MATH 261 Final Exam, Spring 2021

Sim	plify answers. No work, no credit	Name:	Sc	ore
1.	Given a force $\mathbf{F} = 5\mathbf{i} - 3\mathbf{j}$ and a position vector $\mathbf{r} = 2\mathbf{i} + 3\mathbf{j}$	$-2\mathbf{j} - \mathbf{k}$, compute:	1	11
	a) The torque $\mathbf{r} \times \mathbf{F}$.	b) $ \mathbf{r} \times \mathbf{F} $.	2	12
	· -	, , , , , , , , , , , , , , , , , , ,	3	13
			4	14
			5	15
			6	16
			7	17
	Ans:	Ans:	8	18
2.	Ans: Given the point $P(1,-1,5)$ and the line $L: \mathbf{r}(t) = \langle 3 - 1 \rangle$	$-t \cdot 3 + 2t \cdot 2 + 5t$, find:	9	19
	a) The direction vector of the line.	b) The line through P and \parallel to L .	10	20
	a) The direction vector of the line.	s) The mie chrought I and to Di	Tot	
		· ·	100	
	Ans:	Ans:		
3.	Write parametric equations for:			
	a) The hyperbola $x^2 - y^2 = 9$.	b) The cone $x^2 + y^2 - z^2 = 0$.		
	, , , , ,	,		
	Ans:	Ans:		·
4.	Ans: Given the surface $S: z = xy - 12$ and the point $P(2, 2)$	(2, -8)		
	a) A normal to S at P .	b) The equation of the tangent plane at P .		
	,	,		
	Ans:	Ans:		·
5.	Ans: A particle moves along the path $\mathbf{r}(t) = \sqrt{2}t \ \mathbf{i} + e^t \ \mathbf{j} + e^t$	$^{-t}$ k . Find the:		
	a) Speed at $(0,1,1)$.	b) Acceleration.		
	Ans:	Ans:		·
6.	c) Tangential acceleration at $(0,1,1)$.	d) Centripetal acceleration at $(0,1,1)$.		
	Ans:	Ans:		
	Extra Space	All5		<u> </u>
	Ехиа врасе			

	Name:	
7.	Suppose $f(x,y) = \ln(x^2 + y^2)$.	
	a) Compute ∇f .	b) Compute df.
	,	
	Ans:	Ans:
8.	Ans: Let $f(x,y) = x^4y^3 - 3x^2 + y$ and u point in the direction	on given by the angle $\theta = \pi/6$. Find
	a) The unit direction vector \mathbf{u} .	b) $D_{\mathbf{u}}f(1,1)$.
		~/ = u, (-, -).
	Ans:	Ans:
9.	Let $z = f(x, y) = xy - x^2 - y^2 - 2x - 2y + 7$.	
	a) Find the critical points.	b) Classify the critical points.
	Ans:	Ans:
10.	Let $xe^z + y^2z^3 = 6$. Use implicit differentiation to find:	
	a) z_x .	b) z_y .
	, -	, ,
	Ans:	Ans:
11.	A plate of density $\rho = 5$ is bounded by $y = \sqrt{a^2 - x^2}$ at	and $y = 0$. Set up the integrals for
	a) $y_{c.m}$	$ \mathrm{b} J_z$
	, year	
	Extra space	

		Name:	
12.	Setup and compute $\int \int dS$, where S is the part of the surface $z = xy + 4$, bounded by $x^2 + y^2 = 4$.		
	a3 a9	Ans:	
13.	Let $I = \int_0^3 \int_{y^2}^9 2y e^{x^2} dx dy$.		
	a) Reverse the order of integration	b) Evaluate the integral	
	a) Iteverse the order of integration	b) Evaluate the integral	
	Ans:	Ans:	
14.	Find the volume bounded by $z = 49 - x^2 - y^2$, $z \ge 0$,	and $x^2 + y^2 = 9$.	
		Ans:	
15.	Find the volume of spherical cap of the sphere $x^2 + y^2$	$+z^2 = 2$ above the plane z=1.	
	Hint: the volume of a cone is $V_c = \frac{1}{3}\pi r^2 h$		
		A	
16.	True or False?	Ans:	
10.	\blacksquare . a) If $\nabla \cdot \mathbf{F} = 0$, then \mathbf{F} is conservative.		
	b) If $\mathbf{F} = \nabla \times \mathbf{G}$, then \mathbf{F} is incompressible.		
	c) If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is path independent, then $\nabla \times \mathbf{F} = 0$	l.	
	d) If $\nabla \times \mathbf{F} = 0$, then $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$. e) If $\mathrm{bd}(S_1) = \mathrm{bd}(S_2)$ then $\int \int_{S_1} \mathbf{F} \cdot d\mathbf{S} = \int \int_{S_2} \mathbf{F} \cdot d\mathbf{S}$		
		uo	
	Extra Space		

	Nam	e:			
17.	Let $\mathbf{F} = (e^x \cos y + yz) \mathbf{i} + (xz - e^x \sin y) \mathbf{j} + (xy + z) \mathbf{k}$ and C is the line segment joining $(0,0,0)$				
	to $(-1, \pi/2, -2)$ a) Find f such that $\mathbf{F} = \nabla f$.	consists of F do			
	a) Find f such that $\mathbf{F} = \nabla f$.	mpute $\int_C \mathbf{F} \cdot d\mathbf{r}$			
10	Ans:	Ans:			
18.	Compute: $\oint_C -y^3 dx + x^3 dy$, where C is the circle $x^2 + y^2 =$	36			
		Ang			
19.	Find $\int \int (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$, where $\mathbf{F} = \langle 6y + z^2, 2x - y^3, 5y^2z \rangle$ and	Ans. $S: z = 36 - 4x^2 - 4u^2 \text{ with } z > 0$			
10.		$z = 0$ if with $z \geq 0$.			
		Ans:			
20.	Find: $\iint_{\Sigma} \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F} = 3z^2x\mathbf{i} + y^3\mathbf{j} + 3x^2z\mathbf{k}$, and Σ is be	and $y = \sqrt{16 - z^2 - y^2}$ and $y = 0$.			
	3 32	v			
		Ans:			
	Extra Space				
	Comments on this exam:				