M 367 Calendar  
                           

Back

# Date   Day Chp

Topic

01  Jan 13 M 1 Sequences & Series Convergence Tests
02   15 W 1 Convergence Tests
03   17 F 1 Sequences of Functions
    20 M   MLK Day - No class
04   22 W 1 Series of Functions/Power Series
05   24 F 1 Series of Functions Convergence/Binomial
06   27 M 2 Fourier Series
07   29 W 2 Fourier Series
08

 

31 F   Exam I
09  Feb 03 M 3 Function Spaces - Orthogonalization
11   05 W 3 Symmetric Operators, Orthogonal Polynomials
12   07 F 3 Legendre Polynomials
13   10 M 3 Fourier-Legendre Series
14   12 W 3 Gamma Functions
15   14 F 3 Bessel Functions
16   17 M 4  
17   19 W 4 Complex Functions
18   21 F 4 Holomorphic Functions
19   24 M 4 Path Integrals and Cauchy's Theorem
21   26 W 4 Analytic Functions
22   28 F 4 Taylor Series
23  Mar 02 M 4 Cauchy's Integral Formula
24   04 W 4 Laurent Series, Residues
25   06 F   Residue Theory
    09 M   Spring Break
    10 T   Spring Break
    11 W   Spring Break
    12 Θ   Spring Break
    13 F   Spring Break
26   16 M 4 Real Integrals
27   18 W 4 Review
28   20 F   Exam II
29   23 M 5 Exponential Fourier Series
30   25 W 5 Dirac Delta Function
31   27 F 5 Convolution Theorem
32   30 M 5 Laplace Transform
33 Apr 01 W 5 Laplace Transform of Elementary Functions
34   03 F 5 Properties of Laplace Transforms
35   06 M 5 Inverse Laplace Transform
36   08 W 5 Shifts, Convolution Transform
    09 Θ   Good Friday
    10 F   Good Friday
37   13 M 5 Solution of ODE's by Laplace Transforms
38   15 W 5 Green's Functions
39   17 F 5 Bromwich Integral
40   20 M   Special Topics Signal Analysis
41   22 W   Special Topicss
42   24 F   Exam III
43   27 M   Preparation for Final
44   29 W   Preparation for Final
    30 Θ   Reading Day
  May 06 Θ Final - 8:00-11:00

Top

 
  Top
  Last Updated: January 10, 2020