M 261 Calendar  
                           

Back

# Date   Day Sec

Topic

          Introduction
        12.1 3D Coordinate System
        12.2 Vectors
        12.3 Dot Product
        12.4 Cross Product
           
        12.5 Equations of Lines and Planes
        12.5 Equations of Lines and Planes
        12.6 Cylinders and Quadratic Surfaces
        13.1 Vector Functions and Space Curves
        13.2 Derivative and Integrals of Vector Functions
        13.3 Arc Length and Curvature
        13.4 Motion in Space
          Review
          Exam I - Chapters 12 and 13
        14.1 Functions of Several Variables
        14.2 Limits and Continuity
        14.3 Partial Derivatives
        14.3 Partial Derivatives
        14.4 Tangent Planes - Differential
        14.4 Tangent Planes
        14.5 Chain Rule
        14.5 Chain Rule
        14.6 Directional Derivatives - Gradient
        14.6 Directional Derivatives - Gradient
        14.7 Maxima and Minima
        14.7 Maxima and Minima
        14.8 Lagrange Multipliers
           Review
          Exam II - Chapter 14
        15.1 Double Integrals over Rectangles
        15.2 Double Integrals over General Regions
        15.2 Double Integrals over General Regions
        15.3 Double Integrals in Polar Coordinates
        15.3 Double Integrals in Polar Coordinates
        15.4 Applications of Double Integrals
        15.4 Applications of Double Integrals
        15.5 Surface Area
        15.5 Surface Area
        15.6 Triple Integrals
           
        15.6 Triple Integrals
        15.7 Triple Integrals in Cylindrical Coordinates
        15.7 Triple Integrals in Cylindrical Coordinates
        15.8 Triple Integrals in Spherical Coordinates
      15.8 Triple Integrals in Spherical Coordinates
        15.9 Change of Variables Theorem
          Review
          Exam III
        16.1 Vector Fields
      16.2 Line Integrals
        16.2 Line Integrals (Cont)
        16.3 Fundamental Theorem for Line Integrals 1
        16.3 Fundamental Theorem for Line Integrals 2
        16.4 Curl - Divergence
      16.5 Green's Theorem  (Stokes' Theorem in 2D)
        16.5 Green's Theorem 
        16.6 Parametric Surfaces
        16.6 Parametric Surfaces (Cont)
           
           
        16.7 Surface Integrals
        16.7 Surface Integrals (Cont)
        16.8 Stokes' Theorem
        16.8 Stokes' Theorem (Cont)
        Differential Forms
        16.9 Divergence Theorem
        16.9 Divergence Theorem
        16.10 Summary
          Review
          Exam IV - Chapter 16
          Preparation for Final
          Preparation for Final
          Preparation for Final
          Reading Day
         

Top

 
  Top
  Last Updated: August 18, 2020