du− (
√
G)u√
E

dv

dω1
2 = − ∂

∂u

(
1√
E

∂
√
G

∂u

)
du ∧ dv +

∂

∂v

(
1√
G

∂
√
E

∂v

)
dv ∧ du,

= − 1√
EG

[
∂

∂u

(
1√
E

∂
√
G

∂u

)
+

∂

∂v

(
1√
G

∂
√
E

∂v

)]
θ1 ∧ θ2.

Therefore, the Gaussian Curvature of a surface mapped by a coordinate patch
in which the parametric lines are orthogonal is given by:

K = − 1√
EG

[
∂

∂u

(
1√
E

∂
√
G

∂u

)
+

∂

∂v

(
1√
G

∂
√
E

∂v

)]
. (4.107)

Again, to connect with more classical notation, if a surface described by a
coordinate patch x(u, v) has first fundamental for given by I = E du2 +G dv2,
then

dx = xu du+ xv dv,

=
xu√
E

√
E du+

xv√
G

√
G dv,

=
xu√
E
θ1 +

xv√
G
θ2,

dx = e1 θ
1 + e2 θ

2, (4.108)

where
e1 =

xu√
E
, e2 =

xv√
G
.

Thus, when the parametric curves are orthogonal, the triplet {e1, e2, e3 = n}
constitutes a moving orthonormal frame adapted to the surface. The awkward-
ness of combining calculus vectors and differential forms in the same equation
is mitigated by the ease of jumping back and forth between the classical and
the modern formalism. Thus, for example, covariant differential of the normal
in 4.104 can be rewritten without the arbitrary vector in the operator LX as
shown:
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∇Xe3 = ω1
3(X) e1 + ω2

3(X) e2, (4.109)

de3 = e1 ω
1
3 + e2 ω

2
3 = 0, (4.110)

The equation just expresses the fact that the components of the Weingarten
map, that is, the second fundamental form in this basis, can be written as some
symmetric matrix given by:

ω1
3 = l θ1 +m θ2,

ω2
3 = m θ1 + n θ2. (4.111)

If E = 1, we say that the metric

ds2 = du2 +G(u, v)dv2, (4.112)

is in geodesic coordinates. In this case, the equation for curvature reduces even
further to:

K = − 1√
G

∂2
√
G

∂u2
. (4.113)

The case is not as special as it appears at first. The change of parameters

û′ =

∫ u

0

√
E du

results on dû2 = E du2, and thus it transforms an orthogonal system to one with
E = 1. The parameters are reminiscent of polar coordinates ds2 = dr2+r2 dφ2.
Equation 4.113 is called Jacobi’s differential equation for geodesic coordinates.

A slick proof of the theorema egregium can be obtained by differential forms.
Let F : M → M̃ be an isometry between two surfaces with metrics g and g̃
respectively. Let {eα} be an orthonormal basis for dual basis {θα}. Define
ẽα = F∗eα. Recalling that isometries preserve inner products, we have

< ẽα, ẽβ >=< F∗eα, F∗eβ >=< eα, eβ >= δαβ .

Thus, {ẽα} is also an orthonormal basis of the tangent space of M̃. Let θ̃α

be the dual forms and denote with tilde’s the connection forms and Gaussian
curvature of M̃.

4.5.12 Theorem (Theorema egregium)
a) F ∗θ̃α = θα,
b) F ∗ω̃αβ = ωαβ ,

c) F ∗K̃ = K.
Proof
a) It suffices to show that the forms agree on basis vectors. We have

F ∗θ̃α(eβ) = θ̃α(F∗eβ),

= θ̃α(ẽβ),

= δαβ ,

= θ(eβ).
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b) We compute the pull-back of the first structure equation in M̃ :

dθ̃α + ω̃αβ ∧ θ̃β = 0,

F ∗dθ̃α + F ∗ω̃αβ ∧ F ∗θ̃β = 0,

dθα + F ∗ω̃αβ ∧ θβ = 0,

The connection forms are defined uniquely by the first structure equation, so

F ∗ω̃αβ = ωαβ

.
c) In a similar manner, we compute the pull-back of the curvature equation:

dω̃1
2 = K̃ θ̃1 ∧ θ̃2,

F ∗dω̃1
2 = (F ∗K̃)F ∗θ̃1 ∧ F ∗θ̃2,

dF ∗ω̃1
2 = (F ∗K̃)F ∗θ̃1 ∧ F ∗θ̃2,

dω1
2 = (F ∗K) θ1 ∧ θ2,

So again by uniqueness, F ∗K = K.

4.5.13 Example Catenoid - Helicoid
Perhaps the most celebrated manifestation of the theorema egregium, is that

of mapping between a helicoid M and a catenoid M̃ . Let a = c, and label the
coordinate patch for the former as x(uα) and y(ũα) for the latter. The first
fundamental forms are given as in 4.25 and 4.26.

ds2 = du2 + (u2 + a2) dv2,

ds̃2 =
ũ2

ũ2 − a2
dũ2 + ũ2 dṽ2

with

E = 1, G = u2 + a2,

Ẽ =
ũ2

ũ2 − a2
, G̃ = ũ2.

Let F : M → M̃ be the mapping y = Fx, defined by ũ2 = u2 + a2 and ṽ = v.
Since ũ dũ = u du, we have ũ2 dũ2 = u2 du2 which shows that the mapping
preserves the metric and hence it is an isometry. The Gaussian curvatures K
and K̃ follow from an easy computation using formula 4.107.

K =
−1√
u2 + a2

∂

∂u

(
∂

∂u

√
u2 + a2

)
=

a2

(u2 + a2)2
, (4.114)

K̃ = −
√
ũ2 − a2
ũ2

∂

∂ũ

(√
ũ2 − a2
ũ

)
= −a

2

ũ4
. (4.115)

It is immediately evident by substitution that as expected F ∗K̃ = K. Figure
4.13 shows several stages of a one-parameter family Mt of isometries deforming
a catenoid into a helicoid. The one-parameter family of coordinate patches
chosen is

zt = (cos t) x + (sin t) y (4.116)
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Fig. 4.13: Catenoid - Helicoid isometry

Writing the equation of the coordinate patch zt in complete detail, one can
compute the coefficients of the fundamental forms and thus establish the family
of surfaces has mean curvature H independent of the parameter t, and in fact
H = 0 for each member of the family. We will discuss at a later chapter the
geometry of surfaces of zero mean curvature.

4.5.14 Example Isothermal coordinates.
Consider the case in which the metric has the form

ds2 = λ2 (du2 + dv2), (4.117)

so that E = G = λ2, F = 0. A metric in this form is said to be in isothermal
coordinates. Inserting into equation 4.107, we get

K = − 1

λ2

[
∂

∂u

(
1

λ

∂λ

∂u

)
+

∂

∂v

(
1

λ

∂λ

∂v

)]
,

= − 1

λ2

[
∂

∂u

∂

∂u
(lnλ) +

∂

∂v

∂

∂v
(lnλ)

]
.

Hence,

K = − 1

λ2
∇2(lnλ). (4.118)

The tantalizing appearance of the Laplacian in this coordinate system gives
an inkling that there is some complex analysis lurking in the neighborhood.
Readers acquainted with complex variables will recall that the real and imag-
inary parts of holomorphic functions satisfy Laplace’s equations and that any
holomorphic function in the complex plane describes a conformal map. In an-
ticipation of further discussion on this matter, we prove the following:

4.5.15 Theorem Define the mean curvature vector H = Hn. If x(u, v) is
an isothermal parametrization of a surface, then

xuu + xvv = 2λ2H. (4.119)

Proof Since the coordinate patch is isothermal, E = G = λ2 and F = 0.
Specifically, we have < xu,xu >=< xv,xv >, and < xu,xv >= 0. Differentia-
tion then gives:
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< xuu,xu > =< xv,xvu >,

= − < xvv,xu >,

< xuu + xvv,xu > = 0.

In the same manner,

< xvv,xv > =< xu,xuv >,

= − < xuu,xv >,

< xuu + xvv,xv > = 0.

If follows that xuu+xvv is orthogonal to the surface and points in the direction
of the normal n. On the other hand,

Eg +Ge

2EG
= H,

g + e

2λ2
= H,

e+ g = 2λ2H,

< xuu + xvv,n > = 2λ2H,

xuu + xvv = 2λ2H.
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5.1.4 Bäcklund Transforms

5.2 Minimal Surfaces

5.2.1 Minimal Area Property

5.2.2 Conformal Mappings

5.2.3 Isothermal Coordinates

5.2.4 Stereographic Projection

5.2.5 Minimal Surfaces by Conformal Maps

138



Chapter 6

Riemannian Geometry

6.1 Riemannian Manifolds

In the definition of manifolds introduced in section 4.1, it was implicitly as-
sumed manifolds were embedded (or immersed) in Rn. As such, they inherited
a natural metric induced by the standard Euclidean metric of Rn, as shown in
section 4.2. For general manifolds it is more natural to start with a topological
space M , and define the coordinate patches as pairs {Ui, φi}, where {Ui} is an
open cover of M with local homeomorphisms

φi : Ui ⊂M → Rn.

If p ∈ Ui ∩Uj is a point in the non-empty intersection of two charts, we require
that the overlap map φij = φiφ

−1
j : Rn → Rn be a diffeomorphism. The local

coordinates on patch {U, φ} are given by (x1, . . . , xn), where

xi = ui ◦ φ,

and ui : Rn → R are the projection maps on each slot. The concept is the same
as in figure 4.2, but, as stated, we are not assuming a priori that M is embedded
(or immersed) in Euclidean space. If in addition the space is equipped with a
metric, the space is called a Riemannian manifold. If the signature of the metric
is of type g = diag(1, 1, . . . ,−1,−1), with p ‘+’ entries and q ‘-’ entries, we say
that M is a pseudo-Riemannian manifold of type (p, q). As we have done with
Minkowski’s space, we switch to Greek indices xµ for local coordinates of curved
space-times. We write the Riemannian metric as

ds2 = gµν dx
µdxν . (6.1)

We will continue to be consistent with earlier notation and denote the tangent
space at a point p ∈ M as TpM , the tangent bundle as TM , and the space of
vector fields as X (M). Similarly, we denote the space of differential k-forms
by Ωk(M), and the set of type

(
r
s

)
tensor fields by T r

s (M).

139
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Fig. 6.1: Coordinate Charts

Product Manifolds

Suppose that M1 and M2 are differentiable manifolds of dimensions m1 and
m2 respectively. Then, M1 ×M2 can be given a natural manifold structure of
dimension n = m1 +m2 induced by the product of coordinate charts. That is,
if (φi

1
, Ui

1
) is a chart in M1 in a neighborhood of p

1
∈ M1, and (φi

2
, Ui

2
) is a

chart in a neighborhood of p
2
∈M2 in M2, then the map

φi
1
× φi

2
: Ui

1
× Ui

2
→ Rn

defined by
(φi1× φi2 )(p

1
, p

2
) = (φi1(p1

), φi2(p2
)),

is a coordinate chart in the product manifold. An atlas constructed from such
charts, gives the differentiable structure. Clearly, M1×M2 is locally diffeomor-
phic to Rm1× Rm2 . To discuss the tangent space of a product manifold, we
recall from linear algebra, that given two vector spaces V and W , the direct
sum V ⊕W is the vector space consisting of the set of ordered pairs

V ⊕W = {(v, w) : v ∈ V, w ∈W},

together with the vector operations

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2), for all, v1, v2 ∈ V ; w1, w2 ∈W,
k(v, w) = (kv, kw), for all k ∈ R

People often say that one cannot add apples and peaches, but this is not a
problem for mathematicians. For example, 3 apples and 2 peaches plus 4 apples
and 6 peaches is 7 apples and 8 peaches. This is the basic idea behind the direct
sum. We now have the following theorem:

6.1.1 Theorem Let (p1 , p2) ∈ M1 ×M2), then there is a vector space iso-
morphism

T(p
1
,p

2
)(M1 ×M2) ∼= Tp

1
M1 ⊕ Tp

2
M2.
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Proof The proof is adapted from [18]. Given X1 ∈ Tp
1
M1 and X2 ∈ Tp

2
M2,

let

x1(t) be a curve with x1(0) = p
1

and x′1(0) = X1,

x2(t) be a curve with x2(0) = p
2

and x′2(0) = X2.

Then, we can associate

(X1, X2) ∈ Tp
1
M1 ⊕ Tp

2
M2

with the vector X ∈ T(p
1
,p

2
)(M1 ×M2), which is tangent to the curve x(t) =

(x1(t), x2(t)), at the point (p1 , p2). In the simplest possible case where the
product manifold is R2 = R1 ×R1, the vector X would be the velocity vector
X = x′(t) of the curve x(t). It is convenient to introduce the inclusion maps

ip
2
: M1

↘
(M1 ×M2)

,↗
ip1 : M2

defined by,

ip
2
(p) = (p, p

2
), for p ∈M1,

ip
1
(q) = (p1 , q), for q ∈M2

The image of the vectors X1 and X2 under the push-forward of the inclusion
maps

ip
2
∗ : Tp

1
M1

↘
T(p1 ,p2)(M1 ×M2)

↗
ip1∗ : Tp2M2,

yield vectors X1 and X2, given by,

ip
2
∗(X1) = X1 = (x′1(t), p

2
),

ip1∗(X2) = X1 = (p
1
, x′2(t)).

Then, it is easy to show that,

X = ip
2
∗(X1) + ip

1
∗(X2).

Indeed, if f is a smooth function f : M1 ×M2 → R, we have,

X(f) =
d

dt
(f(x1(t), x2(t))|

t=0
,

=
d

dt
(f(x1(t), x2(0))|

t=0
+
d

dt
(f(x1(0), x2(t))|

t=0
,

= X1(f) +X2(f).
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More generally, if
ϕ : M1 ×M2 → N

is a smooth manifold mapping, then we have a type of product rule formula for
the Jacobian map,

ϕ∗X = ϕ∗(ip
2
∗(X1)) + ϕ∗(ip

1
∗(X2)),

= (ϕ ◦ ip2 )∗X1 + (ϕ ◦ ip1 )∗X2 (6.2)

This formula will be useful in the treatment of principal fiber bundles, in which
case we have a bundle space E, and a Lie group G acting on the right by a
product manifold map µ : E ×G→ E.

6.2 Submanifolds

A Riemannian submanifold is a subset of a Riemannian manifold that is
also Riemannian. The most natural example is a hypersurface in Rn. If
(x1, x2 . . . xn) are local coordinates in Rn with the standard metric, and the
surface M is defined locally by functions xi = xi(uα), then M together with
the induced first fundamental form 4.12, has a canonical Riemannian structure.
We will continue to use the notation ∇ for a connection in the ambient space
and ∇ for the connection on the surface induced by the tangential component
of the covariant derivative

∇XY = ∇XY +H(X,Y ), (6.3)

where H(X,Y ) is the component in the normal space. In the case of a hyper-
surface, we have the classical Gauss equation 4.74

∇XY = ∇XY + II(X,Y )N (6.4)

= ∇XY+ < LX,Y > N, (6.5)

where LX = −∇XN is the Weingarten map. If M is a submanifold of codi-
mension n − k, then there are k normal vectors Nk and k classical second
fundamental forms IIk(X,Y ), so that H(X,Y ) =

∑
k IIk(X,Y )Nk.

As shown by the theorema egregium, the curvature of a surface in R3 depends
only on the first fundamental form, so the definition of Gaussian curvature as
the determinant of the second fundamental form does not even make sense in-
trinsically. One could redefine K by Cartan’s second structure equation as it
was used to compute curvatures in Chapter 4, but what we need is a more gen-
eral definition of curvature that is applicable to any Riemannian manifold. The
concept leading to the equations of the theorema egregium involved calculation
of the difference of second derivatives of tangent vectors. At the risk of being
somewhat misleading, figure 4.95 illustrates the concept. In this figure, the vec-
tor field X consists of unit vectors tangent to parallels on the sphere, and the
vector field Y are unit tangents to meridians. If an arbitrary tangent vector Z
is parallel-transported from one point on an spherical triangle to the diagonally
opposed point, the result depends on the path taken. Parallel transport of Z
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Fig. 6.2: R(X,Y)Z

along X followed by Y , would yield a different outcome that parallel transport
along Y followed by parallel transport along X. The failure of the covariant
derivatives to commute is a reflection of the existence of curvature. Clearly, the
analogous parallel transport by two different paths on a rectangle in Rn yield
the same result. This fact is the reason why in elementary calculus, vectors are
defined as quantities that depend only on direction and length. As indicated,
the picture is misleading, because, covariant derivatives, as is the case with
any other type of derivative, involve comparing the change of a vector under
infinitesimal parallel transport. The failure of a vector to return to itself when
parallel-transported along a closed path is measured by an entity related to the
curvature called the holonomy of the connection. Still, the figure should help
motivate the definition that follows.

6.2.1 Definition On a Riemannian manifold with connection ∇, the curva-
ture R and the torsion T are defined by:

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ], (6.6)

T (X,Y ) = ∇XY −∇YX − [X,Y ]. (6.7)

6.2.2 Theorem The Curvature R is a tensor. At each point p ∈M , R(X,Y )
assigns to each pair of tangent vectors, a linear transformation from TpM into
itself.
Proof Let X,Y, Z ∈X (M) be vector fields on M . We need to establish that
R is muiltilinear. Since clearly R(X,Y ) = −R(Y,X), we only need to establish
linearity on two slots. Let f be a C∞ function. Then,

R(fX, Y ) = ∇fX∇Y Z −∇Y∇fXZ −∇[fX,Y ]Z,

= f∇X∇Y Z −∇Y (f∇X)Z −∇[fXY−Y (fX)]Z,

= f∇X∇Y Z − Y (f)∇X)Z − f∇Y∇XZ −∇fXY Z +∇(Y (f)X+fY X)Z,

= f∇X∇Y Z − Y (f)∇X)Z − f∇Y∇XZ − f∇XY Z +∇Y (f)XZ +∇fY XZ,

= f∇X∇Y Z − Y (f)∇X)Z − f∇Y∇XZ − f∇XY Z + Y (f)∇XZ + f∇YXZ,
= f∇X∇Y Z − f∇Y∇XZ − f(∇XY Z −∇YX)Z,

= fR(X,Y )Z.
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Similarly, recalling that [X,Y ] ∈X , we get:

R(X,Y )(fZ) = ∇X∇Y (fZ)−∇Y∇X(fZ)−∇[X,Y ](fZ),

= ∇X(Y (f)Z) + f∇Y Z)−∇Y (X(f)Z + f∇XZ)− [X,Y ](f)Z)− f∇[X,Y ]Z,

= XY (f)Z) + Y (f)∇XZ +X(f)∇Y Z + f∇X∇Y Z−
Y X(f)Z)−X(f)∇Y Z − Y (f)∇XZ − f∇Y∇XZ−
[X,Y ](f)Z)− f∇[X,Y ](Z),

= fR(X,Y )Z.

We leave it as an almost trivial exercise to check linearity over addition in all
slots.

6.2.3 Theorem The torsion T is also a tensor.
Proof Since T (X,Y ) = −T (Y,X), it suffices to prove linearity on one slot.
Thus,

T (fX, Y ) = ∇fXY −∇Y (fX)− [fX, Y ],

= f∇XY − Y (f)X − f∇YX − fXY + Y (fX),

= f∇XY − Y (f)X − f∇YX − fXY + Y (f)X + fY X,

= f∇XY − f∇Y X − f [X,Y ],

= fT (X,Y ).

Again, linearity over sums is clear.

6.2.4 Theorem In a Riemannian manifold there exist a unique torsion free
connection called the Levi-Civita connection, that is compatible with the metric.
That is:

[X,Y ] = ∇XY −∇YX, (6.8)

∇X < Y,Z >= < ∇XY,Z > + < Y,∇XZ > . (6.9)

Proof The proof parallels the computation leading to equation 4.76.Let ∇ be
a connection compatible with the metric. By taking the three cyclic derivatives
of the inner product, and subtracting the third from the sum of the first two

(a) ∇X < Y,Z >= < ∇XY, Z > + < Y,∇XZ >,

(b) ∇Y < X,Z >= < ∇YX,Z > + < X,∇Y Z >,

(c) ∇Z < X,Y >= < ∇ZX,Y > + < X,∇ZY >,

(a) + (b)− (c) = < ∇XY, Z > + < ∇YX,Z > + < [X,Z], Y > + < [Y, Z], X >

=2 < ∇XY, Z > + < [Y,X], Z > + < [X,Z], Y > + < [Y, Z], X >

Therefore:

< ∇XY,Z >= 1
2
{∇X < Y,Z > +∇Y < X,Z > −∇Z < X,Y >

+ < [X,Y ], Z > + < [Z,X], Y > + < [Z, Y ], X >}. (6.10)

The bracket of any two vector fields is a vector field, so the connection is unique
since it is completely determined by the metric. In disguise, this is the formula
in local coordinates for the Christoffel symbols 4.76. This follows immediately
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by choosing X = ∂/∂xα, Y = ∂/∂xβ and Z = ∂/∂xγ . Conversely, if one
defines ∇XY by equation 6.10, a long but straightforward computation with
lots of cancellations, shows that this defines a connection compatible with the
metric.

As before, if {eα} is a frame with dual frame {θa}, we define the connection
forms ω, Christoffel symbols Γ and torsion components in the frame by

∇Xeβ = ωγβ(X) eγ , (6.11)

∇eαeβ = Γγαβ eγ , (6.12)

T (eα, eβ) = T γαβ eγ . (6.13)

As was pointed out in the previous chapter, if the frame is an orthonormal
frame such as the coordinate frame {∂/∂xµ} for which the bracket is zero, then
T = 0 implies that the Christoffel symbols are symmetric in the lower indices.

T γαβ = Γγαβ − Γγβα = 0.

For such a coordinate frame, we can compute the components of the Riemann
tensors as follows:

R(eγ , eβ) eδ = ∇eγ∇eβeδ −∇eβ∇eγeδ,
= ∇eγ (Γαβδeα)−∇eβ (Γαγδeα),

= Γαβδ,γeα + ΓαβδΓ
µ
γαeµ − Γαγδ,βeα − ΓαγδΓ

µ
βαeµ,

= [Γαβδ,γ − Γαβγ,δ + ΓµβδΓ
α
γµ − ΓµβγΓαδµ]eα,

= Rαβγδ eα,

where the components of the Riemann Tensor are defined by:

Rαβγδ = Γαβδ,γ − Γαβγ,δ + ΓµβδΓ
α
γµ − ΓµβγΓαδµ. (6.14)

Let X = Xµeµ be and α = Xµθ
µ be a covariant and a contravariant vector

field respectively. Using the notation ∇α = ∇eα it is almost trivial to compute
the covariant derivatives. The results are,

∇βX = (Xµ
,β +XνΓµβν)eµ,

∇βα = (Xµ,β −XνΓνβµ)θµ, (6.15)

We show the details of the first computation, and leave the second one as an
easy exercise

∇βX = ∇β(Xµeµ), (6.16)

= Xµ
,βeµ +XµΓδβµeδ, (6.17)

= (Xµ
,β +XνΓµβν)eµ. (6.18)
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In classical notation, the covariant derivatives Xµ
‖β and Xµ‖β are given in

terms of the tensor components,

Xµ
‖β = Xµ

,β +XνΓµβν ,

Xµ‖β = Xµ,β −XνΓνβµ. (6.19)

It is also straightforward to establish the Ricci identities

Xµ
‖αβ −Xµ

‖βα = XνRµναβ ,

Xµ‖αβ −Xµ‖βα = −XνR
ν
µαβ . (6.20)

Again, we show the computation for the first identity and leave the second as
a exercise. We take the second derivative. and then reverse the order,

∇α∇βX = ∇α(Xµ
,βeµ +XνΓµβνeµ),

= Xµ
,βαeµ +Xµ

,βΓδαµeδ +Xν,αΓµβµeν +XνΓµβν,αeµ +XνΓµβνΓδανeδ,

∇α∇βX = (Xµ
,βα +Xν

,βΓµαν +Xν
,αΓνβν +XνΓµβν,α +XνΓδβνΓµαδ)eµ,

∇β∇αX = (Xµ
,αβ +Xν

,αΓµβν +Xν
,βΓναν +XνΓµαν,β +XνΓδανΓµβδ)eµ.

Subtracting the last two equations, only the last two terms of each survive, and
we get the desired result,

2∇[α∇β](X) = Xν(Γµβν,α − Γµαν,β + ΓδβνΓµαδ − ΓδανΓµβδ)eµ,

2∇[α∇β](Xµeµ) = (XνRµναβ)eµ.

In the lietrature, many authors use the notation ∇βXµ to denote the covariant
derivative Xµ

‖β , but it is really an (excusable) abuse of notation that arises
from thinking of tensors as the components of the tensors. The Ricci identities
are the basis for the notion of holonomy, namely, the simple interpretation that
the failure of parallel transport to commute along the edges of an rectangle,
indicates the presence of curvature. With more effort with repeated use of
Leibnitz rule, one can establish more elaborate Ricci identities for higher order
tensors. If one assumes zero torsion, the Ricci identities of higher order tensors
just involve more terms with the curvature. It the torsion is not zero, there are
additional terms involving the torsion tensor; in this case it is perhaps a bit
more elegant to use the covariant differential introduced in the next section, so
we will postpone the computation until then.

The generalization of the theorema egregium to manifolds comes from the
same principle of splitting the curvature tensor of the ambient space into the
tangential on normal components. In the case of a hypersurface with normal
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N and tangent vectors X,Y, Z, we have:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

= ∇X(∇Y Z+ < LY,Z > N)−∇Y (∇XZ+ < LX,Z > N)−∇[X,Y ]Z,

=∇X∇Y Z+ < LX,∇Y Z > N +X < LY,Z > N+ < LY,Z > LX−
∇Y∇XZ− < LY,∇Y Z > N − Y < LX,Z > N− < LX,Z > LY−
∇[X,Y ]Z− < L([X,Y ]), Z > N,

=∇X∇Y Z+ < LX,∇Y Z > N +X < LY,Z > N+ < LY,Z > LX−
∇Y∇XZ− < LY,∇Y Z > N − Y < LX,Z > N− < LX,Z > LY−
∇[X,Y ]Z− < L([X,Y ]), Z > N,

= ∇X∇Y Z+ < LX,∇Y Z > N+ < ∇XLY,Z > N+ < LY,∇XZ > N+ < LY,Z > LX−
∇Y∇XZ− < LY,∇Y Z > N− < ∇Y LX,Z > N− < LX,∇Y Z > N− < LX,Z > LY−
∇[X,Y ]Z− < L([X,Y ]), Z > N,

= R(X,Y )Z+ < LY,Z > LX− < LX,Z > LY+

{< ∇XLY,Z > − < ∇Y LX,Z > − < L([X,Y ]), Z >}N.

If the ambient space is Rn, the curvature tensor R is zero, so we can set the
horizontal and normal components in the right to zero. Noting that the normal
component is zero for all Z, we get:

R(X,Y )Z+ < LY,Z > LX− < LX,Z > LY = 0, (6.21)

∇XLY −∇Y LX − L([X,Y ]) = 0. (6.22)

In particular, if n = 3, and at each point in the surface, the vectors X and Y
constitute an a basis of the tangent space, we get the coordinate-free theorema
egregium

K =< R(X,Y )X,Y >=< LX,X >< LY, Y > − < LY,X >< LX, Y >= det(L).
(6.23)

The expression 6.22 is the coordinate-independent version of the equation of
Codazzi.

We expect the covariant definition of the torsion and curvature tensors to be
consistent with the formalism of Cartan.

6.2.5 Theorem Equations of Structure.

Θα = dθα + ωαβ ∧ θβ , (6.24)

Ωαβ = dωαβ + ωαγ ∧ ω
γ
β . (6.25)

To verify this is the case, we define:

T (X,Y ) = Θα(X,Y )eα, (6.26)

R(X,Y )eβ = Ωαβ(X,Y )eα. (6.27)

Recalling that any tangent vector X can be expressed in terms of the basis as
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X = θα(X) eα, we can carry out a straight-forward computation:

Θα(X,Y ) eα = T (X,Y ) = ∇XY −∇YX − [X,Y ],

= ∇X(θα(Y )) eα −∇Y (θα(X)) eα − θα([X,Y ]) eα,

= X(θα(Y )) eα + θα(Y ) ωβα(X) eβ − Y (θα(X)) eα

− θα(X) ωβα(Y ) eβ − θα([X,Y ]) eα,

= {X(θα(Y ))− Y (θα(X))− θα([X,Y ]) + ωαβ(X)(θβ(Y )− ωαβ(Y )(θβ(X)}eα,

= {(dθα + ωαβ ∧ θβ)(X,Y )}eα,

where we have introduced a coordinate-free definition of the differential of the
one form θ by

dθ(X,Y ) = X(θ(Y ))− y(θ(X))− θ([X,Y ]). (6.28)

It is easy to verify that this definition of the differential of a one form satisfies
all the required properties of the exterior derivative, and that it is consistent
with the coordinate version of the differential introduced in Chapter 2. We
conclude that

Θα = dθα + ωαβ ∧ θβ , (6.29)

which is indeed the first Cartan equation of structure. Proceeding along the
same lines, we compute:

Ωαβ(X,Y ) eα = ∇X∇Y eβ −∇Y∇X eβ −∇[X,Y ] eβ ,

= ∇X(ωαβ(Y ) eα)−∇Y (ωαβ(X) eα)− ωαβ([X,Y ]) eα,

= X(ωαβ(Y )) eα + ωαβ(Y ) ωγα(X) eγ − Y (ωαβ(X)) eα

− ωαβ(X) ωγα(Y ) eγ − ωαβ([X,Y ]) eα

= {(dωαβ + ωαγ ∧ ωγβ)(X,Y )}eα,

thus arriving at the second equation of structure

Ωαβ = dωαβ + ωαγ ∧ ω
γ
β . (6.30)

The quantities connection and curvature forms are matrix-valued. Using matrix
multiplication notation, we can abbreviate the equations of structure as

Θ = dθ + ω ∧ θ,
Ω = dω + ω ∧ ω. (6.31)

Taking the exterior derivative of the structure equations gives some interesting
results. Here is the first computation,

dΘ = dω ∧ θ − ω ∧ dθ,
= dω ∧ θ − ω ∧ (Θ− ω ∧ θ),
= dω ∧ θ − ω ∧Θ + ω ∧ ωθ,
= (dω + ω ∧ ω) ∧ θ − ω ∧Θ,

= Ω ∧ θ − ω ∧Θ,
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so,
dΘ + ω ∧Θ = Ω ∧ θ. (6.32)

Similarly, taking d of the second structure equation we get,

dΩ = dω ∧ ω + ω ∧ dω,
= (Ω− ω ∧ ω) ∧ ω + ω ∧ (Ω− ω ∧ ω).

Hence,
dΩ = Ω ∧ ω − ω ∧ Ω. (6.33)

Equations 6.32 and 6.33 are called the first and second Bianchi identities. The
relationship between the torsion and Riemann tensor components with the cor-
responding differential forms are given by

Θα = 1
2T

α
γδ θ

γ ∧ θδ,
Ωαβ = 1

2R
α
βγδ θ

γ ∧ θδ. (6.34)

In the case of a non-coordinate frame in which the Lie bracket of frame vectors
does not vanish, we first write them as linear combinations of the frame

[eβ , eγ ] = Cαβγ eα. (6.35)

The components of the torsion and Riemann tensors are then given by

Tαβγ = Γαβγ − Γαγβ − Cαβγ ,
Rαβγδ = Γαβδ,γ − Γαβγ,δ + ΓµβδΓ

α
γµ − ΓµβγΓαδµ − ΓαβµC

µ
γδ − ΓασβC

σ
γδ. (6.36)

The Riemann tensor for a torsion-free connection has the following symmetries;

R(X,Y ) = −R(Y,X),

< R(X,Y )Z,W > = − < R(X,Y )W,Z >,

R(X,Y )Z +R(Z,X)Y +R(Y, Z)X = 0. (6.37)

In terms of components, the Riemann Tensor symmetries can be expressed as

Rαβγδ = −Rαβδγ = −Rβαγδ,
Rαβγδ = Rγδαβ ,

Rαβγδ +Rαγδβ +Rαδβγ = 0. (6.38)

The last cyclic equation is the tensor version of the first Bianchi Identity with
0 torsion. It follows immediately from setting Ω ∧ θ = 0 and taking a cyclic
permutation of the antisymmetric indices {β, γ, δ} of the Riemann tensor. The
symmetries reduce the number of independent components in an n-dimensional
manifold from n4 to n2(n2 − 1)/12. Thus, for a 4-dimensional space, there are
at most 20 independent components. The derivation of the tensor version of
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the second Bianchi identity from the elegant differential forms version, takes a
bit more effort. In components the formula

dΩ = Ω ∧ ω − ω ∧ Ω

reads,

Rαβκλ;µ θ
µ ∧ θκ ∧ θλ = (ΓρµβR

α
ρκλ − ΓαµρR

ρ
βκλ)θµ ∧ θκ ∧ θλ,

where we used the notation,

∇µRαβκλ = Rαβκλ;µ.

Taking a cyclic permutation on the antisymmetric indices κ, λ, µ, and using
some index gymnastics to show that the right hand becomes zero, the tensor
version of the second Bianchi identity for zero torsion becomes

Rαβ[κλ;µ] = 0 (6.39)

6.3 Sectional Curvature

Let {M, g} be a Riemannian manifold with Levi-Civita connection ∇ and
curvature tensor R(X,Y ). In local coordinates at a point p ∈M we can express
the components

R = Rµνρσ dx
µdxνdxρdxσ

of a covariant tensor of rank 4. With this in mind, we define a multilinear
function

R : Tp(M)⊗ Tp(M)⊗ Tp(M)⊗ Tp(M)→ R,

by

R(W,Y,X,Z) =< W,R(X,Y )Z > (6.40)

In this notation, the symmetries of the tensor take the form,

R(W,X, Y, Z) = −R(W,Y,X,Z),

R(W,X, Y, Z) = −R(Z, Y,X,W )

R(W,X, Y, Z) +R(W,Z,X, Y ) +R(X,Y, Z,X) = 0. (6.41)

From the metric, we can also define a multilinear function

G(W,Y,X,Z) =< Z, Y >< X,W > − < Z,X >< Y,W > .

Now, consider any 2-dimensional plane Vp ⊂ Tp(M) and let X,Y ∈ V be
linearly independent. Then,

G(X,Y,X, Y ) =< X,X >< Y, Y > − < X,Y >2
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is a bilinear form that represents the area of the parallelogram spanned by X
and Y . If we perform a linear, non-singular change of of coordinates,

X ′ = aX + bY, y′ = cX + dY, ad− bc 6= 0,

then both, G(X,Y.X, Y ) and R(X,Y,X, Y ) transform by the square of the
determinant D = ad − bc, so the ratio is independent of the choice of vectors.
We define the sectional curvature of the subspace Vp by

K(Vp) =
R(X,Y,X, Y )

G(X,Y,X, Y )
,

=
R(X,Y,X, Y )

< X,X >< Y, Y > − < X,Y >2
(6.42)

The set of values of the sectional curvatures for all planes at Tp(M) completely
determines the Riemannian curvature at p. For a surface in R3 the sectional
curvature is the Gaussian curvature, and the formula is equivalent to the the-
orema egregium. If K(Vp) is constant for all planes Vp ∈ Tp(M) and for all
points p ∈ M , we say that M is a space of constant curvature. For a space of
constant curvature k, we have

R(X,Y )Z = k(< Z, Y > X− < Z,X > Y ) (6.43)

In local coordinates, the equation gives

Rµνρσ = k(gνσgµρ − gνγgµσ). (6.44)

6.3.1 Example
The model space of manifolds of constant curvature is a quadric hypersurface

M of Rn+1 with metric

ds2 = εk2dt2 + (dy1)2 + · · ·+ dyn)2,

given by the equation

M : εk2t2 + (y1)2 + . . . (yn)2 = εk2, t 6= 0,

where k is a constant and ε = ±1. For the purposes of this example it will
actually be simpler to completely abandon the summation convention. Thus,
we write the quadric as

εk2t2 + Σi(y
i)2 = εk2.

If k = 0, the space is flat. If ε = 1, let (y0)2 = k2t2 and the quadric is isometric
to a sphere of constant curvature 1/k2. If ε = −1, Σi(x

i)2 = −k2(1 − t2) > 0,
then t2 < 1 and the surface is a hyperboloid of two sheets. Consider the
mapping from (R)n+1 to Rn given by

xi = yi/t.
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We would like to compute the induced metric on the the surface. We have

−k2t2 + Σi(y
i)2 = −k2t2 + t2Σi(x

i)2 = −k2

so

t2 =
−k2

−k2 + Σi(xi)2
.

Taking the differential, we get

t dt =
−k2Σi(x

idxi)

−k2 + Σi(xi)2
.

Squaring and dividing by t2 we also have

dt2 =
−k2(Σix

i dxi)2

(−k2 + Σi(xi)2)3
.

From the product rule, we have dyi = xi dt+ t dxi, so the metric is

ds2 = −k2 dt2 + [Σ(xi)2]dt2 + 2t dtΣi(x
i dxi) + t2Σ(dxi)2,

= [−k2 + Σi(x
i)2] dt2 + 2t dtΣi(x

i dxi) + t2Σ(dx1)2,

=
−k2[Σi(x

idxi)]2

[−k2 + Σi(xi)2]2
+

2k2[Σi(x
idxi)]2

[−k2 + Σi(xi)2]2
+
−k2Σi(dx

i)2

−k2 + Σi(dxi)2
,

= k2
[k2 − Σi(x

i)2]Σi(dx
i)2 − (Σi(x

i dxi))2

[k2 − Σi(xi)2]2

It is not obvious, but in fact, the space is also of constant curvature (−1/k2).
For an elegant proof, see [18]. When n = 4 and ε = −1, the group leaving the
metric

ds2 = −k2dt2 + (dy1)2 + (dy2)2 + (dy3)2 + (dy4)2

invariant, is the Lorentz group O(1, 4). With a minor modification of the above,
consider the quadric

M : −k2t2 + (y1)2 + . . . (y4)2 = k2.

In this case, the quadric is a hyperboloid of one sheet, and the submanifold
with the induced metric is called the de Sitter space. The isotropy subgroup
that leaves (1, 0, 0, 0, 0) fixed is O(1, 3) and the manifold is diffeomorphic to
O(1, 4)/O(1, 3). Many alternative forms of the de Sitter metric exist in the
literature. One that is particularly appealing is obtained as follows. Write the
metric in ambient space as

ds2 = −(dy0)2 + (dy1)2 + (dy2)2 + (dy3)2 + (dy4)2

with the quadric given by

M : −(y0)2 + (y1)2 + . . . (y4)2 = k2.
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Let
4∑
i=1

(xi)2 = 1

so M represents a unit sphere S3. Introduce the coordinates for M

y0 = k sinh(τ/k),

yi = k cosh(τ/k).

Then, we have

dy0 = cosh(τ/k) dτ,

dyi = sinh(τ/k)xi dτ + k cosh(τ/k) dxi.

The induced metric on M becomes,

ds2 = −[cosh2(τ/k)− sinh2(τ/k)Σi(x
i)2] dτ + cosh2(τ/k)Σi(dx

i)2,

= −dτ2 + cosh2(τ/k)dΩ2,

where dΩ is the volume form for S3. The most natural coordinates for the
volume form are the Euler angles and Cayley-Klein parameters. The interpre-
tation of this space-time is that we have a spatial 3-sphere which propagates
in time by shrinking to a minimum radius at the throat of the hyperboloid,
followed by an expansion. Being a space of constant curvature, the Ricci tensor
is proportional to the metric, so this is an Einstein manifold.

6.4 Big D

In this section we discuss the notion of a connection on a vector bundle E.
Let M be a smooth manifold and as usual we denote by T rs (p) the vector space
of type

(
r
s

)
tensors at a point p ∈ M . The formalism applies to any vector

bundle, but in this section we are primarily concerned with the case where E
is the tensor bundle E = T rs (M). Sections Γ(E) = T r

s (M) of this bundle
are called tensor fields on M . For general vector bundles, we use the notation
s ∈ Γ(E) for the sections of the bundle. The section that maps every point of M
to the zero vector, is called the zero section. Let {eα} be an orthonormal frame
with dual forms {θα}. We define the space Ωp(M,E) tensor-valued p-form as
sections of the bundle,

Ωp(M,E) = Γ(E ⊗ Λp(M)). (6.45)

As in equation 2.63, a tensor-valued p form is a tensor of type
(
r
s+p

)
with

components,

T = Tα1,...αr
β1,...βs,γ1,...,γp

eα1
⊗ . . . eαr ⊗ θβ1 ⊗ · · · ⊗ θβs ∧ θγ1 ∧ . . . ∧ θγp . (6.46)
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A tensor-valued 0-form is just a regular tensor field T ∈ T r
s (M) The main

examples of tensor-valued forms are the torsion and the curvature forms

Θ = Θα ⊗ eα,
Ω = Ωαβ ⊗ eα ⊗ θβ . (6.47)

The tensorial components of the torsion tensor, would then be written as

T = Tαβγeα ⊗ θβ ⊗ θγ ,

=
1

2
Tαβγeα ⊗ θβ ∧ θγ ,

= eα ⊗ ( 1
2T

α
βγθ

β ∧ θγ).

since the tensor is antisymmetric in the lower indices. Similarly, the tensorial
components of the curvature are

Ω =
1

2
Rαβγδ eα ⊗ θβ ⊗ θγ ∧ θδ,

= eα ⊗ θβ ⊗ ( 1
2R

α
βγδθ

γ ∧ θδ).

The connection forms
ω = ωαβ ⊗ eα ⊗ θβ (6.48)

are matrix-valued, but they are not tensorial forms. If T is a type
(
r
s

)
tensor

field, and α a p-form, we can write a tensor-valued p-form as T ⊗α ∈ Ωp(M,E)
is. We seek an operator that behaves like a covariant derivative ∇ for tensors
and exterior derivative d for forms.

6.4.1 Linear Connections

Given a vector field X and a smooth function f , we define a linear connection
as a map

∇X : Γ(T rs )→ Γ(T rs )

with the following properties
1) ∇X(f) = X(f),
1) ∇fXT = fDXT ,
2) ∇X+Y T = ∇XT +∇Y T , for all X,Y ∈X (M),
3) ∇X(T1 + T2) = ∇XT1 +∇XT2, for T1, T2 ∈ Γ(T rs ),
4) ∇X(fT ) = X(f)T + f∇XT .

If instead of the tensor bundle we have a general vector bundle E, we replace the
tensor fields in the definition above by sections s ∈ Γ(E) of the vector bundle.
The definition induces a derivation on the entire tensor algebra satisfying the
additional conditions,

5) ∇X(T1 ⊗ T2) = ∇XT1 ⊗ T2 + T1 ⊗∇XT2,
6) ∇X ◦ C = C ◦ ∇X , for any contraction C.

The properties are the same as a Koszul connection, or covariant derivative for
tensor-valued 0 forms T . Given an orthonormal frame, consider the identity
tensor,

I = δαβ eα ⊗ θβ , (6.49)
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and take the covariant derivative ∇X . We get

∇Xeα ⊗ θα + eα ⊗∇Xθα = 0,

eα ⊗∇Xθα = −∇Xeα ⊗ θα,
= −eβ ωβα(X)⊗ θα,

eβ ⊗∇Xθβ = −eβ ωβα(X)⊗ θα,

which implies that,
∇Xθβ = −ωβα(X)θα. (6.50)

Thus as before, since we have formulas for the covariant derivative of basis vec-
tors and forms, we are led by induction to a general formula for the covariant
derivative of an

(
r
s

)
-tensor given mutatis mutandis by the formula 3.32. In other

words, the covariant derivative of a tensor acquires a term with a multiplica-
tive connection factor for each contravariant index and a negative term with a
multiplicative connection factor for each covariant index.

6.4.1 Definition A connection ∇ on the vector bundle E is a map

∇ : Γ(M.E)→ Γ(M,E ⊗ T ∗(M))

which satisfies the following conditions
a) ∇(T1 + T2) = ∇T1 +∇T2, T1, T2 ∈ Γ(E)),
b) ∇(fT ) = df ⊗ T + f∇T ,
c) ∇XT = iX∇T .

As a reminder of the definition of the inner product iX , condition (c) is equiv-
alent to the equation,

∇T (θ1, . . . , θr, X,X1, . . . , Xs) = (∇XT )(θ1, . . . , θr, X1, . . . , Xs).

In particular, if X is vector field, then, as expected

∇X(Y ) = ∇XY,

The operator ∇ is called the covariant differential. Again, for a general vector
bundles, we denote the sections by s ∈ Γ(E) and the covariant differential by
∇s.

6.4.2 Affine Connections

A connection on the tangent bundle T (M) is called an affine connection. In
a local frame field e, we may assume that the connection is represented by a
matrix of one-forms ω

∇eβ = eα ⊗ ωαβ ,
∇e = e⊗ ω. (6.51)

The tensor multiplication symbol is often omitted when it is clear in context.
Thus, for example, the connection equation is sometimes written as ∇e = eω.
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In a local coordinate system {x1, . . . , xn}, with basis vectors ∂µ = ∂
∂xµ and dual

forms dxµ, we have,

ωαβµ = Γαβµ dx
µ.

From equation 6.50, it follows that

∇θα = −ωαβ ⊗ θβ . (6.52)

We need to be a bit careful with the dual forms θα. We can view them as a
vector-valued 1-form

θ = eθ ⊗ θα,

which has the same components as the identity
(
1
1

)
tensor. This is a kind of a

odd creature. About the closest analog to this entity in classical terms is the
differential of arc-length

dx = i dx+ j dy + k dz,

which is sort of a mixture of a vector and a form. The vector of differential
forms would then be written as a column vector.
In a frame {eα}, the covariant differential of tensor-valued 0-form T is given by

∇T = ∇eαT ⊗ θα ≡ ∇αT ⊗ θα.

In particular, if X = vαeα, we get,

∇X = ∇βX ⊗ θβ = ∇β(vαeα)⊗ θβ ,
= (∇β(vα) eα + vαΓγβα eγ)⊗ θβ ,

= (vα,β + vγΓαβγ)eα ⊗ θβ

= vα‖β eα ⊗ θ
β ,

where we have used the classical symbols

vα‖β = vα,β + Γαβγ v
γ , (6.53)

for the covariant derivative components vα‖β and the comma to abbreviate the

directional derivative ∇β(vα). Of course, the formula is in agreement with
equation 3.25. ∇X is a

(
1
1

)
-tensor.

Similarly, for a covariant vector field α = vαθ
α, we have

∇α = ∇(vα ⊗ θα)

= ∇vα ⊗ θα − vβ ωβα ⊗ θα,
= (∇γvα θγ − vβΓβαγθ

γ)⊗ θα,
= (vα,γ − Γαβγ vα) θγ ⊗ θα,

hence,

vα‖β = vα,γ − Γαβγ vα. (6.54)



6.4. BIG D 157

As promised earlier, we now prove the Ricci identities for contravariant and
covariant vectors when the torsion is not zero. Ricci Identities with torsion.
The results are,

Xµ
‖αβ −Xµ

‖βα = XνRµναβ −Xµ
,νT

ν
αβ ,

Xµ‖αβ −Xµ‖βα = −XνR
ν
µαβ −Xµ,νT

ν
αβ , (6.55)

We prove the first one. Let X = Xµeµ. We have

∇X = ∇βX ⊗ θβ ,
∇2X = ∇(∇βX ⊗ θβ),

= ∇(∇βX)⊗ θβ +∇βX ⊗∇θβ ,
= ∇α∇βX ⊗ θβ ⊗ θα −∇β ⊗ ωβα ⊗ θα,
= ∇α∇βX ⊗ θβ ⊗ θα −∇µX ⊗ Γµαβθ

β ⊗ θα,

∇2X = (∇α∇βX −∇µX Γµαβ) θβ ⊗ θα.

On the other hand, we also have ∇X = ∇αX ⊗ θα, so we can compute ∇2 by
differentiating in the reverse order to get the equivalent expression,

∇2X = (∇β∇αX −∇µX Γµβα) θα ⊗ θβ .

Subtracting the last two equations we get an alternating tensor, or a two-form
that we can set equal to zero. For lack of a better notation we call this form
[∇,∇]. The notations Alt(∇2) and ∇∧∇ also appear in the literature. We get

[∇,∇] = [∇α∇β −∇β∇α)X −∇µX(Γµαβ − Γµβα)]θβ ∧ θα,

= [∇α∇β −∇β∇α −∇[eα,β])X +∇[eα,β]X −∇µX(Γµαβ − Γµβα)]θβ ∧ θα,

= [R(eα, eβ)X + Cµαβ∇µX −∇µX(Γµαβ − Γµβα]θβ ∧ θα,

= [R(eα, eβ)X + Cµαβ −∇µX(Γµαβ − Γµβα − C
µ
αβ ]θβ ∧ θα,

= 1
2 (XνRµναβ −∇µX Tµαβ)θβ ∧ θα.

6.4.3 Exterior Covariant Derivative

Since we know how to take the covariant differential of the basis vectors,
covectors, and tensor products thereof, an affine connection on the tangent
bundle induces a covariant differential on the tensor bundle. It is easy to get a
formula by induction for the covariant differential of a tensor-valued 0-form. A
given connection can be extended in a unique way to to tensor-valued p-forms.
Just as with the wedge product of a 0-form f with a p-form α for which identify
fα with f⊗α = f ∧α, we write a tensor-valued p form as T ⊗α = T ∧α, where
T is a type

(
r
s

)
tensor. We define the exterior covariant derivative

D : Ωp(M,E)→ Ωp+1(M,E)
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by requiring that,

D(T ⊗ α) = D(T ∧ α),

= ∇T ∧ α+ (−1)pT ∧ dα. (6.56)

it is instructive to show the details of the computation of the exterior covariant
derivative of the vector valued one forms θ and Θ, and the

(
1
1

)
tensor-valued

2-form Ω. The results are

Dθα = dθα + ωαβ ∧ θβ ,
DΘα = dΘα + ωαβ ∧Θβ ,

DΩαβ = dΩαβ + ωαγ ∧ Ωαγ − Ωαγ ∧ ωγβ (6.57)

The first two follow immediately, we compute the third. We start by writing

Ω = Ωαβ eα ⊗ θβ ,
= (eα ⊗ θβ) ∧ Ωαβ .

Then,

DΩ = D(eα ⊗ θβ) ∧ Ωαβ + (−1)2(eα ⊗ θβ) ∧ dΩαβ ,

= (Deα ⊗ θβ + eα ⊗Dθβ) ∧ Ωαβ + (eα ⊗ θβ) ∧ dΩαβ ,

= (eγ ⊗ ωγθ ⊗ θβ + eα ⊗ ωβγ ⊗ θγ)∧)Ωαβ + (eα ⊗ θβ) ∧ dΩαβ ,

= (eα ⊗ θβ) ∧ (dΩαβ + ωαγ ∧ Ωγβ − ωαγ ∧ Ωγβ).

In the last step we had to relabel a couple of indices so that we could factor out
(eα ⊗ θβ). The pattern should be clear. We get an exterior derivative for the
forms, an ω ∧ Ω term for the contravariant index and an Ω ∧ ω term with the
appropriate sign, for the covariant index. Here the computation gives

DΩαβ = dΩαβ + ωαγ ∧ Ωγβ − ωαγ ∧ Ωγβ , or

DΩ = dω + ω ∧ Ω− Ω ∧ ω. (6.58)

This means that we can write the equations of structure as

Θ = Dθ,

Ω = dω + ω ∧ ω, (6.59)

and the Bianchi’s identities as

DΘ = Ω ∧ θ,
DΩ = 0 (6.60)

With apologies for the redundancy, we reproduce the change of basis formula
3.49. Let e′ = eB be an orthogonal change of basis. Then

De′ = e⊗ dB +DeB,

= e⊗ dB + (e⊗ ω)B,

= e′ ⊗ (B−1dB +B−1ωB),

= e′ ⊗ ω′,
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where,

ω′ = B−1dB +B−1ωB. (6.61)

Multiply the last equation by B and take the exterior derivative d. We get.

Bω′ = dB + ωB,

Bdω′ + dB ∧ ω′ = dωB − ω ∧ dB,
Bdω′ + (Bω′ − ωB) ∧ ω′ = dωB − ω ∧ (ω′B − ωB),

B(dω′ + ω′ ∧ ω′) = (dω + ω ∧ ω)B,

Setting Ω = dω + ω ∧ ω, and Ω′ = dω′ + ω′ ∧ ω′, the last equation reads,

Ω′ = B−1ΩB. (6.62)

As pointed out after equation 3.49, the curvature is a tensorial form of adjoint
type. The transformation law above for the connection has an extra term,
so it is not tensorial. It is easy to obtain the classical transformation law
for the Christoffel symbols from equation 6.61. Let {xα} be coordinates in a
patch (φα, Uα), and {yβ} be coordinates on a overlapping patch (φβ , Uβ). The
transition functions φαβ are given by the Jacobian of the change of coordinates,

∂

∂yβ
=
∂xα

∂yβ
∂

∂xα
,

φαβ =
∂xα

∂yβ
.

Inserting the connection components ω′αβ = Γ′αβγdy
γ , into the change of basis

formula 6.61, with B = φαβ , we get1,

ω′αβ = (B−1)ακdB
κ
β + (B−1)ακ ω

κ
λB

λ
β ,

=
∂yα

∂xκ
d

(
∂xκ

∂yβ

)
+
∂yα

∂xκ
ωκλ

∂xλ

∂yβ
,

Γ′αβγdy
γ =

∂yα

∂xκ
∂2xκ

∂yσ∂yβ
dyσ +

∂yα

∂xκ
Γκλσdx

σ ∂x
λ

∂yβ
,

Γ′αβγ =
∂yα

∂xκ
∂2xκ

∂yγ∂yβ
+
∂yα

∂xκ
Γκλσ

∂xσ

∂yγ
∂xλ

∂yβ
.

Thus, we retrieve the classical transformation law for Christoffel symbols that
one finds in texts on general relativity.

Γ′αβγ = Γκλσ
∂yα

∂xκ
∂xσ

∂yγ
∂xλ

∂yβ
+
∂yα

∂xκ
∂2xκ

∂yγ∂yβ
. (6.63)

1We use this notation reluctantly, to be consistent with most literature. The notation
results in violation of the index notation. We really should be writing φαβ , since in this case,
the transition functions are matrix-valued.
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6.4.4 Parallelism

When first introduced to vectors in elementary calculus and physics courses,
vectors are often described as entities characterized by a direction and a length.
This primitive notion, that two such entities in Rn with the same direction and
length represent the same vector, regardless of location, is not erroneous in the
sense that parallel translation of a vector in Rn does not change the attributes
of a vector as described. In elementary linear algebra, vectors are described
as n-tuples in Rn equipped with the operations of addition and multiplication
by scalar, and subject to eight vector space properties. Again, those vectors
can be represented by arrows which can be located anywhere in Rn as long
as they have the same components. This is another indication that parallel
transport of a vector in Rn is trivial, a manifestation of the fact the Rn is a flat
space. However, in a space that is not flat, such as s sphere, parallel transport
of vectors is intimately connected with the curvature of the space. To elucidate
this connection, we first describe parallel transport for a surface in R3.

6.4.2 Definition Let uα(t) be a curve on a surface x = x(uα), and let
V = α′(t) = α∗(

d
dt ) be the velocity vector as defined in 1.25. A vector field Y

is called parallel along α if

∇V Y = 0,

as illustrated in figure 6.2. The notation

DY

dt
= ∇V Y

is also common in the literature. The vector field ∇V V is called the geodesic
vector field, and its magnitude is called the geodesic curvature κg of α. As usual,
we define the speed v of the curve by ‖V ‖ and the unit tangent T = V/‖V ‖, so
that V = vT . We assume v > 0 so that T is defined on the domain of the curve.
The arc length s along the curve is the related to the speed by the equation
v = ds/dt.

6.4.3 Definition A curve α(t) with velocity vector V = α′(t) is called a
geodesic or self-parallel if ∇V V = 0.

6.4.4 Theorem A curve α(t) is geodesic iff
a) v = ‖V ‖ is constant along the curve and,
b) either ∇TT = 0, or κg = 0.

Proof Expanding the definition of the geodesic vector field:

∇V V = ∇vT (vT ),

= v∇T (vT ),

= v
dv

dt
T + v2∇TT,

= 1
2

d

dt
(v2)T + v2∇TT
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We have < T, T >= 1, so < ∇TT, T >= 0 which shows that ∇TT is orthogonal
to T . We also have v > 0. Since both the tangential and the normal components
need to vanish, the theorem follows.

If M is a hypersurface in Rn with unit normal n, we gain more insight
on the geometry of geodesics as a direct consequence of the discussion above.
Without real loss of generality consider the geometry in the case of n = 3.
Since α is geodesic, we have ‖α′‖2 =< α′, α′ >=constant. Differentiation gives
< α′, α′′ >= 0, so that the acceleration α′′ is orthogonal to α′. Comparing
with equation 4.34 we see that T ′ = κnn, which reinforces the fact that the
entire curvature of the curve is due to the normal curvature of the surface as
a submanifold of the ambient space. In this sense, inhabitants constrained to
live on the surface would be unaware of this curvature, and to them, geodesics
would appear locally as the straightest path to travel. Thus, for a sphere in
R3 of radius a, the acceleration α′′ of a geodesic only has a normal component,
and the normal curvature is 1/a. That is, the geodesic must lie along a great
circle.

6.4.5 Theorem Let α(t) by curve with velocity V . For each vector Y in the
tangent space restricted to the curve, there is a unique vector field Y (t) locally
obtained by parallel transport.

Proof We choose local coordinates with frame field {eα = ∂
∂uα }. We write the

components of the vector fields in terms of the frame

Y = yβ
∂

∂uβ
,

V =
duα

dt

∂

∂uα
. then,

∇TV = ∇u̇αeα(yβeβ),

= u̇α∇eα(yβeβ),

=
duα

dt

∂yβ

∂uα
+ u̇αyβΓγαβeγ ,

= [
dyγ

dt
+ yβ

duα

dt
Γγαβ ]eγ.

So, Y is parallel along the curve iff,

dyγ

dt
+ yβ

duα

dt
Γγαβ = 0. (6.64)

The existence and uniqueness of the coefficients yβ that define Y are guaran-
teed by the theorem on existence and uniqueness of differential equations with
appropriate initial conditions.

We derive the equations of geodesics by an almost identical computation.
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∇V V = ∇u̇αeα [u̇βeβ ],

= u̇α∇eα [u̇βeβ ],

= u̇α[
∂u̇β

∂uα
eβ + u̇β∇eαeβ ],

= u̇α
∂u̇β

∂uα
eβ + u̇αu̇β∇eαeβ ,

=
duα

dt

∂u̇β

∂uα
eβ + u̇αu̇βΓσαβeσ,

= üβeβ + u̇αu̇βΓσαβeσ,

= [üσ + u̇αu̇βΓσαβ ]eσ.

Thus, the equation for geodesics becomes

üσ + Γσαβ u̇
αu̇β = 0. (6.65)

The existence and uniqueness theorem for solutions of differential equations
leads to the following theorem

6.4.6 Theorem Let p be a point in M and V a vector TpM . Then, for any
real number t0, there exists a number δ and a curve α(t) defined on [t0−δ, t0+δ],
such that α(t0) = p, α′(t0) = V , and α is a geodesic.

For a general vector bundles E over a manifold M , a section s ∈ Γ(E) of a
vector bundle is called a parallel section if

∇s = 0. (6.66)

We discuss the length minimizing properties geodesics in section 6.6 and provide
a number of examples for surfaces in R3 and for Lorentzian manifolds. Since
geodesic curves have zero acceleration, in Euclidean space they are straight
lines. In Einstein’s theory of relativity, gravitation is a fictitious force caused
by the curvature of space time, so geodesics represent the trajectory of free
particles.

6.5 Lorentzian Manifolds

The formalism above refers to Riemannian manifolds, for which the metric
is positive definite, but it applies just as well to pseudo-Riemannian manifolds.
A 4-dimensional manifold {M, g} is called a Lorentzian manifold if the metric
has signature (+ − −−). Locally, a Lorentzian manifold is diffeomorphic to
Minkowski’s space which is the model space introduced in section 2.2.3. Some
authors use signature (−+ ++).

For the purposes of general relativity, we introduce the symmetric tensor
Ricci tensor Rβδ by the contraction

Rβδ = Rαβαδ, (6.67)
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and the scalar curvature R by

R = Rαβ . (6.68)

The traceless part of the Ricci tensor

Gαβ = Rαβ − 1
2Rgαβ , (6.69)

is called the Einstein tensor. The Einstein field equations (without a cosmo-
logical constant) are

Gαβ =
8πG

c4
Tαβ , (6.70)

where T is the stress energy tensor and G is the gravitational constant. As I
first learned from one of my professors Arthur Fischer, the equation states that
curvature indicates the presence of matter, and matter tells the space how to
curve. Einstein equations with cosmological constant Λ are,

Rαβ − 1
2Rgαβ + Λgαβ =

8πG

c4
Tαβ (6.71)

Fig. 6.3: Gravity

A space time which satisfies

Rαβ = 0 (6.72)

is called Ricci-flat. A space which the Ricci tensor is proportional to the metric,

Rαβ = kgαβ (6.73)

is called an Einstein manifold

6.5.1 Example: Vaidya Metric

This example of a curvature computation in four-dimensional space-time
is due to W. Israel. It appears in his 1978 notes on Differential Forms in
General Relativity, but the author indicates the work arose 10 years earlier
from a seminar at the Dublin Institute for Advanced Studies. The most general,
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spherically symmetric, static solution of the Einstein vacuum equations is the
Schwarzschild metric 2

ds2 =
[
1− 2GM

r

]
dt2 − 1[

1− 2GM
r

] dr2 − r2dθ2 − r2 sin2 θ dφ2 (6.74)

It is convenient to set m = GM and introduce the retarded coordinate trans-
formation

t = u+ r + 2m ln( r
2m − 1),

so that,

dt = du+
1[

1− 2m
r

] dr.
Substitution for dt above gives the metric in outgoing Eddington-Finkelstein
coordinates,

ds2 = 2drdu+ [1− 2m
r ] du2 − r2dθ2 − r2 sin2 θ dφ2. (6.75)

In these coordinates it is evident that the event horizon r = 2m is not a real
singularity. The Vaidya metric is the generalization

ds2 = 2drdu+ [1− 2m(u)
r ] du2 − r2dθ2 − r2 sin2 θ dφ2, (6.76)

where m(u) is now an arbitrary function. The geometry described by the Vaidya
solution to Einstein equations, represents the gravitational field in the exterior
of a radiating, spherically symmetric star. In all our previous curvature compu-
tations by differential forms, the metric has been diagonal; this is an instructive
example of one with a non-diagonal metric. The first step in the curvature com-
putation involves picking out a basis of one-forms. The idea is to pick out the
forms so that in the new basis, the metric has constant coefficients. One possible
choice of 1-forms is

θ0 = du,

θ1 = dr + 1
2 [1− 2m(u)

r ] du,

θ2 = r dθ,

θ3 = r sin θ dφ. (6.77)

In terms of these forms, the line element becomes

ds2 = gαβθ
αθβ = 2θ0θ1 − (θ2)2 − (θ3)2,

where
g01 = g10 = −g22 = −g33 = 1,

while all the other gαβ = 0. In the coframe, the metric has components:

gαβ =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 . (6.78)

2The Schwarzschild radius is r = 2GM
c2

, but here we follow the common convention of
setting c = 1.
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Since the coefficients of the metric are constant, the components ωαβ of the
connection will be antisymmetric. This means that

ω00 = ω11 = ω22 = ω33 = 0.

We thus conclude that
ω1

0 = g10ω00 = 0,

ω0
1 = g01ω11 = 0,

ω2
2 = g22ω22 = 0,

ω3
3 = g33ω33 = 0.

To compute the connection, we take the exterior derivative of the basis 1-forms.
The result of this computation is

dθ0 = 0,

dθ1 = −d[mr du] =
m

r2
dr ∧ du =

m

r2
θ1 ∧ θ0,

dθ2 = dr ∧ dθ =
1

r
θ1 ∧ θ2 − 1

2r
[1− 2m

r ] θ0 ∧ θ2,

dθ3 = sin θ dr ∧ dφ+ r cos θ dθ ∧ dφ,

=
1

r
θ1 ∧ θ3 − 1

2
[1− 2m

r ] θ0 ∧ θ3 +
1

r
cot θ θ2 ∧ θ3. (6.79)

For convenience, we write below the first equation of structure [6.24] in complete
detail.

dθ0 = ω0
0 ∧ θ0 + ω0

1 ∧ θ1 + ω0
2 ∧ θ2 + ω0

3 ∧ θ3,
dθ1 = ω1

0 ∧ θ0 + ω1
1 ∧ θ1 + ω1

2 ∧ θ2 + ω1
3 ∧ θ3,

dθ2 = ω2
0 ∧ θ0 + ω2

1 ∧ θ1 + ω2
2 ∧ θ2 + ω2

3 ∧ θ3,
dθ3 = ω3

0 ∧ θ0 + ω3
1 ∧ θ1 + ω3

2 ∧ θ2 + ω3
3 ∧ θ3. (6.80)

Since the ω’s are one-forms, they must be linear combinations of the θ’s. Com-
paring Cartan’s first structural equation with the exterior derivatives of the
coframe, we can start with the initial guess for the connection coefficients be-
low:

ω1
0 = 0, ω1

1 =
m

r2
θ0, ω1

2 = A θ2, ω1
3 = B θ3,

ω2
0 = −1

2
[1− 2m

r
] θ2, ω2

1 =
1

r
θ2, ω2

2 = 0, ω2
3 = C θ3,

ω3
0 = −1

2
[1− 2m

r
] θ3, ω3

1 =
1

r
θ3, ω3

2 =
1

r
cot θ θ3, ω3

3 = 0.

Here, the quantities A,B, and C are unknowns to be determined. Observe that
these are not the most general choices for the ω’s. For example, we could have
added a term proportional to θ1 in the expression for ω1

1, without affecting the
validity of the first structure equation for dθ1. The strategy is to interactively
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tweak the expressions until we set of forms completely consistent with Cartan’s
structure equations.

We now take advantage of the skewsymmetry of ωαβ , to determine the other
components. The find A, B and C, we note that

ω1
2 = g10ω02 = −ω20 = ω2

0,

ω1
3 = g10ω03 = −ω30 = ω3

0,

ω2
3 = g22ω23 = ω32 = −ω3

2.

Comparing the structure equations 6.80 with the expressions for the connection
coefficients above, we find that

A = −1

2
[1− 2m

r
], B = −1

2
[1− 2m

r
], C = −1

r
cot θ. (6.81)

Similarly, we have

ω0
0 = −ω1

1,

ω0
2 = ω2

1,

ω0
3 = ω3

1,

hence,

ω0
0 = −m

r2
θ0,

ω0
2 = −1

r
θ2,

ω0
3 =

1

r
θ3.

It is easy to verify that our choices for the ω’s are consistent with first structure
equations, so by uniqueness, these must be the right values.

There is no guesswork in obtaining the curvature forms. All we do is take
the exterior derivative of the connection forms and pick out the components of
the curvature from the second Cartan equations [6.25]. Thus, for example, to
obtain Ω1

1, we proceed as follows.

Ω1
1 = dω1

1 + ω1
1 ∧ ω1

1 + ω1
2 ∧ ω2

1 + ω1
3 ∧ ω3

1,

= d[
m

r2
θ0] + 0− 1

2r2
[1− 2m

r
] ω1

3 ∧ ω3
1 + (θ2 ∧ θ2 + θ3 ∧ θ3),

= −2m

r3
dr ∧ θ0,

= −2m

r3
θ1 ∧ θ0.

The computation of the other components is straightforward and we just present
the results.

Ω1
2 = − 1

r2
dm

du
θ2 ∧ θ0 − m

r3
θ1 ∧ θ2,
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Ω1
3 = − 1

r2
dm

du
θ3 ∧ θ0 − m

r3
θ1 ∧ θ3,

Ω2
1 =

m

r3
θ2 ∧ θ0,

Ω3
1 =

m

r3
θ3 ∧ θ0,

Ω2
3 =

2m

r3
θ2 ∧ θ3.

By antisymmetry, these are the only independent components. We can also
read the components of the full Riemann curvature tensor from the definition

Ωαβ =
1

2
Rαβγδθ

γ ∧ θδ. (6.82)

Thus, for example, we have

Ω1
1 =

1

2
R1

1γδθ
γ ∧ θδ,

hence

R1
101 = −R1

110 =
2m

r3
; other R1

1γδ = 0.

Using the antisymmetry of the curvature forms, we see, that for the Vaidya
metric Ω1

0 = Ω00 = 0, Ω2
0 = −Ω1

2, etc., so that

R00 = R2
020 +R3

030

= R1
220 +R1

330

Substituting the relevant components of the curvature tensor, we find that

R00 = 2
1

r2
dm

du
(6.83)

while all the other components of the Ricci tensor vanish. As stated earlier, if
m is constant, we get the Ricci flat Schwarzschild metric.

6.6 Geodesics

Geodesics were introduced in the section on parallelism. The equation of
geodesics on a manifold given by equation 6.65 involves the Christoffel symbols.
Whereas it is possible to compute all the Christoffel symbols starting with the
metric as in equation 4.76, this is most inefficient, as it is often the case that
many of the Christoffel symbols vanish. Instead, we show next how to obtain
the geodesic equations by using variational principles

δ

∫
L(uα, u̇α, s) ds = 0, (6.84)
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to minimize the arc length. Then we can pick out the non-vanishing Christoffel
symbols from the geodesic equation. Following the standard methods of La-
grangian mechanics, we let uα and u̇α be treated as independent (canonical)
coordinates and choose the Lagrangian in this case to be

L = gαβ u̇
αu̇β . (6.85)

The choice will actually result in minimizing the square of the arc length, but
clearly this is an equivalent problem. It should be observed that the Lagrangian
is basically a multiple of the kinetic energy 1

2mv
2. The motion dynamics are

given by the Euler-Lagrange equations.

d

ds

(
∂L

∂u̇γ

)
− ∂L

∂uγ
= 0. (6.86)

Applying this equations keeping in mind that gαβ is the only quantity that
depends on uα, we get:

0 = d
ds [gαβδ

α
γ u̇

β + gαβ u̇
αδβγ ]− gαβ,γ u̇αu̇β

= d
ds [gγβ u̇

β + gαγ u̇
α]− gαβ,γ u̇αu̇β

= gγβ ü
β + gαγ ü

α + gγβ,αu̇
αu̇β + gαγ,β u̇

β u̇α − gαβ,γ u̇αu̇β

= 2gγβü
β + [gγβ,α + gαγ,β − gαβ,γ ]u̇αu̇β

= δσβ ü
β + 1

2g
γσ[gγβ,α + gαγ,β − gαβ,γ ]u̇αu̇β

where the last equation was obtained contracting with 1
2g
γσ to raise indices.

Comparing with the expression for the Christoffel symbols found in equation
4.76, we get

üσ + Γσαβ u̇
αu̇β = 0

which are exactly the equations of geodesics 6.65.

6.6.1 Example Geodesics of sphere
Let S2 be a sphere of radius a so that the metric is given by

ds2 = a2dθ2 + a2 sin2 θ dφ2.

Then the Lagrangian is

L = a2θ̇2 + a2 sin2 θ φ̇2.

The Euler-Lagrange equation for the φ coordinate is

d

ds
(
∂L

∂φ̇
)− ∂L

∂φ
= 0,

d

ds
(2a2 sin2 θφ̇) = 0,

and therefore the equation integrates to a constant

sin2 θ φ̇ = k.
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Rather than trying to solve the second Euler-Lagrange equation for θ, we evoke
a standard trick that involves reusing the metric. It goes as follows:

sin2 θ
dφ

ds
= k,

sin2 θ dφ = k ds,

sin4 θ dφ2 = k2ds2,

sin4 θ dφ2 = k2(a2dθ2 + a2 sin2 θ dφ2),

(sin4 θ − k2a2 sin2 θ) dφ2 = a2k2dθ2.

The last equation above is separable and it can be integrated using the substi-
tution u = cot θ.

dφ =
ak

sin θ
√

sin2 θ − a2k2
dθ,

=
ak

sin2 θ
√

1− a2k2 csc2 θ
dθ,

=
ak

sin2 θ
√

1− a2k2(1 + cot2 θ)
dθ,

=
ak csc2 θ√

1− a2k2(1 + cot2 θ)
dθ,

=
ak csc2 θ√

(1− a2k2)− a2k2 cot2 θ
dθ,

=
csc2 θ√

1−a2k2
a2k2 − cot2 θ

dθ,

=
−1√
c2 − u2

du, where( c2 = 1−a2k2
a2k2 ).

φ = − sin−1( 1
c cot θ) + φ0.

Here, φ0 is the constant of integration. To get a geometrical sense of the
geodesics equations we have just derived, we rewrite the equations as follows:

cot θ = c sin(φ0 − φ),

cos θ = c sin θ(sinφ0 cosφ− cosφ0 sinφ),

a cos θ = (c sinφ0)(a sin θ cosφ)− (c cosφ0)(a sin θ sinφ.)

z = Ax−By, where A = c sinφ0, B = c cosφ0.

We conclude that the geodesics of the sphere are great circles determined by
the intersections with planes through the origin.

6.6.2 Example Geodesics in orthogonal coordinates.
In a parametrization of a surface in which the coordinate lines are orthogonal,
F = 0. Then first fundamental form is,

ds2 = E du2 +Gdv2,
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and we have the Lagrangian,

L = Eu̇2 +Gv̇2.

The Euler-Lagrange equations for the variable u are:

d

ds
(2Eu̇)− Euu̇2 −Guv̇2 = 0,

2Eü+ (2Euu̇+ 2Ev v̇)u̇− Euu̇2 −Guv̇2 = 0,

2Eü+ Euu̇
2 + 2Evu̇v̇ −Guv̇2 = 0.

Similarly for the variable v,

d

ds
(2Gu̇)− Evu̇2 −Gv v̇2 = 0,

2Gv̈ + (2Guu̇+ 2Gv v̇)v̇ − Evu̇2 −Gv v̇2 = 0,

2Gv̈ − Evu̇2 + 2Guu̇v̇ +Gv v̇
2 = 0.

So, the equations of geodesics can be written neatly as,

ü+
1

2E
[Euu̇

2 + 2Evu̇v̇ −Guv̇2] = 0,

v̈ +
1

2G
[Gv v̇

2 + 2Guu̇v̇ − Evu̇2] = 0. (6.87)

6.6.3 Example Geodesics of surface of revolution
The first fundamental form a surface of revolution z = f(r) in cylindrical coor-
dinates as in 4.7, is

ds2 = (1 + f ′2) dr2 + r2 dφ2, (6.88)

Of course, we could use the expressions for the equations of geodesics we just
derived above, but since the coefficients are functions of r only, it is just a easy
to start from the Lagrangian,

L = (1 + f ′2) ṙ2 + r2φ̇2.

Since there is no dependance on φ, the Euler-Lagrange equation on φ gives rise
to a conserved quantity.

d

ds
(2r2φ̇) = 0,

r2φ̇ = c (6.89)

where c is a constant of integration. If the geodesic α(s) = α(r(s), φ(s)) rep-
resents the path of a free particle constrained to move on the surface, this
conserved quantity is essentially the angular momentum. A neat result can be
obtained by considering the angle σ that the tangent vector V = α′ makes with
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a meridian. Recall that the length of V along the geodesic is constant, so let’s
set ‖V ‖ = k. From the chain rule we have

α′(t) = xr
dr

ds
+ xφ

dφ

ds
.

Then

cosσ =
< α′,xφ >

‖α′‖ · ‖xφ‖
=
Gdφ
ds

k
√
G
,

=
1

k

√
G
dφ

ds
=

1

k
rφ̇.

We conclude from 6.89, that for a surface of revolution, the geodesics make an
angle σ with meridians that satisfies the equation

r cosσ = constant. (6.90)

This result is called Clairaut’s relation. Writing equation 6.89 in terms of dif-
ferentials, and reusing the metric as we did in the computation of the geodesics
for a sphere, we get

r2 dφ = c ds,

r4 dφ2 = c2 ds2,

= c2[(1 + f ′2) dr2 + r2 dφ2],

(r4 − c2r2) dφ2 = c2[(1 + f ′2) dr2,

r
√
r2 − c2 dφ = c

√
1 + f ′2 dr,

so

φ = ±c
∫ √

1 + f ′2

r
√
r2 − c2

dr. (6.91)

If c = 0, then the first equation above gives φ =constant, so the meridians are
geodesics. The parallels r =constant are geodesics when f ′(r) = ∞ in which
case the tangent bundle restricted to the parallel is a cylinder with a vertical
generator.

In the particular case of a cone of revolution with a generator that makes
an angle α with the z-axis, f(r) = cot(α)r, equation 6.91 becomes:

φ = ±c
∫ √

1 + cot2 α

r
√
r2 − c2

dr

which can be immediately integrated to yield

φ = ± cscα sec−1(r/c) (6.92)

As shown in figure 6.4, a ribbon laid flatly around a cone follows the path of
a geodesic. None of the parallels, which in this case are the generators of the
cone, are geodesics.
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Fig. 6.4: Geodesics on a Cone.

6.7 Geodesics in GR

6.7.1 Example Morris-Thorne (MT) wormhole

In 1987, Michael Morris and Kip Thorne from the California Institute of Tech-
nology proposed a tantalizing simple model for teaching general relativity, by
alluding to interspace travel in a geometry of traversable wormhole. We con-
straint the discussion purely to geometrical aspects of the model and not the
physics of stress and strains of a “traveler” traversing the wormhole. The MT
metric for this spherically symmetric geometry is

ds2 = −c2dt2 + dl2 + (b20 + l2) (dθ2 + sin2 θ dφ2), (6.93)

where b0 is a constant. The obvious choice for a coframe is

θ0 = c dt, θ2 =
√
b2o + l2 dθ,

θ1 = dl, θ3 =
√
b2o + l2 sin θ dφ.

We have dθ0 = dθ1 = 0. To find the connection forms we compute dθ2 and dθ3,
and rewrite in terms of the coframe. We get

dθ2 =
l√

b2o + l2
dl ∧ dθ = − l√

b2o + l2
dθ ∧ dl,

= − l

b2o + l2
θ2 ∧ θ1,

dθ3 =
l√

b2o + l2
sin θ dl ∧ dφ+ cos θ

√
b2o + l2dθ ∧ dφ,

= − l

b2o + l2
θ3 ∧ θ1 − cot θ√

b2o + l2
θ3 ∧ θ2.

Comparing with the first equation of structure, we start with simplest guess for
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the connection forms ω’s. That is, we set

ω2
1 =

l

b2o + l2
θ2,

ω3
1 =

l

b2o + l2
θ3,

ω3
2 =

cot θ√
b2o + l2

θ3.

Using the antisymmetry of the ω’s and the diagonal metric, we have ω2
1 =

−ω1
2, ω1

3 = −ω3
1, and ω2

3 = −ω3
2. This choice of connection coefficients

turns out to be completely compatible with the entire set of Cartan’s first
equation of structure, so, these are the connection forms, all other ω’s are
zero. We can then proceed to evaluate the curvature forms. A straightforward
calculus computation which results in some pleasing cancellations, yields

Ω1
2 = dω1

2 + ω2
1 ∧ ω2

1 = − b2o
(b2o + l2)2

θ1 ∧ θ2,

Ω1
3 = dω1

3 + ω1
2 ∧ ω2

3 = − b2o
(b2o + l2)2

θ1 ∧ θ3,

Ω2
3 = dω2

3 + ω2
1 ∧ ω1

3 =
b2o

(b2o + l2)2
θ2 ∧ θ3.

Thus, from equation 6.36, other than permutations of the indices, the only
independent components of the Riemann tensor are

R2323 = −R1212 = R1313 =
b2o

(b2o + l2)2
,

and the only non-zero component of the Ricci tensor is

R11 = −2
b2o

(b2o + l2)2
.

Of course, this space is a 4-dimensional continuum, but since the space is spher-
ically symmetric, we may get a good sense of the geometry by taking a slice
with θ = π/2 at a fixed value of time. The resulting metric ds2 for the surface
is

ds2
2 = dl2 + (b2o + l2) dφ2. (6.94)

Let r2 = b2o + l2. Then dl2 = (r2/l2) dr2 and the metric becomes

ds2
2 =

r2

r2 − b2o
dr2 + r2 dφ2, (6.95)

=
1

1− b2o
r2

dr2 + r2 dφ2. (6.96)
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Comparing to 4.26 we recognize this to be a catenoid of revolution, so the equa-
tions of geodesics are given by 6.91 with f(r) = b0 cosh−1(r/b0). Substituting
this value of f into the geodesic equation, we get

φ = ±c
∫

1√
r2 − b2o

√
r2 − c2

dr. (6.97)

There are three cases. If c = bo, the integral gives immediately

φ = ±(c/b0) tanh−1(r/b0).

Fig. 6.5: Geodesics on Catenoid.

We consider the case c > b0. The remaining case can be treated in a similar
fashion. Let r = c/ sinβ. Then

√
r2 − c2 = r cosβ and dr = −r cotβ dβ, so,

assuming the initial condition φ(0) = 0, the substitution leads to the integral

φ = ±c
∫ s

0

1

r cosβ
√

c2

sin2 β
− b2o

(−r cosβ)

sinβ
dβ,

= ±c
∫ s

0

1√
c2 − b2o sin2 β

dβ,

= ±
∫ s

0

1√
1− k2 sin2 β

dβ, (k = bo/c) (6.98)

= F (s, k), (6.99)

where F (s, k) is the well-known incomplete elliptic integral of the first kind.
Elliptic integrals are standard functions implemented in computer algebra

systems, so it is easy to render some geodesics as shown in figure 6.5. The plot
of the elliptic integral shown here is for k = 0.9. The plot shows clearly that
this is a 1-1, so if one wishes to express r in terms of φ one just finds the inverse
of the elliptic integral which yields a Jacobi elliptic function. Thomas Muller
has created a neat Wolfram-Demonstration that allows the user to play with
MT wormhole geodesics with parameters controlled by sliders.

6.7.2 Example Schwarzschild Metric
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In this section we look at the geodesic equations in a Schwarzschild gravitational
field, with particular emphasis on the bounded orbits. We write the metric in
the form

ds2 = −h(r) dt2 +
1

h(r)
dr2 + r2(dθ2 + sin θ dφ2), (6.100)

where

h(r) = 1− 2GM

r
. (6.101)

Thus, the Lagrangian is

L = −h ṫ2 +
1

h
ṙ2 + r2θ̇2 + r2 sin θφ̇2. (6.102)

The Euler-Lagrange equations for g00, g22 and g33 yield

d

ds

[
−2h

dt

ds

]
= 0,

d

ds

[
r2
dθ

ds

]
− r2 sin θ cos θ

[
dφ

ds

]2
= 0,

d

ds

[
2r2

dφ

ds

]
= 0

If in the equation for g22, one chooses initial conditions θ(0) = π/2, θ̇(0) = 0,
we get θ(s) = π/2 along the geodesic. We infer from rotation invariance that
the motion takes place on a plane. Hereafter, we assume we have taken these
initial conditions. From the other two equations we obtain

h
dt

ds
= E,

r2
dφ

ds
= L.

for some constants E and L. We recognize the conserved quantities as the
“energy” and the angular momentum. Along the geodesic of a massive particle,
with unit time-like tangent vector, we have

− 1 = gµν
dxµ

ds

dxν

ds
(6.103)

The equations of motion then reduce to

−1 = −h
[
dt

ds

]2
+

1

h

[
dr

ds

]2
+ r2

[
dφ

ds

]2
,

−1 = −E
2

h
+

1

h

[
dr

ds

]2
+
L2

r2
,

E2 =

[
dr

ds

]2
+ h

[
1 +

L2

r2

]
.



176 CHAPTER 6. RIEMANNIAN GEOMETRY

Hence, we obtain the neat equation,

E2 =

[
dr

ds

]2
+ V (r), (6.104)

where V (r) represents the effective potential.

V (r) =

[
1− 2GM

r

] [
1 +

L2

r2

]
,

= 1− 2GM

r
+
L2

r2
− 2MGL2

r3
. (6.105)

If we let V̂ = V/2 in this expression we recognize the classical 1/r potential,
and the 1/r2 term corresponding to the Coriolis contribution associated with
the angular momentum. The 1/r3 term is a new term arising from general
relativity. Clearly we must have E2 < V (r). There are multiple cases depending

Fig. 6.6: Effective Potential for L = 3, 4, 5

on the values of E and L and the nature of the equilibrium points. Here we are
primarily concerned with bounded orbits, so we seek conditions for the particle
to be in a potential well. This presents us with a nice calculus problem. We
compute V ′(r) and set equal to zero to find the critical points

V ′(r) =
2

r4
(GMr2 − L2r + 3GML2) = 0.

The discriminant of the quadratic is

D = L2 − 12G2M2.

If D < 0 there are no critical points. In this case, V (r) is a monotonically
increasing function on the interval (2MG,∞), as shown in the bottom left
graph in figure 6.6. The maple plots in this figure are in units with GM = 1.
In the case D < 0, all trajectories either fall toward the event horizon or escape
to infinity.
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If D > 0, there are two critical points

r1 =
L2 − L

√
L2 − 12G2M2

2GM
,

r2 =
L2 + L

√
L2 − 12G2M2

2GM
.

The critical point r1 is a local maximum associated with an unstable circular
orbit. The critical point r2 > r1 gives a stable circular orbit. Using the standard
calculus trick of multiplying by the conjugate of the radical in the first term,
we see that

r1 → 3GM,

r2 →
L2

GM
,

as L → ∞. For any L, the properties of the roots of the quadratic imply
that r1r2 = 3L2. As shown in the graph 6.6, as L gets larger, the inner radius
approaches 3GM and the height of the bump increases, whereas the outer radius
recedes to infinity. As the value of D approaches 0, the two orbits coalesce at
L2 = 12G2M2, which corresponds to r = 6GM , so this is the smallest value of
r at which a stable circular orbit can exist. Since V (r) → 1 as r → ∞, to get
bounded orbits we want a potential well with V (r1) < 1. We can easily verify
that when L = 4GM the local maximum occurs at r1 = 4GM , which results
in a value of V (r1) = 1. This case is the one depicted in the middle graph in
figure 6.6, with the graph of V ′(r) on the right showing the two critical points
at r1 = 4GM, r2 = 12GM . Hence the condition to get a bounded orbit is

2
√

3GM < L < 4GM,

E2 < V (r1), r > r1,

so that the energy results in the particle trapped in the potential well to the
right of r1. This is the case that applies to the modification of the Kepler orbits
of planets. If we rewrite

dr

ds
=
dr

dφ

dφ

ds
=
L

r2
dr

dφ

and substitute into equation 6.104, we get

L2

r4

[
dr

dφ

]2
= E2 −

[
1 +

L2

r2

] [
1− 2GM

r

]
.

If now we change variables to u = 1/r, we obtain

du

dφ
= − 1

r2
dr

dφ
= −u2 dr

dφ
,

and the orbit equation becomes[
du

dφ

]2
=

1

L2
[E2 − (1 + L2u2)(1− 2GMu)],

φ =

∫
Ldu√

E2 − (1 + L2u2)(1− 2GML2u)
+ φ0.
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The solution of the orbit equation is therefore reduced to an elliptic integral. If
we expand the denominator

φ =

∫
Ldu√

(E2 − 1) + 2GMu− L2u2 + 2GML2u3
+ φ0,

and neglect the cubic term, we can complete the squares of the remaining
quadratic. The integral becomes one of standard inverse cosine type; hence,
the solution gives the equation of an ellipse in polar coordinates

u =
1

r
= C(1 + e cos(φ− φ0)),

for appropriate constants C, shift φ0 and eccentricity e. The solution is auto-
matically expressed in terms of the energy and the angular momentum of the
system. More careful analysis of the integral shows that the inclusion of the
cubic term perturbs the orbit by a precession of the ellipse. While this ap-
proach is slicker, we prefer to use the more elementary procedure of differential
equations. Differentiating with respect to φ the equation

L2

[
du

dφ

]2
= (E2 − 1) + 2GMu− L2u2 + 2GML2u3,

and cancelling out the common chain rule factor du/dφ, we get

d2u

dφ2
=
GM

L2
− u+ 3GMu2

Introducing a dimensionless parameter

ε =
3G2M2

L2
,

we can rewrite the equation of motion as

d2u

dφ2
+ u =

GM

L2
+

L2

GM
u2ε. (6.106)

The linear part of the equation corresponds precisely to Newtonian motion, and
ε is small, so we can treat the quadratic term as a perturbation

u = u0 + u1ε+ u2ε
2 + . . . .

Substituting u into equation 6.106, the first approximation is the linear approx-
imation given by

u′′0 + u =
GM

L2
.

The homogenous solution is of the form u = A cos(φ − φ0), where A and φ0
are the arbitrary constants, and the particular solution is a constant. So the
general solution is

u0 =
GM

L2
+A cos(φ− φ0),

=
GM

L2
[1 + e cos(φ− φ0)], e =

AL2

GM
.



6.7. GEODESICS IN GR 179

Without loss of generality, we can align the axes and set φ0 = 0 . In the
Newtonian orbit, we would write u0 = 1/r, thus getting the equation of a polar
conic.

u0 =
GM

L2
(1 + e cosφ) (6.107)

In the case of the planets, the eccentricity e < 1, so the conics are ellipses.
Having found u0 we reinsert u into the differential equation 6.106 and keeping
only the terms of order ε. We get

(u0 + u1ε)
′′ + (u0 + u1ε) =

GM

L2
+

L2

GM
ε(u0 + u1ε)

2,

(u′′0 + u0 −
GM

L2
) + (u′′1 + u1)ε =

L2

GM
u20ε.

Thus, the result is a new differential equation for u1,

u′′1 + u′1 =
L2

GM
u20,

=
L2

GM
[(1 + 1

2e
2) + 2e cosφ+ 1

2e
2 cos 2φ].

The equation is again a linear inhomogeneous equation with constant coeffi-
cients, so it is easily solved by elementary methods. We do have to be a bit
careful since we have a resonant term on the right hand side. The solution is

u1 =
L2

GM
[(1 + 1

2e
2) + 2eφ cosφ− 1

6e
2 cos 2φ].

The resonant term φ cosφ makes the solution non-periodic, so this is the term
responsible for the precession of the elliptical orbits. The precession is obtained
by looking at the perihelion, that is, the point in the elliptical orbit at which
the planet is closest to the sun. This happens when

du

dφ
≈ d

dφ
(u0 + u1) = 0,

− sinφ+ (sinφ+ eφ cosφ+ 1
3e sinφ) = 0.

Starting with the solution φ = 0, after on revolution, the perihelion drifts to
φ = 2π+δ. By the perturbation assumptions, we assume δ is small, so to lowest
order, the perihelion advance in one revolution is

δ = 2πε =
6πG2M2

L2
. (6.108)

From equation 6.107 for the Newtonian elliptical orbit, the mean distance a to
the sun is given by the average of the aphelion and perihelion distances, that is

a =
1

2

[
L2/GM

1 + e
+
L2/GM

1− e

]
=

L2

GM

1

1− e2
.
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Thus, if we divide by the period T , the rate of perihelion advance can be written
in more geometric terms as

δ =
6πGM

a(1− e2)T
.

The famous computation by Einstein of a precession of 43.1” of an arc per
century for the perihelion advance of the orbit of Mercury, still stands as one
of the major achievements in modern physics.

For null geodesics, equation 6.103 is replaced by

0 = gµν
dxµ

ds

dxν

ds
,

so the orbit given by the simpler equation

E2 =

[
dr

ds

]2
+
L2

r2
h.

Performing the change of variables u = 1/r, we get

d2u

dφ2
+ u = 3GMu2.

Consider the problem of light rays from a distant star grazing the sun as they ap-
proach the earth. Since the space is asymptotically flat, we expect the geodesics
to be asymptotically straight. The quantity 3GM is of the order of 2km, so it is
very small compared to the radius of the sun, so again we can use perturbation
methods. We let ε = 3GM and consider solutions of equation

u′′ + u = εu2,

of the form
u = u0 + u1ε.

To lowest order the solutions are indeed straight lines

u0 = A cosφ+B sinφ,

1 = Ar cosφ+Br sinφ,

1 = Ax+By

Without loss of generality, we can align the vertical axis parallel to the incoming
light with impact parameter b (distance of closest approach)

u0 =
1

b
cosφ.

As above, we reinsert the u into the differential equation and compare the
coefficients of terms of order ε. We get an equation for u1,

u′′1 + u1 =
1

b2
cos2 φ =

1

2b2
(1 + cos 2φ).
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We solve the differential equation by the method of undetermined coefficients
and thus we arrive at the perturbation solution to order ε

u =
1

b
cosφ+

2ε

3b2
− ε

3b2
cos2 φ.

To find the the asymptotic angle of the outgoing photons, we let r → ∞ or
u→ 0. Thus we get a quadratic equation for cosφ.

cosφ = −2ε

3b
= −2GM

b

Set φ = π
2 + δ. Since δ is small, we have sin δ ≈ δ, and we see that δ = 2GM/b

is the approximation of the deflection angle of one of the asymptotes. The total
deflection is twice that angle

2δ =
4GM

b
.

The computation results in a deflection by the sun of light rays from a distant
star of about 1.75”. This was corroborated in an experiment lead by Eddington
during the total solar eclipse of 1919. The part of the expedition in Brazil was
featured in the 2005 movie, The House of Sand. For more details and more
careful analysis of the geodesics, see for example, Misner Thorne and Wheeler
[21].

6.8 Gauss-Bonnet Theorem

This section is dedicated to the memory of Professor S.-S. Chern. I prelude
the section with a short anecdote that I often narrate to my students. In
June 1979, an international symposium on differential geometry was held at the
Berkeley campus in honor of the retirement of Professor Chern. The invited
speakers included an impressive list of the most famous differential geometers
at the time, At the end of the symposium, Chern walked on the stage of the
packed auditorium to give thanks and to answer some questions. After a few
short remarks, a member of the audience asked Chern what he thought was
the most important theorem in differential geometry. Without any hesitation
he answered, “there is only one theorem in differential geometry, and that is
Stokes’ theorem.” This was followed immediately by a question about the most
important theorem in analysis. Chern gave the same answer: “there is only one
theorem in analysis, Stokes’ theorem. A third person then asked Chern what
was the most important theorem in Complex Variables. To the amusement of
the crowd, Chern responded, “There is only one theorem in complex variables,
and that that is Cauchy’s theorem. But if one assumes the derivative of the
function is continuous, then this is just Stokes’ theorem.” Now, of course it
is well known that Goursat proved that the hypothesis of continuity of the
derivative is automatically satisfied when the function is holomorphic. But the
genius of Chern was always his uncanny ability to extract the essential of what
makes things work, in the simplest terms.

The Gauss-Bonnet theorem is rooted on the theorem of Gauss (4.72), which
combined with Stokes’ theorem, provides a beautiful geometrical interpretation



182 CHAPTER 6. RIEMANNIAN GEOMETRY

of the equation. This is undoubtedly part of what Chern had in mind at the
symposium, and also when wrote in his Euclidean Differential Geometry Notes
(Berkeley 1975 ) [4] that the theorem has “profound consequences and is perhaps
one of the most important theorems in mathematics.”

Let β(s) by a unit speed curve on an orientable surface M , and let T be the
unit tangent vector. There is Frenet frame formalism for M , but if we think of
the surface intrinsically as 2-dimensional manifold, then there is no binormal.
However, we can define a “geodesic normal” taking G = J(T ), where J is the
symplectic form ??, Then the geodesic curvature is given by the Frenet formula

T ′ = κgG. (6.109)

6.8.1 Proposition Let {e1, e2} be an orthonormal on M , and let β(s) be a
unit speed curve as above, with unit tangent T . If φ is the angle that T makes
with e1, then

κg =
∂φ

∂s
− ω1

2(T ). (6.110)

Proof Since {T,G} and {e1, e2} are both orthonormal basis of the tangent
space, they must be related by a rotation by an angle φ, that is[

T
G

]
=

[
cosφ sinφ
− sinφ cosφ

] [
e1
e2

]
, (6.111)

that is,

T = (cosφ)e1 + (sinφ)e2,

G = −(sinφ)e1 + (cosφ)e2. (6.112)

Since T = β′, and β′′ = ∇tT we have

β′′ = −(sinφ)
∂φ

∂s
e1 + cosφ∇T e1 + (cosφ)

∂φ

∂s
e2 + sinφ∇T e2,

= −(sinφ)
∂φ

∂s
e1 + (cosφ)ω2

1(T )e2 + (cosφ)
∂φ

∂s
e2 + (sinφ)ω1

2(T )e1,

= [
∂φ

∂s
− ω1

2(T )][−(sinφ)e1] + [
∂φ

∂s
− ω1

2(T )][(cosφ)e2],

= [
∂φ

∂s
− ω1

2(T )][−(sinφ)e1 + (cosφ)e2],

= [
∂φ

∂s
− ω1

2(T )]G,

= κgG.

comparing the last two equations, we get the desired result.
This theorem is related to the notion discussed in figure 6.2 to the effect that

in a space with curvature, the parallel transport of a tangent vector around a
closed curve, does not necessarily result on the same vector with which one
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started. The difference in angle ∆φ between a vector and the parallel transport
of the vector around a closed curve C is called the holonomy of the curve. The
holonomy of the curve is given by the integral

∆φ =

∫
C

ω1
2(T ) ds. (6.113)

6.8.2 Definition Let C be a smooth closed curve on M parametrized by
arc length with geodesic curvature κg. The line integral

∮
C
κg ds is called the

total geodesic curvature. If the curve is piecewise smooth, the total geodesic
curvature is the sum of the integrals of each piece.

A circle of radius R gives an elementary example. The geodesic curvature
is the constant 1/R, so the total geodesic curvature is (1/R)2πR = 2π.

If we integrate formula 6.110 around a smooth simple closed curve C which
is the boundary of a region R and use Stokes’ Theorem, we get∮

C

κg ds =

∮
C

dφ−
∮
C

ω1
2 ds,

=

∮
C

dφ−
∫ ∫

R

dω1
2.

For a smooth simple closed curve,
∫
C
dφ = 2π. Using the Cartan-form version

of the theorema egregium 4.106 we get immediately∫ ∫
R

K dS +

∫
C

κg ds = 2π. (6.114)

Fig. 6.7: Turning Angles

If the boundary of the region consists of k piecewise continuous functions as
illustrated in figure 6.7, the change of the angle φ along C is still 2π, but the
total change needs to be modified by adding the exterior angles αk. Thus, we
obtain a fundamental result called the Gauss-Bonnet formula,



184 CHAPTER 6. RIEMANNIAN GEOMETRY

6.8.3 Theorem ∫ ∫
R

K dS +

∫
C

κg ds+
∑
k

αk = 2π. (6.115)

Every interior ιk angle is the supplement of the corresponding exterior αk angle,
so the Gauss Bonnet formula can also be written as∫ ∫

R

K dS +

∫
C

κg ds+
∑
k

(π − ιk) = 2π. (6.116)

The simplest manifestation of the Gauss-Bonnet formula is for a triangle
in the plane. Planes are flat surfaces, so K = 0 and the straight edges are
geodesics, so κg = 0 on each of the three edges. The interior angle version of
the formula then just reads 3π − ι1 − ι2 − ι3 = 2π, which just says that the
interior angles of a flat triangle add up to π. Since a sphere has constant positive
curvature, the sum of the interior angles of a spherical triangle is larger than π.
That amount of this sum over 2π is called the spherical excess. For example,
the sum of the interior angles of a spherical triangle that is the boundary of one
octant of a sphere is 3π/2, so the spherical excess is π/2.

6.8.4 Definition The quantity
∫ ∫

K dS is called the total curvature

6.8.5 Example A sphere of radius R has constant Gaussian Curvature 1/R2.
The surface area of the sphere is 4πR2, so the total Gaussian curvature for the
sphere is 4π.

6.8.6 Example For a torus generated by a circle of radius a rotating about
an axis with radius b as in example (4.40), the differential of surface is dS =
a(b+ a cos θ) dθdφ, and the Gaussian curvature is K = cos θ/[a(b+ a cos θ)], so
the total Gaussian curvature is∫ 2π

0

∫ 2π

0

cos θ dθdφ = 0.

We now relate the Gauss-Bonnet formula to a topological entity.

Fig. 6.8: Triangulation
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6.8.7 Definition Let M be a 2-dimensional manifold. A triangulation of the
surface is subdivision of the surface into triangular regions {4k} which are the
images of regular triangles under a coordinate patch, such that:

1) M =
⋃
k4k.

2) 4i
⋂
4j is either empty, or a single vertex or an entire edge.

3) All the triangles are oriented in the same direction,
For an intuitive visualization of the triangulation of a sphere, think of inflating a
tetrahedron or an octahedron into a spherical balloon. We state without proof:

6.8.8 Theorem Any compact surface can be triangulated.

6.8.9 Theorem Given a triangulation of a compact surface M , let V be the
number of vertices, E the number of edges and F the number of faces. Then
the quantity

χ(M) = V − E + F, (6.117)

is independent of the triangulation. In fact the quantity is independent of any
“polyhedral” subdivision. This quantity is a topological invariant called the
Euler characteristic.

6.8.10 Example

1. A balloon-inflated tetrahedron has V = 4, E = 6, F = 4, so the Euler
characteristic of a sphere is 2.

2. A balloon-inflated octahedron has V = 6, E = 12, F = 8, so we get the
same number 2.

3. The diagram on the right of gigure 6.8 represents a topological torus. In
the given rectangle, opposites sides are identified in the same direction.
The number of edges without double counting are shown in red, and the
number of vertices not double counted are shown in black dots. We have
V = 6, E = 18 F = 12. So the Euler characteristic of a torus is 0.

4. In one has a compact surface, one can add a “handle”, that is, a torus, by
the following procedure. We excise a triangle in each of the two surfaces
and glue the edges. We lose two faces and the number of edges and vertices
cancel out, so the Euler characteristic of the new surface decreases by 2.
The Euler characteristic of a pretzel is −4.

5. The Euler characteristic of an orientable surface of genus g, that is, a
surface with g holes is given by χ(M) = 2− 2g.

6.8.11 Theorem Gauss-Bonnet
Let M be a compact, orientable surface. Then

1

2π

∫
M

K dS = χ(M). (6.118)
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Proof Triangulate the surface so that M =
⋃F
k=14k. We start the Gauss-

Bonnet formula∫ ∫
M

K dS =

F∑
k=1

∫ ∫
4k

K dS = −
F∑
k=1

[∮
δ4k

κg ds+ π + (ιk1 + ιk2 + ιk2))

]
,

where F is the number of triangles and the ιk’s are the interior angles of triangle
4k. The line integrals of the geodesic curvatures all cancel out since each edge
in every triangle is traversed twice, each in opposite directions. Rewriting the
equation, we get ∫ ∫

M

K dS = −πF + S

where S is the sum of all interior angles. Since the manifold is locally Euclidean,
the sum of all interior angles at a vertex is 2π, so we have∫ ∫

M

K dS = −πF + 2πV

There are F faces. Each face has three edges, but each edge is counted twice,
so 3F = 2E, and we have F = 2E− 2F Substituting in the equation above, we
get, ∫ ∫

M

K dS = −π(2E − 2F ) + 2πV = 2π(V − E + F ) = χ(M).

This is a remarkable theorem because it relates the bending invariant Gaus-
sian curvature to a topological invariant. Theorems such as this one which cut
across disciplines, are the most significant in mathematics. Not surprisingly, it
was Chern who proved a generalization of the Gauss-Bonnet theorem to general
orientable Riemannian manifolds of even dimensions [5].
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Index

Acceleration
along a curve, 11
Centripetal, 19

Bianchi identities, 149, 150
Bundle

Cotangent, 37
Dual basis, 37
Section, 2
Tangent, 2, 101
Tensor, 40

Cartan equations
Connection form, 90, 145
Curvature form, 91
First structure equations, 89
for surface in R3 , 130
Manifolds, 147
Second structure equation, 90

Catenoid
First fundamental form, 106
Helicoid curvature, 135

Christoffel symbols, see Connection
Circle

Curvature, 18
Frenet frame, 18

Clairut relation, 171
Cone

First fundamental form, 107
Geodesics, 171

Conformal map
Mercator, 103

Conical helix, 32, 107
Connection

Affine, 155
Change of basis, 93, 158, 159

Christoffel symbols, 85, 124, 127,
144, 159

Compatible with metric, 84, 86
Curvature form, 91
Frenet Equations, 88
Koszul, 83
Levi-Civita, 123, 144
Linear, 154
Parallel transport, 123

Contraction, 42
Coordinate

Cylindrical, 43
Functions, 1
Geodesic, 134
Isothermal, 136
Local, 7
Minkowski, 44
Polar, 8, 30, 60, 62
Slot functions, 10
Spherical, 43, 62
Transformation, 7

Coordinate patch, see Patch
Cornu spiral, 29
Covariant derivative

Divergence, 126
Tensor fields, 86
Vector fields, 83, 145

Covariant differential, 155
of surface normal, 133
of tensor-valued 0-form, 156
of vector field, 156

Curvature
Form, see Cartan equations
Gaussian, see Gaussian curvature
Geodesic, 109
Normal, 109–111, 114
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of a curve, 15
Curves, 10–33

Fundamental theorem, 22–28
in R3 , 10–22
Natural equations, 28
Plane, 20

Curvilinear Coordinates, 80

de Sitter space, 153
Determinants

By pull-back, 67
Definition, 48
Levi-Civita symbol, 49

Diffeomorphism, 7
Differentiable map, 7–9

Jacobian, 7
Push-forward, 8

Differential forms
Alternation map, 54
Closed-Exact, 65
Covariant tensor, 38
Dual, 66
Maxwell 2-form, 73
n-forms, 53
One-forms, 36
Pull-back, 58
Tensor-valued, 55, 153
Two-forms, 45

Directional derivative, 4
Dual forms

Hodge operator, 66
In R2, 69
In R3, 69
In Rn, 67
In Minkowski space, 71

Dual tensor, 75

Einstein equations, 163
Einstein manifold, 163
Euler characteristic, 185
Euler’s theorem, 121
Euler-Lagrange equations

Arc length, 168
Electromagnetism, 76

Exterior covariant derivative
Cartan equations, 158
Definition, 157

Exterior derivative
Codifferential, 68
de Rham complex, 72
of n-form, 56
of one-form, 56, 148
Properties, 56

Frame
Cylindrical, 79
Darboux, 108
Dual, 78
in Rn, 77
Orthonormal, 78
Spherical, 79

Frenet frame, 15–22
Binormal, 15
Curvature, 15
Frenet equations, 16
Osculating circle, 19
Torsion, 16
Unit normal, 15

Fresnel diffraction, 30
Fresnel integrals, 21

Gauss equation, 142
Gauss map, 119
Gauss-Bonnet formula, 183
Gauss-Bonnet theorem, 181–186

For compact surfaces, 185
Gaussian curvature

by curvature form, 130
by Riemann tensor, 129
Classical definition, 116
Codazzi equations, 130
Gauss equations, 122
Geodesic coordinates, 134
Invariant definition, 119
Orthogonal parametric curves, 132
Principal curvatures, 118
Principal directions, 118
Theorema egregium, 128–135
Torus, 131
Weingarten formula, 128

Genus, 185
Geodesic

Coordinates, 134
Curvature, 109, 182
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Definition, 160
in orthogonal coordinates, 169
Torsion, 109

Gradient, 43
Curl Divergence, 52

Helicoid
Catenoid curvature, 135
First fundamental form, 106

Helix, 10
Frenet frame, 20
Unit speed, 15

Hodge decomposition, 69
Holonomy, 143, 146, 182

Inner product, 40–44
bra-ket vectors, 42
k-forms, 68
Polarization identity, 24
Standard in Rn, 24

Integral Curve, 7
Interior product, 42
Inverse function theorem, 9
Isometries, 24

Jacobi equation, 134

Lagrangian
Arc length, 168
Electromagnetic, 75

Laplacian
Beltrami, 126, 127
by dual forms in R3, 71
Harmonic function, 127
on forms, 68
Orthogonal coordinates, 82
Spherical coordinates, 81, 126

Levi-Civita symbol, 49
Lie bracket

Definition, 116
Lie group

SO(2,R), 90
Linear Derivation, 4
Lines, 10
Logarithmic spiral, 30
Lorentzian manifold

Definition, 162
Einstein tensor, 163

Ricci tensor, 162
Scalar curvature, 163

Loxodrome, 32, 103

Manifold
Definition, 96
Differentiable structure, 97
Product, 140
Riemannian, see Riemannian
Submanifold, 97, 142–153

Maurer-Cartan form
in SO(2,R), 90

Maxwell equations, 73–76
Mean curvature

Classical definition, 116
Invariant definition, 119

Metric
Cylindrical coordinates, 43
Metric tensor, 40
Minkowski, 44
Riemannian, see Riemannian
Spherical coordinates, 43

Minimal surfaces
Definition, 131

Minkowski space, 44
Dual forms, 71

Morris-Thorne
Coframe, 172
Connection forms, 173
Curvature forms, 173
Geodesics, 174
Ricci tensor, 173
Wormhole metric, 172

Natural equations, 28–33
Cornu spiral, 29
Logarithmic spiral, 30
Meandering curve, 32

Orthogonal
Basis, 24
Parametric curves, 101
Transformation, 25, 78

Parallel
Section, 162
Transport, 161
Vector field, 160
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Patch
Definition, 95
Monge, 128

Poincaré lemma, 66
Pseudosphere

Parametric equation, 105
Pull-back

Chain rule, 59
Definition, 58
Determinant, 67
Line integrals, 59
of volume form, 59
Polar coordinates, 60
Properties, 58
Surface integrals, 61

Push-forward
Jacobian, 8
Vector field, 101

Ricci flat, 163
Ricci identities, 146

with torsion, 157
Riemann tensor

Components, 129, 145, 149
Symmetries, 149

Riemannian
Connection, 142
Hypersurface, 142
Manifold, 139
Metric, 139
Product manifold, 140
Riemann tensor, 143
Second fundamental form, 142
Structure equations, 147
Submanifold, 142
Theorema egregium, 147
Torsion tensor, 143

Schwarz inequality, 25
Schwarzschild

Bending of light, 180
Eddington-Finkelstein coordinates,

164
Geodesics, 175
Metric, 174, 175
Precession of Mercury, 180

Second fundamental form

Asymptotic directions, 111
by covariant derivative, 117
Classical formulation, 111
Surface normal, 108

Sectional Curvature, 150
Simplex, 65
Singular cube, 65
Space of constant curvature, 151
Sphere

Coordinate chart, 97
Euler characteristic, 185
First fundamental form, 103
Gauss map, 119
Gaussian curvature, 121, 131
Geodesics, 168
Loxodrome, 103
Orthonormal frame, 79
Second fundamental form, 112
Structure equations, 91
Temple of Viviani, 10
Total curvature, 184

Stokes’ theorem
Green’s theorem, 62
in Rn, 64
In R3 , 72

Surface
Compact, 185
Definition, 97
First fundamental form, 100, 101
Normal, 108
Second fundamental form, 111
Surface area, 113

Surface of revolution
First fundamental form, 104
Geodesics, 170
Parametric equation, 98

Tangent bundle, 2
Tangent vector, 1–7

Contravariant components, 5
in Rn, 2

Tensorial form
of adjoint type, 94

Tensors
Antisymmetric, 43, 48
Bilinear map, 38
Bundle, 40
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Components, 39
Contravariant, 39
Metric, 40
Riemann, see Riemannian, Riemann

tensor
Self-dual, 68
Tensor product, 39
Torsion, see Riemannian

Theorema egregium, see Gaussian cur-
vature

Third fundamental form, 117
Torsion

of a connection, 117, 123
Torus

Euler characteristic, 185
First fundamental form, 106
Parametric equation, 98
Total curvature, 184

Total curvature, 184
Transition fucntions

In R3 , 96
Transition functions

Local coordinates, 159
on manifold, 159

Triangulation, 184

Vaidya
Curvature form, 166
Metric, 163
Ricci tensor, 167

Vector field, 2
Vector identities, 51–53
Velocity, 12–15
Viviani curve, 10

Wedge product
2-forms, 45
Cross product, 46

Weingarten map
Definition, 116
Eigenvalues, 119
Shape operator, 116
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